
 
 
 
 
 
 
 

4.7 Gaussian Quadrature 
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Motivation:  When approximate ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏

𝑎𝑎 , nodes 𝑥𝑥0, 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛 in [𝑎𝑎, 𝑏𝑏] 
do not need to be equally spaced. This can lead to the greatest degree of 
precision (accuracy). 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

𝑥𝑥1 = 𝑎𝑎 𝑥𝑥2 = 𝑏𝑏 

𝑓𝑓(𝑥𝑥) 

Figure 1. 
Trapezoidal  rule 

𝑎𝑎   𝑥𝑥1  𝑥𝑥2    𝑏𝑏 

𝑓𝑓(𝑥𝑥) 

Figure 2. Gaussian 
quadrature 
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Consider ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎 ≈ ∑ 𝑐𝑐𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)𝑛𝑛

𝑖𝑖=1 . Here 𝑐𝑐1,⋯ , 𝑐𝑐𝑛𝑛  and 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛  are 2𝑛𝑛 
parameters. We therefore determine a class of polynomials of degree at 
most 2𝑛𝑛 − 1  for which the quadrature formulas have the degree of 
precision less than or equal to 2𝑛𝑛 − 1. 
 

Example Consider 𝑛𝑛 = 2  and [𝑎𝑎, 𝑏𝑏] = [−1,1] . We want to determine 
𝑥𝑥1, 𝑥𝑥2,  𝑐𝑐1  and 𝑐𝑐2  so that quadrature formula 
∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1
−1 ≈ 𝑐𝑐1𝑓𝑓(𝑥𝑥1) + 𝑐𝑐2𝑓𝑓(𝑥𝑥2)  has degree of precision 3.  

Solution: Let  𝑓𝑓(𝑥𝑥) = 1.  𝑐𝑐1 + 𝑐𝑐2 = ∫ 1𝑑𝑑𝑥𝑥1
−1 = 2             (Eq. 1)        

                Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥.   𝑐𝑐1𝑥𝑥1 + 𝑐𝑐2𝑥𝑥2 = ∫ 𝑥𝑥𝑑𝑑𝑥𝑥1
−1 = 0        (Eq. 2) 

             Let  𝑓𝑓(𝑥𝑥) = 𝑥𝑥2.  𝑐𝑐1𝑥𝑥12 + 𝑐𝑐2𝑥𝑥22 = ∫ 𝑥𝑥2𝑑𝑑𝑥𝑥1
−1 = 2

3
         (Eq. 3)    

             Let 𝑓𝑓(𝑥𝑥) = 𝑥𝑥3.   𝑐𝑐1𝑥𝑥13 + 𝑐𝑐2𝑥𝑥23 = ∫ 𝑥𝑥3𝑑𝑑𝑥𝑥1
−1 = 1        (Eq. 4) 

Use equations (1)-(4) to solve for 𝑥𝑥1, 𝑥𝑥2 , 𝑐𝑐1  and 𝑐𝑐2.  We obtain:     

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
1

−1
≈ 𝑓𝑓 �

−√3
3

� + 𝑓𝑓 �
√3
3
� 
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Remark: Quadrature formula ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥1
−1 ≈ 𝑓𝑓 �−√3

3
� + 𝑓𝑓 �√3

3
� has degree 

of precision 3. Trapezoidal rule has degree of precision 1.  
 

 
 

Legendre Polynomials 
 

Legendre polynomials 𝑃𝑃𝑛𝑛(𝑥𝑥) satisfy:  
1) For each 𝑛𝑛, 𝑃𝑃𝑛𝑛(𝑥𝑥) is a monic polynomial of degree 𝑛𝑛.  
2) ∫ 𝑃𝑃(𝑥𝑥)𝑃𝑃𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥1

−1 = 0  whenever 𝑃𝑃(𝑥𝑥)  is a polynomial of degree less 
than 𝑛𝑛  
Remark: Property 2) is usually referred to as 𝑃𝑃(𝑥𝑥)  and 𝑃𝑃𝑛𝑛(𝑥𝑥)  are 
orthogonal. 
 
