3.4 Hermite Interpolation3.5 Cubic Spline Interpolation

Hermite Polynomial

Definition. Suppose $f \in C^1[a,b]$. Let $x_0, ..., x_n$ be distinct numbers in [a,b], the Hermite polynomial P(x) approximating f is that:

1.
$$P(x_i) = f(x_i)$$
, for $i = 0, ..., n$

2.
$$\frac{dP(x_i)}{dx} = \frac{df(x_i)}{dx}$$
, for $i = 0, ..., n$

Remark: P(x) and f(x) agree not only function values but also 1st derivative values at x_i , i = 0, ..., n.

Osculating Polynomials

Definition 3.8 Let $x_0, ..., x_n$ be distinct numbers in [a, b] and for i = 0, ..., n, let m_i be a nonnegative integer. Suppose that $f \in C^m[a, b]$, where $m = \max_{0 \le i \le n} m_i$. The osculating polynomial approximating f is the polynomial P(x) of least degree such that $\frac{d^k P(x_i)}{dx^k} = \frac{d^k f(x_i)}{dx^k}$ for each i = 0, ..., n and $k = 0, ..., m_i$.

Remark: the degree of P(x) is at most $M = \sum_{i=0}^{n} m_i + n$.

Theorem 3.9 If $f \in C^1[a,b]$ and $x_0, ..., x_n \in [a,b]$ distinct numbers, the Hermite polynomial of degree at most 2n+1 is:

$$H_{2n+1}(x) = \sum_{j=0}^{n} f(x_j) H_{n,j}(x) + \sum_{j=0}^{n} f'(x_j) \widehat{H}_{n,j}(x)$$

Where

$$H_{n,j}(x) = [1 - 2(x - x_j)L'_{n,j}(x_j)]L^2_{n,j}(x)$$

$$\widehat{H}_{n,j}(x) = (x - x_j)L^2_{n,j}(x)$$

Moreover, if $f \in C^{2n+2}[a,b]$, then

$$f(x) = H_{2n+1}(x) + \frac{\left(x - x_0\right)^2 \dots \left(x - x_n\right)^2}{(2n+2)!} f^{(2n+2)}(\xi(x))$$

for some $\xi(x) \in (a, b)$.

Remark:

- 1. $H_{2n+1}(x)$ is a polynomial of degree at most 2n + 1.
- 2. $L_{n,j}(x)$ is jth Lagrange basis polynomial of degree n.
- 3. $\frac{(x-x_0)^2...(x-x_n)^2}{(2n+2)!}f^{(2n+2)}(\xi(x)) \text{ is the error term.}$

Example 3.4.1 Use Hermite polynomial that agrees with the data in the table to find an approximation of f(1.5)

k	x_k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

3rd Degree Hermite Polynomial

• Given distinct x_0 , x_1 and values of f and f' at these numbers.

$$H_{3}(x)$$

$$= \left(1 + 2\frac{x - x_{0}}{x_{1} - x_{0}}\right) \left(\frac{x_{1} - x}{x_{1} - x_{0}}\right)^{2} f(x_{0})$$

$$+ (x - x_{0}) \left(\frac{x_{1} - x}{x_{1} - x_{0}}\right)^{2} f'(x_{0})$$

$$+ \left(1 + 2\frac{x_{1} - x}{x_{1} - x_{0}}\right) \left(\frac{x_{0} - x}{x_{0} - x_{1}}\right)^{2} f(x_{1})$$

$$+ (x - x_{1}) \left(\frac{x_{0} - x}{x_{0} - x_{1}}\right)^{2} f'(x_{1})$$

Hermite Polynomial by Divided Differences

Suppose $x_0, ..., x_n$ and f, f' are given at these numbers. Define $z_0, ..., z_{2n+1}$ by

$$z_{2i} = z_{2i+1} = x_i$$
, for $i = 0, ..., n$

Construct divided difference table, but use

$$f'(x_0), f'(x_1), ..., f'(x_n)$$

to set the following undefined divided difference:

$$f[z_0, z_1], f[z_2, z_3], \dots, f[z_{2n}, z_{2n+1}].$$

The Hermite polynomial is

$$H_{2n+1}(x) = f[z_0] + \sum_{k=1}^{2n+1} f[z_0, \dots, z_k](x - z_0) \dots (x - z_{k-1})$$

