3.1 Interpolation and Lagrange Polynomial

Theorem 3.1 Weierstrass Approximation theorem

Suppose $f \in C[a, b]$. Then $\forall \epsilon > 0, \exists$ a polynomial P(x): $|f(x) - P(x)| < \epsilon, \forall x \in [a, b]$.

Remark:

- 1. The bound is uniform, i.e. valid for all x in [a, b]
- 2. The way to find P(x) is unknown.

- **Question:** Can Taylor polynomial be used here?
- Taylor expansion is accurate in the neighborhood of one point. We need to the (interpolating) polynomial to pass many points.
- **Example**. Taylor polynomial approximation of e^x for $x \in [0,3]$

• **Example**. Taylor polynomial approximation of $\frac{1}{x}$ for $x \in [0.5,5]$. Taylor polynomials of different degrees are expanded at $x_0 = 1$

Exercise 3.1.2(a) Use nodes $x_0 = 1, x_1 =$ 1.25, $x_2 = 1.6$ to find 2nd Lagrange interpolating polynomial P(x) for $f(x) = sin(\pi x)$. And use P(x) to approximate f(1.4).

n-degree Interpolating Polynomial through n+1 Points

- Constructing a Lagrange interpolating polynomial passing through the points $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), \dots, (x_n, f(x_n)).$
- 1. Define Lagrange basis functions $L_{n,k}(x) =$

 $\Pi_{i=0,i\neq k}^{n} \frac{x-x_{i}}{x_{k}-x_{i}} = \frac{x-x_{0}}{x_{k}-x_{0}} \dots \frac{x-x_{k-1}}{x_{k}-x_{k-1}} \cdot \frac{x-x_{k+1}}{x_{k}-x_{k+1}} \dots \frac{x-x_{n}}{x_{k}-x_{n}} \text{ for } k = 0,1 \dots n.$ Remark: $L_{n,k}(x_{k}) = 1; L_{n,k}(x_{i}) = 0, \forall i \neq k$ 2. $P_{n}(x) = f(x_{0})L_{n,0}(x) + \dots + f(x_{n})L_{n,n}(x).$

• $L_{6,3}(x)$ for points $x_i = i$, i = 0, ..., 6.

• Theorem 3.2 If x_0, \dots, x_n are n + 1 distinct numbers (called nodes) and f is a function whose values are given at these numbers, then a **unique polynomial** P(x) of **degree at most** *n* exists with $P(x_k) =$ $f(x_k)$, for each k = 0, 1, ..., n. $P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x).$ Where $L_{n,k}(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i}$.

Exercise 3.1.6.a Construct 3rd degree interpolating polynomial with following tabulated values.

$x_0 = 0$	f(0) = 1
$x_1 = 0.25$	<i>f</i> (0 . 25) = 1 .64
$x_2 = 0.5$	f(0.5) = 2.71
$x_3 = 0.75$	<i>f</i> (0.75) = 4.48

Error Bound for the Lagrange Interpolating Polynomial

Theorem 3.3 Suppose x_0, \ldots, x_n are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then for each x in [a, b], a number $\xi(x)$ (generally unknown) between x_0, \ldots, x_n , and hence in (a, b), exists with f(x) = P(x) + P(x) $\frac{f^{(n+1)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)\dots(x-x_n).$

Where P(x) is the Lagrange interpolating polynomial.

- Remark:
 - 1. Applying the error term may be difficult. $(x - x_0)(x - x_1) \dots (x - x_n)$ is oscillatory. $\xi(x)$ is generally unknown.
 - 2. The error formula is important as they are used for numerical differentiation and integration.

Example 3 2nd Lagrange polynomial for $f(x) = \frac{1}{x}$ on [2, 4] using nodes $x_0 = 2, x_1 = 2.75, x_2 = 4$ is $P(x) = \frac{1}{22}x^2 - \frac{35}{88}x + \frac{49}{44}$. Determine the error form for P(x), and maximum error when polynomial is used to approximate f(x) for $x \in$ [2,4]. **Example 4** Suppose a table is to be prepared for $f(x) = e^x$, $x \in [0,1]$. Assume the number of decimal places to be given per entry is $d \ge 8$ and that the difference between adjacent x-values, the step size is h. What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in [0,1].