7.3 The Jacobi and Gauss-Seidel Iterative Methods

The Jacobi Method

Two assumptions made on Jacobi Method:

1. The system given by

$$a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = b_1$$

$$a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = b_2$$

$$\vdots$$

$$a_{n1}x_1 + a_{n2}x_2 + \cdots + a_{nn}x_n = b_n$$

Has a unique solution.

2. The coefficient matrix A has no zeros on its main diagonal, namely, $a_{11}, a_{22}, \dots, a_{nn}$ are nonzeros.

Main idea of Jacobi

To begin, solve the 1st equation for x_1 , the 2nd equation for x_2 and so on to obtain the rewritten equations:

$$x_{1} = \frac{1}{a_{11}} (b_{1} - a_{12}x_{2} - a_{13}x_{3} - \cdots a_{1n}x_{n})$$

$$x_{2} = \frac{1}{a_{22}} (b_{2} - a_{21}x_{1} - a_{23}x_{3} - \cdots a_{2n}x_{n})$$

$$\vdots$$

$$x_{n} = \frac{1}{a_{nn}} (b_{n} - a_{n1}x_{1} - a_{n2}x_{2} - \cdots a_{n,n-1}x_{n-1})$$

Then make an initial guess of the solution $x^{(0)} = (x_1^{(0)}, x_2^{(0)}, x_3^{(0)}, \dots x_n^{(0)})$. Substitute these values into the right hand side the of the rewritten equations to obtain the *first approximation*, $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots x_n^{(1)})$.

This accomplishes one **iteration**.

In the same way, the *second approximation* $(x_1^{(2)}, x_2^{(2)}, x_3^{(2)}, \dots x_n^{(2)})$ is computed by substituting the first approximation's value $(x_1^{(1)}, x_2^{(1)}, x_3^{(1)}, \dots x_n^{(1)})$ into the right hand side of the rewritten equations.

By repeated iterations, we form a sequence of approximations $\mathbf{x}^{(k)} = \left(x_1^{(k)}, x_2^{(k)}, x_3^{(k)}, \dots x_n^{(k)}\right)^t$, $k = 1, 2, 3, \dots$

The Jacobi Method. For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1,\\j\neq i}}^{n} (-a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i = 1, 2, \dots n$$

Example. Apply the Jacobi method to solve

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

Continue iterations until two successive approximations are identical when rounded to three significant digits.

Solution

n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.146	0.192			
$x_2^{(k)}$	0.000	0.222	0.203	0.328			
$x_2^{(k)}$	0.000	-0.429	-0.517	-0.416			

When to stop: 1. $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||} < \varepsilon$; or $2\left|\left|x^{(k)}-x^{(k-1)}\right|\right| < \varepsilon$. Here ε is a given small number.

Definition 7.1 A **vector norm** on \mathbb{R}^n is a function, $||\cdot||$, from \mathbb{R}^n to \mathbb{R}^n with the properties:

- (i) $||x|| \ge 0$ for all $x \in \mathbb{R}^n$
- (ii) ||x|| = 0 if and only if x = 0
- (iii) $||\alpha x|| = |\alpha| ||x||$ for all $\alpha \in R$ and $x \in R^n$
- (iv) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$

Definition 7.2 The Euclidean norm l_2 and the infinity norm l_{∞} for the vector $\mathbf{x} = [x_1, x_2, ..., x_n]^t$ are defined by

$$||x||_2 = \left\{ \sum_{i=1}^n x_i^2 \right\}^{\frac{1}{2}}$$

and

$$||\mathbf{x}||_{\infty} = \max_{1 \le i \le n} |x_i|$$

The Jacobi Method in Matrix Form

Consider to solve an $n \times n$ size system of linear equations Ax = b with

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \text{ and } \boldsymbol{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} \text{ for } \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

We split A into

$$A = \begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nn} \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n,n-1} & 0 \end{bmatrix} - \begin{bmatrix} 0 & \dots & 0 & 0 \\ -a_{21} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ -a_{n1} & \dots & -a_{n,n-1} & 0 \end{bmatrix} = D - L - U$$

$$Ax = b \text{ is transformed into } (D - L - U)x = b$$

$$Dx = (L + U)x + b$$

$$Assume D^{-1} \text{ exists and } D^{-1} = \begin{bmatrix} \frac{1}{a_{11}} & 0 & \dots & 0 \\ 0 & \frac{1}{a_{22}} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \frac{1}{a_{nn}} \end{bmatrix}$$
Then

Then

$$x = D^{-1}(L + U)x + D^{-1}b$$

The matrix form of Jacobi iterative method is

$$\mathbf{x}^{(k)} = D^{-1}(L+U)\mathbf{x}^{(k-1)} + D^{-1}\mathbf{b}$$

$$k = 1,2,3,...$$

Define $T_j = D^{-1}(L + U)$ and $\boldsymbol{c} = D^{-1}\boldsymbol{b}$, Jacobi iteration method can also written as $\boldsymbol{x}^{(k)} = T_j \boldsymbol{x}^{(k-1)} + \boldsymbol{c}$ k = 1,2,3,...

