3.4 Hermite Interpolation
3.5 Cubic Spline Interpolation



Hermite Polynomial

Definition. Suppose f € C1[a, b]. Let x,, ..., x,, be
distinct numbers in [a, b], the Hermite polynomial
P(x) approximating f is that:

1. P(x;) = f(x;), fori=0,..,n

dP(x;) _ df(x;)
dx  dx

2.

, fori=0,...,n

Remark: P(x) and f(x) agree not only function values but
also 1%t derivative values at x;, i = 0, ..., n.



Osculating Polynomials

Definition 3.8 Let x, ..., x,, be distinct numbers in [a, b]
and fori =0, ..., n, let m; be a nonnegative integer.

Suppose that f € C™|a, b|, where m = max m;. The
SIsN

osculating polynomial approximating f is the polynomial
d*p(x;)  dRf(x

K dxkl) for each

P(x) of least degree such that
[ =0,..,nand k=0, ...,m;.

Remark: the degree of P(x) isat most M = ),;_,m; + n.



Theorem 3.9 If f € C[a, b] and xy, ..., x,, € [a, b] distinct
numbers, the Hermite polynomial of degree at most 2n + 1 is:

Hons1 () = ) £()Hn ;0 + ) f'(3) Bl 1 6)
j=0 j=0

Where
Hn,j (x) — [1 _ Z(X R xj)L,n,j(xj)]L?z,j (x)
Hy j(x) = (x — xj)L%,j(x)
Moreover, if f € C?"*2[q, b], then
2 2
(x—2x9 ) o (x—2x,)

(2n + 2)!

f(x) = Hapy1(x) + fEA (€ ()

for some &(x) € (a, b).

Remark:

1. Hy,.+1(x) is a polynomial of degree at most 2n + 1.
2. Ly j(x) is jth Lagrange basis polynomial of degree n.
(x—xo )2...(x—xn )2

(2n+2)!

3. f£@n+2) (& (x)) is the error term.




Example 3.4.1 Use Hermite polynomial that agrees
with the data in the table to find an approximation

of f(1.5)

707 13 0.6200860 —0.5220232
BN 16 0.4554022 —0.5698959
72" 1.9 0.2818186 —0.5811571



39 Degree Hermite Polynomial

 Given distinct x, x; and values of f and f" at these
numbers.

H3(x)
_ (4 Zx—xo X1 — X 2
- (122 (25 roo

X —x\°
+(x—x0)( —xo) f'(x0)

X1
X1 — X Xg— X °
+11+4+2 f(xq)
X1 — X0/ \Xo — X1

X0 —x \°
+(x—x1)( —x1) f(x1)

X0




Hermite Polynomial by Divided Differences

Suppose X, ..., X, and f, f' are given at these numbers.
Define zg, ..., Zy,,41 by
Zoi = Zpiy1 = X, fori =0,..,n

Construct divided difference table, but use
(o), f(xq), ., f(xp)
to set the following undefined divided difference:
flzo, z1), fl 22, 23], .., fl2Z2n) Z2n 41 ).

The Hermite polynomial is
2n+1

Hyni1(x) = flzo] + 2 flzo, or zyl(x — zg) ... (X — Z—1)
k=1



Example 3.4.2 Use divided difference method to
determine the Hermite polynomial that agrees with
the data in the table to find an approximation of

f(1.5)
ko flw) flla)

707 13 0.6200860 —0.5220232
BN 16 0.4554022 —0.5698959
72" 1.9 0.2818186 —0.5811571




Divided Difference Notation for Hermite
Interpolation

e Divided difference notation for Hermite
polynomial interpolating 2 nodes: xq, x1.

H;(x)

= f(x0) + f'(x0) (x — x0) + fx0, X0, x1](x — x¢)*

+ fx0, X0, %1, 1] (x — %)% (x — x1)



Problems with High Order Polynomial Interpolation

e 21 equal- spaced numbers to interpolate

f()_1+ 5x2

oscillates between interpolation points.

The interpolating polynomial



3.5 Cubic Splines

e |dea: Use piecewise polynomial interpolation, i.e,
divide the interval into smaller sub-intervals, and
construct different low degree polynomial
approximations (with small oscillations) on the
sub-intervals.

e Challenge: If f'(x;) are not known, can we still
generate interpolating polynomial with
continuous derivatives?



Definition 3.10 Given a function f on [a, b] and nodes a = xy <
.-+ < X, = b, a cubic spline interpolant S for f satisfies:

(a) S(x)is a cubic polynomial S;(x) on [x}, xj,1] with:
2 3
Si(x) =a; + bi(x —x) +¢i(x —x)" +dj(x — x;)
vj=0,1,..,n—1.
(a) Sj(xj) = f(x;) and Sj(xj+1) = f(xj+1), vj=0,1,..,n—1.
(b) Sj(Xj+1) — Sj+1(Xj+1), Vj — 0,1, e, N — 2.
Remark: (b) is derived from (a).
(C) S,j(Xj+1) — S’j+1(Xj+1), Vj — 0,1, ey, L — 2.