Example 3.4.2 Use divided difference method to determine the Hermite polynomial that agrees with the data in the table to find an approximation of f(1.5)

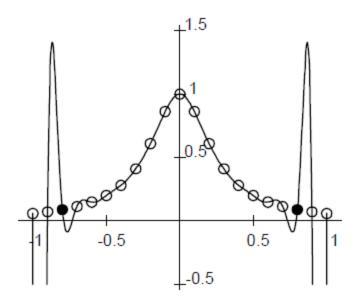
k	x_k	$f(x_k)$	$f'(x_k)$
0	1.3	0.6200860	-0.5220232
1	1.6	0.4554022	-0.5698959
2	1.9	0.2818186	-0.5811571

Divided Difference Notation for Hermite Interpolation

• Divided difference notation for Hermite polynomial interpolating 2 nodes: x_0, x_1 .

$$H_3(x)$$
= $f(x_0) + f'(x_0)(x - x_0) + f[x_0, x_0, x_1](x - x_0)^2$
+ $f[x_0, x_0, x_1, x_1](x - x_0)^2(x - x_1)$

Problems with High Order Polynomial Interpolation



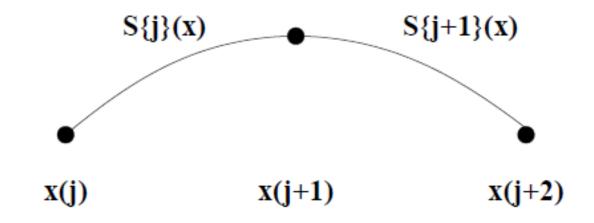
• 21 equal-spaced numbers to interpolate $f(x) = \frac{1}{1+25x^2}$. The interpolating polynomial oscillates between interpolation points.

3.5 Cubic Splines

- Idea: Use piecewise polynomial interpolation, i.e, divide the interval into smaller sub-intervals, and construct different low degree polynomial approximations (with small oscillations) on the sub-intervals.
- Challenge: If $f'(x_i)$ are not known, can we still generate interpolating polynomial with continuous derivatives?

Definition 3.10 Given a function f on [a,b] and nodes $a=x_0<\cdots< x_n=b$, a **cubic spline interpolant** S for f satisfies:

- (a) S(x) is a cubic polynomial $S_j(x)$ on $[x_j, x_{j+1}]$ with: $S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ $\forall j = 0, 1, ..., n - 1.$
- (a) $S_j(x_j) = f(x_j)$ and $S_j(x_{j+1}) = f(x_{j+1}), \forall j = 0, 1, ..., n-1$.
- (b) $S_j(x_{j+1}) = S_{j+1}(x_{j+1}), \forall j = 0,1,...,n-2.$ Remark: (b) is derived from (a).
- (c) $S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1}), \forall j = 0,1,...,n-2.$
- (d) $S''_{j}(x_{j+1}) = S''_{j+1}(x_{j+1}), \forall j = 0, 1, ..., n-2.$
- (e) One of the following boundary conditions:
 - (i) $S''(x_0) = S''(x_n) = 0$ (called free or natural boundary)
 - (ii) $S'(x_0) = f'(x_0)$ and $S'(x_n) = f'(x_n)$ (called clamped boundary)



Things to match at interior point x_{i+1} :

- The spline segment $S_j(x)$ is on $[x_j, x_{j+1}]$.
- The spline segment $S_{j+1}(x)$ is on $[x_{j+1}, x_{j+2}]$.
- Their function values: $S_j(x_{j+1}) = S_{j+1}(x_{j+1}) = f(x_{j+1})$
- First derivative values: $S'_{j}(x_{j+1}) = S'_{j+1}(x_{j+1})$
- Second derivative values: $S''_{j}(x_{j+1}) = S''_{j+1}(x_{j+1})$

Example 3.5.1 Construct a natural spline S(x) through (1,2), (2,3) and (3.5).

Building Cubic Splines

• Define: $S_j(x) = a_j + b_j(x - x_j) + c_j(x - x_j)^2 + d_j(x - x_j)^3$ and $h_j = x_{j+1} - x_j$, $\forall j = 0,1,...,n-1$.