Examples. First five Legendre polynomials: 𝑃𝑃0(𝑥𝑥) = 1 ,  𝑃𝑃1(𝑥𝑥) = 𝑥𝑥 , 
𝑃𝑃2(𝑥𝑥) = 𝑥𝑥2 − 1/3, 𝑃𝑃3(𝑥𝑥) = 𝑥𝑥3 − 3

5
𝑥𝑥,  𝑃𝑃4(𝑥𝑥) = 𝑥𝑥4 − 6

7
𝑥𝑥2 + 3

35
. 
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Theorem 4.7 Suppose that 𝑥𝑥1,⋯ , 𝑥𝑥𝑛𝑛  are the roots of the nth Legendre 
polynomial 𝑃𝑃𝑛𝑛(𝑥𝑥)  and that for each 𝑖𝑖 = 1,2,⋯𝑛𝑛 , the numbers 𝑐𝑐𝑖𝑖  are 
defined by  

𝑐𝑐𝑖𝑖 = � �
𝑥𝑥 − 𝑥𝑥𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1;
𝑗𝑗≠𝑖𝑖

𝑑𝑑𝑥𝑥
1

−1
 

If 𝑃𝑃(𝑥𝑥) is any polynomial of degree less than 2𝑛𝑛, then 

� 𝑃𝑃(𝑥𝑥)𝑑𝑑𝑥𝑥
1

−1
= �𝑐𝑐𝑖𝑖𝑃𝑃(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

Remark: Gaussian quadrature formula (more in Table 4.12) 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
1

−1
≈�𝑐𝑐𝑖𝑖𝑓𝑓(𝑥𝑥𝑖𝑖)

𝑛𝑛

𝑖𝑖=1

 

𝑛𝑛 Abscissae (𝑥𝑥𝑖𝑖) Weights (𝑐𝑐𝑖𝑖) Degree of Precision 
2 √3/3    1.0 3 

−√3/3    1.0 
3 0. 7745966692 0.5555555556 5 

0.0 0.8888888889 
-0.7745966692 0.5555555556 
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Example 1 Approximate ∫ 𝑒𝑒𝑥𝑥cos (𝑥𝑥)𝑑𝑑𝑥𝑥1
−1  using Gaussian quadrature with 

n = 3. 
 
 
 
 

Gaussian quadrature on arbitrary intervals 
 

Use substitution or transformation to transform ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥𝑏𝑏
𝑎𝑎  into an integral 

defined over [−1,1]. 
Let 𝑥𝑥 = 1

2
(𝑎𝑎 + 𝑏𝑏) + 1

2
(𝑏𝑏 − 𝑎𝑎)𝑡𝑡, with 𝑡𝑡 ∈ [−1, 1] 

Then 

� 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥
𝑏𝑏

𝑎𝑎
= � 𝑓𝑓 �

1
2

(𝑎𝑎 + 𝑏𝑏) +
1
2

(𝑏𝑏 − 𝑎𝑎)𝑡𝑡� �
𝑏𝑏 − 𝑎𝑎

2 � 𝑑𝑑𝑡𝑡
1

−1
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Example 2. Consider ∫ (𝑥𝑥6 − 𝑥𝑥2 sin(2𝑥𝑥))𝑑𝑑𝑥𝑥3
1 = 317.3442466. Compare 

results from the closed Newton-Cotes formula with n=1, the open 
Newton-Cotes formula with n =1 and Gaussian quadrature when n = 2.  
Solution:  

(a)  n = 1 closed Newton-Cotes formula (Trapezoidal rule):   

� 𝑥𝑥6 − 𝑥𝑥2 sin(2𝑥𝑥)𝑑𝑑𝑥𝑥
3

1
≈

2
2

[𝑓𝑓(1) + 𝑓𝑓(3)] = 731.605 

(b)  n = 1 open Newton-Cotes formula: 
ℎ = 3−1

1+2
= 2

3
. Nodes are: 𝑥𝑥−1 = 1, 𝑥𝑥0 = 5

3
, 𝑥𝑥1 = 7

3
, 𝑥𝑥2 = 3.    

� 𝑥𝑥6 − 𝑥𝑥2 sin(2𝑥𝑥)𝑑𝑑𝑥𝑥
3

1
≈

3
2
ℎ �𝑓𝑓 �

5
3�

+ 𝑓𝑓 �
7
3�
� = 188.786 

(c)  n = 2 Gaussian quadrature: 
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