Numerical Algorithm of Jacobi Method

Input: $A = [a_{ij}]$, $b, XO = x^{(0)}$, tolerance TOL, maximum number of iterations N.

Step 1 Set k = 1

Step 2 while $(k \le N)$ do Steps 3-6

Step 3 For for i = 1, 2, ... n

$$x_i = \frac{1}{a_{ii}} \left[\sum_{\substack{j=1, \ j \neq i}}^{n} (-a_{ij} \mathbf{X} \mathbf{O}_j) + b_i \right],$$

Step 4 If ||x - XO|| < TOL, then OUTPUT $(x_1, x_2, x_3, ..., x_n)$; STOP.

Step 5 Set k = k + 1.

Step 6 For for
$$i = 1,2, ... n$$

Set $XO_i = x_i$.
Step 7 OUTPUT $(x_1, x_2, x_3, ... x_n)$;
STOP.

Another stopping criterion in Step 4: $\frac{||x^{(k)}-x^{(k-1)}||}{||x^{(k)}||}$

The Gauss-Seidel Method Main idea of Gauss-Seidel

With the Jacobi method, only the values of $x_i^{(k)}$ obtained in the kth iteration are used to compute $x_i^{(k+1)}$. With the Gauss-Seidel method, we use the new values $x_i^{(k+1)}$ as soon as they are known. For example, once we have computed $x_1^{(k+1)}$ from the first equation, its value is then used in the second equation to obtain the new $x_2^{(k+1)}$, and so on.

Example. Use the Gauss-Seidel method to solve

$$5x_1 - 2x_2 + 3x_3 = -1$$

$$-3x_1 + 9x_2 + x_3 = 2$$

$$2x_1 - x_2 - 7x_3 = 3$$

Choose the initial guess $x_1 = 0$, $x_2 = 0$, $x_3 = 0$

n	k = 0	k = 1	k = 2	k = 3	k = 4	k = 5	k = 6
$x_1^{(k)}$	0.000	-0.200	0.167				
$x_{2}^{(k)}$	0.000	0.156	0.334				
$x_2^{(k)}$	0.000	-0.508	-0.429				

<u>The Gauss-Seidel Method.</u> For each $k \ge 1$, generate the components $x_i^{(k)}$ of $x^{(k)}$ from $x^{(k-1)}$ by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) + b_i \right], \quad \text{for } i$$

$$= 1, 2, \dots, n$$

Namely,

$$a_{11}x_1^{(k)} = -a_{12}x_2^{(k-1)} - \dots - a_{1n}x_n^{(k-1)} + b_1$$

$$a_{22}x_2^{(k)} = -a_{21}x_1^{(k)} - a_{23}x_3^{(k-1)} - \dots - a_{2n}x_n^{(k-1)} + b_2$$

$$a_{33}x_3^{(k)} = -a_{31}x_1^{(k)} - a_{32}x_2^{(k)} - a_{34}x_4^{(k-1)} - \dots - a_{3n}x_n^{(k-1)} + b_3$$

$$\vdots$$

$$a_{nn}x_n^{(k)} = -a_{n1}x_1^{(k)} - a_{n2}x_2^{(k)} - \dots - a_{n,n-1}x_{n-1}^{(k)} + b_n$$

Matrix form of Gauss-Seidel method.

$$(D - L)\mathbf{x}^{(k)} = U\mathbf{x}^{(k-1)} + \mathbf{b}$$
$$\mathbf{x}^{(k)} = (D - L)^{-1}U\mathbf{x}^{(k-1)} + (D - L)^{-1}\mathbf{b}$$

Define $T_g = (D - L)^{-1}U$ and $\boldsymbol{c}_g = (D - L)^{-1}\boldsymbol{b}$, Gauss-Seidel method can be written as

$$\mathbf{x}^{(k)} = T_g \mathbf{x}^{(k-1)} + \mathbf{c}_g$$
 $k = 1,2,3,...$

Numerical Algorithm of Gauss-Seidel Method

Input: $A = [a_{ij}]$, $b, XO = x^{(0)}$, tolerance TOL, maximum number of iterations N.

Step 1 Set k = 1

Step 2 while $(k \le N)$ do Steps 3-6

Step 3 For for i = 1, 2, ... n

$$x_i = \frac{1}{a_{ii}} \left[-\sum_{j=1}^{i-1} (a_{ij} x_j) - \sum_{j=i+1}^{n} (a_{ij} X O_j) + b_i \right],$$

Step 4 If
$$||x - XO|| < TOL$$
, then OUTPUT $(x_1, x_2, x_3, ..., x_n)$;
STOP.
Step 5 Set $k = k + 1$.
Step 6 For for $i = 1, 2, ..., n$
Set $XO_i = x_i$.
Step 7 OUTPUT $(x_1, x_2, x_3, ..., x_n)$;

Convergence theorems of the iteration methods

STOP.

