# 7.4 Relaxation Techniques for Solving Linear Systems

**Definition 7.23** Suppose  $\widetilde{x} \in R^n$  is an approximation to the solution of the linear system defined by Ax = b. The **residual vector** for  $\widetilde{x}$  with respect to this system is  $r = b - A\widetilde{x}$ .

Objective of accelerating convergence: Let residual vector converge to 0 rapidly.

In Gauss-Seidel method, we first associate with each calculation of an approximate component:

$$\mathbf{x}_i^{(k)} \equiv (x_1^{(k)}, x_2^{(k)}, \dots, x_{i-1}^{(k)}, x_i^{(k-1)}, \dots, x_n^{(k-1)})^t$$

to the solution a residual vector

$$\mathbf{r}_{i}^{(k)} = (r_{1i}^{(k)}, r_{2i}^{(k)}, \dots, r_{ni}^{(k)})^{t}$$

The *i*th component of  $r_i^{(k)}$  is

$$r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} \left( a_{ij} x_j^{(k)} \right) - \sum_{j=i+1}^{n} \left( a_{ij} x_j^{(k-1)} \right) - a_{ii} x_i^{(k-1)}$$
 Eq. (1)

SO

$$a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = b_i - \sum_{j=1}^{i-1} \left(a_{ij}x_j^{(k)}\right) - \sum_{j=i+1}^{n} \left(a_{ij}x_j^{(k-1)}\right).$$

Also,  $x_i^{(k)}$  is computed by

$$x_i^{(k)} = \frac{1}{a_{ii}} \left[ b_i - \sum_{j=1}^{i-1} (a_{ij} x_j^{(k)}) - \sum_{j=i+1}^{n} (a_{ij} x_j^{(k-1)}) \right]$$
 Eq. (2)

Therefore

$$a_{ii}x_i^{(k-1)} + r_{ii}^{(k)} = a_{ii}x_i^{(k)}$$

Gauss-Seidel method is characterized by

$$x_i^{(k)} = x_i^{(k-1)} + \frac{r_{ii}^{(k)}}{a_{ii}}$$
 Eq. (3)

Now consider the residual vector  $\mathbf{r}_{i+1}^{(k)}$  associated with the vector  $\mathbf{x}_{i+1}^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_i^{(k)}, x_{i+1}^{(k-1)}, \dots, x_n^{(k-1)})^t$ 

The *i*th component of  $r_{i+1}^{(k)}$  is

$$r_{i,i+1}^{(k)} = b_i - \sum_{j=1}^{i-1} \left( a_{ij} x_j^{(k)} \right) - \sum_{j=i+1}^{n} \left( a_{ij} x_j^{(k-1)} \right) - a_{ii} x_i^{(k)}$$

By Eq. (2),  $r_{i,i+1}^{(k)} = 0$ .

*Idea of Successive Over-Relaxation (SOR)* (technique to accelerate convergence)

Modify Eq. (3) to

$$x_i^{(k)} = x_i^{(k-1)} + \omega \frac{r_{ii}^{(k)}}{a_{ii}}$$
 Eq. (4)

so that norm of residual vector  $\mathbf{r}_{i+1}^{(k)}$  converges to 0 rapidly. Here  $\omega > 0$ .

**Under-relaxation method** when  $0 < \omega < 1$ 

Over-relaxation method when  $\omega > 1$ 

Use Eq. (4) and Eq. (1),

$$x_i^{(k)} = (1 - \omega)x_i^{(k-1)} + \frac{\omega}{a_{ii}} \left[ b_i - \sum_{j=1}^{i-1} \left( a_{ij} x_j^{(k)} \right) - \sum_{j=i+1}^{n} \left( a_{ij} x_j^{(k-1)} \right) \right]$$
for  $i = 1, 2, \dots n$ 

$$Eq. (5)$$

### Eq. (5) is called the successive relaxation method (SOR).

## Matrix form of SOR

Rewrite Eq. (5) as

$$a_{ii}x_{i}^{(k)} + \omega \sum_{j=1}^{i-1} \left( a_{ij}x_{j}^{(k)} \right)$$

$$= (1 - \omega)a_{ii}x_{i}^{(k-1)} - \omega \sum_{j=i+1}^{n} \left( a_{ij}x_{j}^{(k-1)} \right) + \omega b_{i}$$

$$(D - \omega L)x^{(k)} = [(1 - \omega)D + \omega U]x^{(k-1)} + \omega b$$

$$\mathbf{x}^{(k)} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U]\mathbf{x}^{(k-1)} + \omega(D - \omega L)^{-1}\mathbf{b}$$
  
**Define**  $T_{\omega} = (D - \omega L)^{-1}[(1 - \omega)D + \omega U], \mathbf{c}_{\omega} = \omega(D - \omega L)^{-1}\mathbf{b}$   
**SOR** can be written as  $\mathbf{x}^{(k)} = T_{\omega}\mathbf{x}^{(k-1)} + \mathbf{c}_{\omega}$ .

