3.1 Interpolation and Lagrange
Polynomial



Theorem 3.1 Weierstrass Approximation theorem
Suppose f € C[a, b]. Then Ve > 0, 3 a polynomial P(x):
|If(x) — P(x)| <€, Vx €la,b].

Remark:

1. The bound is uniform, i.e. valid for all x in [a, b]
2. The way to find P(x) is unknown.



e Question: Can Taylor polynomial be used here?

e Taylor expansion is accurate in the neighborhood of one point.
We need to the (interpolating) polynomial to pass many points.

e Example. Taylor polynomial approximation of e* for x € [0,3]




Example. Taylor polynomial approximation of for

x € |0.5,5]. Taylor polynomials of different degrees
are expanded at x, = 1
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Exercise 3.1.2(a) Use nodes xy = 1,x; =
1.25,x, = 1.6 to find 2" Lagrange interpolating
polynomial P(x)for f(x) = sin(;rx) . And use
P(x) to approximate f(1.4).



n-degree Interpolating Polynomial through n 4+ 1 Points

Constructing a Lagrange interpolating polynomial passing
through the points (xg, f(xg)), (xl,f(xl)),
(22, F(x2)), wovs (s f ().

1. Define Lagrange basis functions L, ,(x) =
n X—Xi _ X=X X—Xg—1

1=0,i#k —
0 Xk—Xi Xg—Xo Xp—Xg-—1

2rkt1 27 fork=01..n
_— ’ EEnN n

Xk—Xky1 Xk—Xn
Remark: Ly, p (x) = 1; L g (x;) = 0, Vi # k

2. Py(x) = f(xO)Ln,O(x) paliii o f(xn)Ln,n(x)-
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e Theorem 3.2 If x, ..., x,, are n + 1distinct
numbers (called nodes) and f is a function
whose values are given at these numbers,
then a unique polynomial P(x) of degree at

most n exists with P(x) =
f(xg), foreachk = 0,1, ...n.

P(x) = f(xO)Ln,O(x) T+ e f(xn)Ln,n(x)-

X—Xi

Where L., . (x) =1L 4L, —.
n,k( ) L—O,L:thk_xi



Exercise 3.1.6.a Construct 3" degree
interpolating polynomial with following
tabulated values.

x; = 0.25 £(0.25) = 1. 64
x, = 0.5 £(0.5) =2.71

x5 = 0.75 £(0.75) = 4.48



Error Bound for the Lagrange Interpolating
Polynomial

Theorem 3.3 Suppose x,, ..., x,, are distinct
numbers in the interval [a, b] and f € C™*1[aq, b].
Then for each x in [a, b], a number é(x) (generally
unknown) between xy, ..., X, and hence in (a, b),
exists with f(x) = P(x) +
fO(E )
(n+1)!

Where P(x) is the Lagrange interpolating
polynomial.

(x —x9)(x —x1) ... (x — x;,).



Remark:
1. Applying the error term may be difficult.

(x — xg)(x — xq) ... (x — x;,) is oscillatory.
¢(x) is generally unknown.

2. The error formula is important as they are used for
numerical differentiation and integration.

Plot of (x — 0)(x _ 1) (x;— z’f(x i 335(x "y



Example 3 2" Lagrange polynomial for f(x) =

on [2, 4] using nodes xy = 2,x; = 2.75,x, =

. 1 35 49 .
is P(x) = Exz ——-x + ——. Determine the

error form for P(x), and maximum error when
polynomial is used to approximate f(x) for x €
2,4].
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Example 4 Suppose a table is to be prepared for
f(x) =e*, x € [0,1]. Assume the number of
decimal places to be given per entry isd = 8
and that the difference between adjacent x-
values, the step size is h. What step size h will
ensure that linear interpolation gives an
absolute error of at most 107° for all x in [0,1].
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