6.5 Matrix Factorization



Application: Consider to solve Ax = b. Here A is n X n matrix. Suppose

A = LU, where L is a lower triangular matrix and U is an upper triangular
matrix.

First solve Ly = b for y
Then solve Ux = y for x

Consider the first step of Gaussian elimination (assume no row interchange)
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M is called the first Gaussian transformation matrix.
Similarly, the kth Gaussian transformation matrix is
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Gaussian elimination (without row interchange) can be written as
A = =Dy @=2) 4 with
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LU Factorization A = LU
Reversing the elimination steps gives the inverses:
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We define A = LU = [M®~Dp®=2) | MD]=14M
Here U = A™ is the upper triangular matrix.
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the lower triangular matrix.



Theorem 6.19 If Gaussian elimination can be performed on the linear
system Ax = b without row interchange, A can be factored into the product
of lower triangular matrix L and upper triangular matrix U as A = LU
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