(d) S”j(Xj_|_1) — S”j_|_1(.X'j+1), Vj — 0,1, e, N — 2.
(e) One of the following boundary conditions:
(i) S"(xy) = S"(x,) = 0 (called free or natural boundary)
(if) S'(xy) = f'(xg) and S'(x,) = f'(x,) (called clamped boundary)
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Things to match at interior point x; 1:

* The spline segment S;(x) is on [xj, xj+1].

* The spline segment S;, 1 (x) is on [xj+1, xj+2].

* Their function values: Sj(xj+1) = Sj+1(xj+1) =
f(%j41)
* First derivative values: S’j(xj+1) = 5'j+1(xj+1)

e Second derivative values: S”j(xj+1) = S”j+1(xj+1)



Example 3.5.1 Construct a natural spline S(x)
through (1,2), (2,3) and (3.5).



Building Cubic Splines
 Define: S;(x) = a; + b;(x — x;) + ¢j(x — x;)?+d;(x — x)*
and hj = Xj+1 — Xj, V] = 0,1, e, N — 1.
Solve for coefficients a;, b;, ¢;, d; by:
1 S-(xjg =aq; = f(xj) forj =0,1,..,n — 1. We also define a,, =
f Ce).
2. Siy1(xj41) = @j41 = a; + bjhy + ¢ (h; )2 +d;(h; )3
forj=01,..,n—1.
Note: e O e bn—lhn—l + Cn—l(hn—1)2+dn—1(hn—1)3
3. §'j(x;) = bj, also bj1 = bj + 2¢;h; + 3d;(h; )?
forj =10,1,...,n — 1 with b,, defined to be b,, = S'(x,,)
4. S”j(xj) = 2¢j, also ¢j11 = ¢; + 3d;h;
forj =0,1,..,n — 1 with ¢,, defined to be ¢,, = S"(x,,)/2
5. Natural or clamped boundary conditions



Solving the Resulting Equations

Vji=12..,n—1
hj—lcj—l + Z(h]_l + h])C] + hjCj+1
3 3
= F(aj+1 - aj) h (aj B aj—l) (3.21)

| j—1
Remark: (n-1) equations for (n+1) unknowns {cj}}LO.
Eq. (3.21) is solved with boundary condition.

* Once compute ¢;, we then compute:

b] — (a]+;_a]) hJ(ZC]+C]+1) (3.20)
J
and

_ (cjr1=c)) . .
di = 7y (3.17) forj=0,1,2,...,n—1




Building Natural Cubic Spline

 Natural boundary condition:
1. O — S”()(XO) — ZCO — CO —_ O
2. 0=5"(x,) =2c,—>c,=0

1. So
2. So
3. So

ve Eo

ve Eo

ve Eo

. (3.21) together with (1) and (2).
. (3.20)
. (3.17)

17



Building Clamped Cubic Spline

e Clamped boundary condition:
a) S'o(xg) = by = f'(xp)
b) S,n—l(xn) =bp =bp_1+hy_1(chq t+cp) = f,(xn)
Remark: a) and b) gives additional equations:

= (a; —ag) —3f ' (x) (a)

ho
3
hp-1Cn—1 +2hy_1cp = T (an — an_1) + 31" (x,) (D)
0
1. Solve Eq. (3.21) together with (a) and (b).

2. Solve Eqg. (3.20)
3. Solve Eqg. (3.17)

2h0C0 + h0C1 —



Example 3.5.4 Let (xq, f (%)) =
(0,1), (x1, f(x1)) = (1,€), (x2, f(x2)) = (2, €%),

(x3, f(x3)) = (3,€%). And f'(x) = e, f'*3) = €3,
Determine the clamped spline S(x).



Theorem 3.11 If f is defined at the nodes: a =
Xog < -+ < X, = b, then f has a unique natural
spline interpolant S on the nodes; that is a spline

interpolant that satisfied the natural boundary
conditions S (a) = 0,S"(b) = 0.

Theorem 3.12 If f is defined at the nodes: a =
xXg < -+ < X, = b and differentiable at a and b,
then f has a unique clamped spline interpolant S
on the nodes; that is a spline interpolant that
satisfied the clamped boundary conditions

§'(a) = f(a),S"(b) = f'(b).



Error Bound

Theorem 3.13 If f € C*[a, b], let M =

max |f*(x)|. If S is the unique clamped cubic
as<x<b

spline interpolant to f with respect to the nodes:
a=xy<- <x,=Db,then with

b= o, (e = %)

S5Mh*
— <
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