Section 4.3 Numerical Integration



Numerical quadrature: fff(x)dx ~ Yo f(x)a;.
The interpolation points are given as:

(X0, f(x0))
(x1, f(xq1))
(X2, f(x2))
(xn, f(xn))

Here a = x,; b = xy. By Lagrange Interpolation Theorem (Thm 3.3):
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Quadrature formula: fff(x)dx ~ Yt oa;f(x;)
with a; = f: Ly;(x)dx .
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The Trapezoidal Rule (obtained by first Lagrange interpolating
polynomial)

A
/ Let xo =a; x; = b;andh = b — a. (see Figure 1)
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Figure 1 Trapezoidal Rule
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Error term
Trapezoidal rule: f:f(x)dx ~ g[f(xo) + f(x4)]



The Simpson’s (1/3) Rule (error obtained by third Taylor polynomial)
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Figure 2 Simpson's Rule
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Let xo =a; x; = — 5 X2 = b;and h = — (see Figure 2)
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Now approximate £ (x;) = = [f (xo) — 2f (1) + f(x)] — = F P (&)
Thus
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Error term
Simpson’s rule: f:f(x)dx ~ g(f(xo) +4f(xq) + f(x3))




Example 1. Compare the Trapezoidal rule and Simpson’s rule
approximations to fOZ f(x)dx when f(x) is:

(@) x?; (b) (x + 1)~%; and (c) sin(x).



Precision

Definition: The degree of accuracy or precision of a quadrature formula
is the largest positive integer n such that the formula is exact for x*, for
eachk =0,1,---,n

Trapezoidal rule has degree of accuracy one.
f; x%dx =b — a; ff xOdx = bza [1+ 1] = b — a. Trapezoidal rule is exact for
1 (or x9).
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a . .
. Trapezoidal rule is exact
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P x2dy = 222 [a + b?] # —=. Trapezoidal rule

b X3 3
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is NOT exact for x?2
Simpson’s rule has degree of accuracy three.

Remark: The degree of precision of a quadrature formula is n if and only
If the error is zero for all polynomials of degree k = 0,1,---,n, but is
NOT zero for some polynomial of degree n + 1.




Closed Newton-Cotes Formulas

Leta = x,; b= x,;and h = b_Ta.

xX; = xo +ih,fori =0,1,-,n.
The formula: fff(x)dx ~ Nitoaif(x;)

o X Ty with a; = [ L,;(x)dx is called Closed
et remeE - Newton-Cotes Formula. Here L, ; (x) is the ith
Lagrange base polynomial of degree n.

Theorem 4.2 Suppose that )i, a; f (x;) is the (n+1)-point closed Newton-Cotes

formula witha = x5; b = x,;and h = b_Ta. There exists € € (a,b) for which
b pnt3 (n+2)
fo fOOdx = Toaif (o) + =2 [ 2t = 1) (£ — mydt.
if n is even and f € C"*?[a, b], and
b n n+2 r(n+1) n
3 ™ fR50(8) [
jaf(x)dx— ;aif(xi)+ D! o t“(t—1)--(t —n)dt

if nisoddand f € C"*1[a, b].
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Remark: n is even, degree of precision isn 4+ 1. n is odd, degree of precision
IS n.
Examples. n=1: Trapezoidal rule; n=2: Simpson’s rule.

n=3: Simpson’s Three-Eighths rule:
[22 fFO0dx = 2 (£ o) +3F () +3f () + fx3) = o F(€)

where x, < & < x5} h =x3;x°.
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Open Newton-Cotes Formula

f(x)

P (x)

[

Figure 4 Open Newton-Cotes Formula

See Figure 4. Let h = i_TZ; and xo =a+h. x; =x9+ih fori=0,1,--,n.
This implies x,, = b — h.

The formula: f;f(x)dx ~ YN oa;f(x)

witha; = f;_"lﬂ L, ;(x)dx is called open Newton-Cotes Formula. L, ;(x) is the
ith Lagrange basis polynomial using nodes x, ..., x,,.
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Theorem 4.3 Suppose that ', a;f (x;) is the (n+1)-point open Newton-Cotes

formula with @ = x_3; b= Xn.y; and h = 2= There exists § € (a,b) for
n+3 f(n+2)
which f;f(x)dx ~ Y oa;f(x) + h°F 7 6)

(n+2)!
if nisevenand f € C"*?[a, b], and

b N n hn+2f(n+1)(€) n+1
jaf(x)dx ~ Eaif(xi) + it D) . t2(t—1) - (t — n)dt

M- 1)t —ndt,

=0

if nisoddand f € C"*1[a, b].
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Examples of open Newton-Cotes formulas
n=0: Midpoint rule (Figure 5)

I r2i = ) + 70

b_
where x_; < & < x;. hzTa
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Figure 5 Midpoint rule

n=1: [* f( )dx = 2 [f(xO)+f(x1)]+—f(2)(€) where x_; < & <

n=2: [ f@)dx = L2 (xo) — fxr) +2f ()] + 2 FOE); where
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n=3: [ fdx = () + f0e) + () + 11 ()] + i O ()

b_
where x_; < & < x,. h=Ta.

Example 2. Use closed and open Newton-Cotes with n = 3 respectively

to approximate fOZ sin(x) dx respectively, and compare abs. errors.
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