Let the iteration method be written as
$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$
 for each $k = 1,2,3,...$

Definition 7.14 The **spectral radius** $\rho(A)$ of a matrix A is defined by $\rho(A) = \max |\lambda|$, where λ is an eigenvalue of A.

Remark: For complex $\lambda = a + bj$, we define $|\lambda| = \sqrt{a^2 + b^2}$.

Lemma 7.18 If the spectral radius satisfies $\rho(T) < 1$, then $(I - T)^{-1}$ exists, and

$$(I-T)^{-1} = I + T + T^2 + \dots = \sum_{j=0}^{\infty} T^j$$

Theorem 7.19 For any $\mathbf{x}^{(0)} \in \mathbb{R}^n$, the sequence $\{\mathbf{x}^{(k)}\}_{k=0}^{\infty}$ defined by

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c}$$
 for each $k \ge 1$

converges to the unique solution of x = Tx + c if and only if $\rho(T) < 1$.

Proof (only show $\rho(T) < 1$ is sufficient condition)

$$\mathbf{x}^{(k)} = T\mathbf{x}^{(k-1)} + \mathbf{c} = T(T\mathbf{x}^{(k-2)} + \mathbf{c}) + \mathbf{c} = \dots = T^k\mathbf{x}^{(0)} + (T^{k-1} + \dots + T + I)\mathbf{c}$$

Since
$$\rho(T) < 1$$
, $\lim_{k \to \infty} T^k x^{(0)} = \mathbf{0}$

$$\lim_{k \to \infty} \mathbf{x}^{(k)} = \mathbf{0} + \lim_{k \to \infty} (\sum_{j=0}^{k-1} T^j) \, \mathbf{c} = (I - T)^{-1} \mathbf{c}$$

Definition 7.8 A matrix norm $||\cdot||$ on $n \times n$ matrices is a real-valued function satisfying

- (i) $||A|| \ge 0$
- (ii) |A| = 0 if and only if A = 0
- $(iii) ||\alpha A|| = |\alpha| ||A||$

$$(iv)||A + B|| \le ||A|| + ||B||$$

 $(v) ||AB|| \le ||A|||B||$

Theorem 7.9. If $||\cdot||$ is a vector norm, the **induced** (or **natural**) **matrix norm** is given by

$$||A|| = \max_{||x||=1} ||Ax||$$

Example. $||A||_{\infty} = \max_{||x||_{\infty}=1} ||Ax||_{\infty}$, the l_{∞} induced norm. $||A||_{2} = \max_{||x||_{2}=1} ||Ax||_{2}$, the l_{2} induced norm.

Theorem 7.11. If $A = [a_{ij}]$ is an $n \times n$ matrix, then

$$||A||_{\infty} = \max_{1 \le i \le n} \sum_{j=1}^{n} |a_{ij}|$$

Example. Determine
$$|A|_{\infty}$$
 for the matrix $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 3 & -1 \\ 5 & -1 & 1 \end{bmatrix}$

Corollary 7.20 If |T| < 1 for any natural matrix norm and c is a given vector, then the sequence $\{x^{(k)}\}_{k=0}^{\infty}$ defined by

 $x^{(k)} = Tx^{(k-1)} + c$ converges, for any $x^{(0)} \in R^n$, to a vector $x \in R^n$, with x = Tx + c, and the following error bound hold:

(i)
$$||x - x^{(k)}|| \le ||T||^k ||x^{(0)} - x||$$

(ii)
$$||x - x^{(k)}|| \le \frac{||T||^k}{1 - ||T||} ||x^{(1)} - x^{(0)}||$$

Theorem 7.21 If A is strictly diagonally dominant, then for any choice of $x^{(0)}$, both the Jacobi and Gauss-Seidel methods give sequences $\{x^{(k)}\}_{k=0}^{\infty}$ that converges to the unique solution of Ax = b.

Rate of Convergence

Corollary 7.20 (i) implies $||x - x^{(k)}|| \approx \rho(T)^k ||x^{(0)} - x||$

Theorem 7.22 (Stein-Rosenberg) If $a_{ij} \le 0$, for each $i \ne j$ and $a_{ii} \ge 0$, for each i = 1, 2, ..., n, then one and only one of following statements holds:

(i)
$$0 \le \rho(T_g) < \rho(T_j) < 1$$
;

(ii)
$$1 < \rho(T_j) < \rho(T_g)$$
;

$$(iii)\rho(T_j) = \rho(T_g) = 0;$$

$$(iv)\rho(T_j) = \rho(T_g) = 1.$$