Solve for coefficients a_i , b_i , c_i , d_i by:

- 1. $S_j(x_j) = a_j = f(x_j)$ for j = 0,1,...,n-1. We also define $a_n = f(x_n)$.
- 2. $S_{j+1}(x_{j+1}) = a_{j+1} = a_j + b_j h_j + c_j (h_j)^2 + d_j (h_j)^3$ for j = 0, 1, ..., n - 1. Note: $a_n = a_{n-1} + b_{n-1} h_{n-1} + c_{n-1} (h_{n-1})^2 + d_{n-1} (h_{n-1})^3$
- 3. $S'_{j}(x_{j}) = b_{j}$, also $b_{j+1} = b_{j} + 2c_{j}h_{j} + 3d_{j}(h_{j})^{2}$ for j = 0,1,...,n-1 with b_{n} defined to be $b_{n} = S'(x_{n})$
- 4. $S''_{j}(x_{j}) = 2c_{j}$, also $c_{j+1} = c_{j} + 3d_{j}h_{j}$ for j = 0,1,...,n-1 with c_{n} defined to be $c_{n} = S''(x_{n})/2$
- 5. Natural or clamped boundary conditions

Solving the Resulting Equations

$$\forall j = 1, 2, ..., n - 1$$

$$h_{j-1}c_{j-1} + 2(h_{j-1} + h_j)c_j + h_jc_{j+1}$$

$$= \frac{3}{h_j}(a_{j+1} - a_j) - \frac{3}{h_{j-1}}(a_j - a_{j-1})$$
(3.21)

Remark: (n-1) equations for (n+1) unknowns $\{c_j\}_{j=0}^n$. Eq. (3.21) is solved with boundary condition.

• Once compute c_i , we then compute:

$$b_{j} = \frac{(a_{j+1} - a_{j})}{h_{j}} - \frac{h_{j}(2c_{j} + c_{j+1})}{3}$$
 (3.20) and

$$d_j = \frac{(c_{j+1} - c_j)}{3h_j}$$
 (3.17) for $j = 0, 1, 2, ..., n - 1$

Building Natural Cubic Spline

Natural boundary condition:

- 1. $0 = S''_0(x_0) = 2c_0 \rightarrow c_0 = 0$
- 2. $0 = S''_n(x_n) = 2c_n \rightarrow c_n = 0$
- 1. Solve Eq. (3.21) together with (1) and (2).
- 2. Solve Eq. (3.20)
- 3. Solve Eq. (3.17)

Building Clamped Cubic Spline

Clamped boundary condition:

a)
$$S'_0(x_0) = b_0 = f'(x_0)$$

b)
$$S'_{n-1}(x_n) = b_n = b_{n-1} + b_{n-1}(c_{n-1} + c_n) = f'(x_n)$$

Remark: a) and b) gives additional equations:

$$2h_0c_0 + h_0c_1 = \frac{3}{h_0}(a_1 - a_0) - 3f'(x_0)$$

$$h_{n-1}c_{n-1} + 2h_{n-1}c_n = -\frac{3}{h_0}(a_n - a_{n-1}) + 3f'(x_n)$$
(b)

- 1. Solve Eq. (3.21) together with (a) and (b).
- 2. Solve Eq. (3.20)
- 3. Solve Eq. (3.17)

Example 3.5.4 Let $(x_0, f(x_0)) = (0,1), (x_1, f(x_1)) = (1,e), (x_2, f(x_2)) = (2,e^2), (x_3, f(x_3)) = (3,e^3).$ And $f'(x_0) = e, f'^{(x_3)} = e^3.$ Determine the clamped spline S(x).

Theorem 3.11 If f is defined at the nodes: $a = x_0 < \cdots < x_n = b$, then f has a unique natural spline interpolant S on the nodes; that is a spline interpolant that satisfied the natural boundary conditions S''(a) = 0, S''(b) = 0.

Theorem 3.12 If f is defined at the nodes: $a = x_0 < \cdots < x_n = b$ and differentiable at a and b, then f has a unique clamped spline interpolant S on the nodes; that is a spline interpolant that satisfied the clamped boundary conditions S'(a) = f'(a), S'(b) = f'(b).

Error Bound

Theorem 3.13 If $f \in C^4[a,b]$, let M = $\max_{a \le x \le b} |f^4(x)|$. If S is the unique clamped cubic spline interpolant to f with respect to the nodes: $a = x_0 < \cdots < x_n = b$, then with $h = \max_{0 \le j \le n-1} (x_{j+1} - x_j)$ $\max_{a \le x \le b} |f(x) - S(x)| \le \frac{5Mh^4}{384}.$