Example Use SOR with  $\omega = 1.25$  to solve  $4x_1 + 3x_2 = 24$   $3x_1 + 4x_2 - x_3 = 30$   $-x_2 + 4x_3 = -24$ 

with  $\mathbf{x}^{(0)} = (1,1,1)^t$ .

**Theorem 7.24(Kahan)** If  $a_{ii} \neq 0$ , for each i = 1, 2, ..., n, then  $\rho(T_{\omega}) \geq |\omega - 1|$ . This implies that the SOR method can converge only if  $0 < \omega < 2$ .

**Theorem 7.25(Ostrowski-Reich)** If A is a positive definite matrix and  $0 < \omega < 2$ , then the SOR method converges for any choice of initial approximate vector  $\mathbf{x}^{(0)}$ .

**Theorem 7.26** If A is a positive definite and tridiagonal, then  $\rho(T_g) = [\rho(T_i)]^2 < 1$ , and the optimal choice of  $\omega$  for the SOR method is

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}}$$

With this choice of  $\omega$ , we have  $\rho(T_{\omega}) = \omega - 1$ .

**Definition 7.12** If A is an  $n \times n$  matrix, the **characteristic polynomial** of A is

$$p(\lambda) = \det(A - \lambda I).$$

**Definition 7.13** If  $p(\lambda)$  is the characteristic polynomial of the matrix A, the zeros of  $p(\lambda)$  are **eigenvalues** of the matrix A. If  $\lambda$  is an eigenvalue of A and  $x \neq 0$  satisfies  $(A - \lambda I)x = 0$ , then x is an **eigenvector** corresponding to  $\lambda$ .

**Definition 7.14** The **spectral radius**  $\rho(A)$  of a matrix A is defined by  $\rho(A) = \max |\lambda|$ , where  $\lambda$  is an eigenvalue of A.

**Theorem 7.15**. If A is an  $n \times n$  matrix, then

- (i)  $||A||_2 = [\rho(A^t A)]^{1/2}$
- (ii)  $\rho(A) \leq ||A||$ , for any induced matrix norm  $||\cdot||$ .

**Example** Find the optimal choice of  $\omega$  for the SOR method for the matrix

$$A = \begin{bmatrix} 4 & 3 & 0 \\ 3 & 4 & -1 \\ 0 & -1 & 4 \end{bmatrix}$$

Soln:

$$D = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}, \ L = \begin{bmatrix} 0 & 0 & 0 \\ -3 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \ U = \begin{bmatrix} 0 & -3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$

$$T_{j} = D^{-1}(L+U) = \begin{bmatrix} \frac{1}{4} & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{bmatrix} \begin{bmatrix} 0 & -3 & 0 \\ -3 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{3}{4} & 0 \\ -\frac{3}{4} & 0 & \frac{1}{4} \\ 0 & \frac{1}{4} & 0 \end{bmatrix}$$

Compute eigenvalues of  $T_i$ .

$$\det(T_j - \lambda I) = 0$$

So 
$$-\lambda(\lambda^2 - 0.625) = 0$$
.  $\Rightarrow \lambda_1 = 0$ ,  $\lambda_2 = \sqrt{0.625}$ ,  $\lambda_3 = -\sqrt{0.625}$ .  
Thus  $\rho(T_j) = \sqrt{0.625}$ . And  $\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_j)]^2}} = \frac{2}{1 + \sqrt{1 - 0.625}} \approx 1.24$ 

## 7.5 Error Bounds and Iterative Refinement

Motivation. Residual vector  $\mathbf{r} = \mathbf{b} - A\widetilde{\mathbf{x}}$  can fail to provide accurate measurement on convergence

**Example** Ax = b given by

$$\begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix}$$

has the unique solution  $\mathbf{x} = (1,1)^t$  Determine the residual vector for approximation  $\tilde{\mathbf{x}} = (3, -0.0001)^t$ 

**Solution** 
$$r = b - A\tilde{x} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix} - \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ -0.0001 \end{bmatrix} = \begin{bmatrix} 0.0002 \\ 0 \end{bmatrix}$$

**Theorem 7.27** Suppose that  $\tilde{x}$  is an approximation to the solution of Ax = b, A is a nonsingular matrix, and r is the residual vector for  $\tilde{x}$ . Then for any natural norm,

$$||x-\widetilde{x}|| \leq ||r|| \cdot ||A^{-1}||$$

and if  $x \neq 0$  and  $b \neq 0$ 

$$\frac{||x - \widetilde{x}||}{||x||} \le ||A|| \cdot ||A^{-1}|| \frac{||r||}{||b||}$$

#### **Condition Numbers**

**Definition 7.28** The **condition number** of the nonsingular matrix A relative to the norm  $||\cdot||$  is

$$K(A) = ||A|| \cdot ||A^{-1}||$$

Remark: Condition number of identity matrix K(I) = 1 relative to  $||\cdot||_{\infty}$ 

A matrix A is **well-conditioned** if K(A) is close to 1, and is **ill-conditioned** if K(A) is significantly greater than 1.

**Example** Determine the condition number for  $A = \begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix}$ .

Solution 
$$A^{-1} = \begin{bmatrix} -10000 & 10000 \\ 5000.5 & -5000 \end{bmatrix}$$
.  
 $||A^{-1}||_{\infty} = 20000$   
 $K(A) = ||A||_{\infty} \cdot ||A^{-1}||_{\infty} = 3.0001 \cdot 20000 = 60002$ .

Significance of condition number Well-conditioned Ax = b implies a small residual error corresponds to accurate approximate solution.

### **Estimate condition number**

Assume that *t*-digit arithmetic and Gaussian elimination are used to solve Ax = b, the residual vector r for the approximation  $\tilde{x}$  has

$$||\boldsymbol{r}|| \approx 10^{-t} ||\boldsymbol{A}|| \cdot ||\widetilde{\boldsymbol{x}}||$$

Consider to solve Ay = r with t-digit arithmetic. Let  $\tilde{y}$  be approximation to Ay = r

$$\widetilde{\boldsymbol{y}} \approx A^{-1} \boldsymbol{r} = A^{-1} (\boldsymbol{b} - A \widetilde{\boldsymbol{x}}) = A^{-1} \boldsymbol{b} - A^{-1} A \widetilde{\boldsymbol{x}} = \boldsymbol{x} - \widetilde{\boldsymbol{x}}$$

This implies  $x \approx \tilde{x} + \tilde{y}$ .

$$||\widetilde{\boldsymbol{y}}|| \approx ||A^{-1}\boldsymbol{r}|| \le ||A^{-1}|| \cdot ||\boldsymbol{r}|| \approx ||A^{-1}|| (10^{-t}||A|| \cdot ||\widetilde{\boldsymbol{x}}||)$$
$$= 10^{-t} ||\widetilde{\boldsymbol{x}}|| K(A)$$

Therefore

$$K(A) \approx \frac{\left||\widetilde{\mathbf{y}}|\right|}{\left||\widetilde{\mathbf{x}}|\right|} 10^t.$$

**Example** Estimate condition number for system  $\begin{bmatrix} 3.3330 & 15920 & -10.333 \\ 2.2220 & 16.710 & 9.6120 \\ 1.5611 & 5.1791 & 1.6852 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 15913 \\ 28.544 \\ 8.4254 \end{bmatrix}$  solved by 5-digit rounding arithmetic. The exact solution is  $\mathbf{x} = (1,1,1)^t$ 

**Solution** Use Gaussian elimination to solve with 5-digit rounding arithmetic gives

$$\widetilde{\mathbf{x}} = (1.2001, 0.99991, 0.92538)^t$$

The corresponding residual vector  $r = (-0.00518, 0.27412914, -0.186160367)^t$ Solving Ay = r by Gaussian elimination gives  $\tilde{y} = r$ 

Solving Ay = r by Gaussian elimination gives  $\tilde{y} = (-0.20008, 8.9987 \times 10^{-5}, 0.074607)^t$ 

$$K(A) \approx \frac{\left|\left|\widetilde{\mathbf{y}}\right|\right|_{\infty}}{\left|\left|\widetilde{\mathbf{x}}\right|\right|_{\infty}} 10^{t} = \frac{0.20008}{1.2001} 10^{5} = 16672$$

How does the round-off errors affect a system like  $\begin{bmatrix} 1 & 2 \\ 1.0001 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 3 \\ 3.0001 \end{bmatrix}$ ?

Let the  $(A + \delta A)x = b + \delta b$  be the perturbed system associated with Ax = b.

**Theorem 7.29.** Suppose A is nonsingular and  $\left| |\delta A| \right| < \frac{1}{||A^{-1}||}$ . The solution  $\widetilde{\boldsymbol{x}}$  to  $(A + \delta A)\boldsymbol{x} = \boldsymbol{b} + \delta \boldsymbol{b}$  approximates the solution  $\boldsymbol{x}$  of  $A\boldsymbol{x} = \boldsymbol{b}$  with the error estimate  $\frac{||x - \widetilde{x}||}{||x||} \le \frac{K(A)||A||}{||A|| - K(A)||\delta A||} \left( \frac{||\delta b||}{||b||} + \frac{||\delta A||}{||A||} \right)$ .