2.4 Error Analysis for lterative
Methods



Definition 2.7. Order of Convergence

Suppose {p, }.—o is a sequence that converges to p with
p, # p for all n. If positive constants A and a exist with

lim |pn+1 _pl — 1

n= |pp —pl*
then {p, },—o is said to converges to p of order a with
asymptotic error constant A.

An iterative techmque pn = g(Pn—1) is said to be of order
a if the sequence {p, },,—o converges to the solution p =
g(p) of order a.

e Special cases
1. Ifa=1(and A < 1), the sequence is linearly convergent
2. Ifa = 2, the sequence is quadratically convergent
3. Ifa <1, the sequence is sub-linearly convergent (undesirable, very slow)
4, Ifa=1andA=0o0rl1 < a < 2, thesequence is super-linearly convergent

e Remark:
High order (o) = faster convergence (more desirable)
A is less important than the order a.




Linear vs. Quadratic Convergence

Suppose we have two sequences converging to 0 with:

lim |pn+1| = 0.9, lim |Qn+1| —0.9

n- |p, | n-o g, |4

Roughly we have:
[Pnl = 0.9[py—q| = -+ = 0.9%pol,
qnl = 0.9|qp_1|* = -+ = 0.9 7%|qq,
Assume pg = qo = 1

Pn n

1 1

0.9 0.9

0.81 0.729

0.729 0.4782969

0.6561 0.205891132094649

0.59049 0.0381520424476946

0.531441 0.00131002050863762
0.4782969  0.00000154453835975
0.43046721 0.00000000000021470
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Convergence of Fixed-Point Iteration

* Theorem 2.8

Let g € C[a, b] be such that g(x) € [a, b] forall x €
la, b]. Suppose g’ is continuous on (a, b) and that 0 <
k < 1 exists with |g'(x)| < k for all x € (a, b).

If g'(p) # 0, then for all number p, in [a, b], the sequence

pn, = g(p,—1) converges only linearly to the unique fixed
pointp in |a, b].

Proof:

Pn+1 =P = 9(Pn) —9(0) = 9 ) Pn — P),$n € (P, D)
Since {p,, }n=o converges to p, {&,, } o converges to p.

Since g’ is continuous, lim g'(&,) = g'(p)
Nn— oo

lim ZrtPl — im |g’(€n)| = |g'(p)| = linear convergence

n-oo |pp —p| n—oo



Comparison of fixed-point iteration and
Newton’s method

Revisit Example 2.3.1

Consider the function f(x) = cos(x) — x. Solve f(x) = 0 using
(a) fixed-point method, and (b) Newton’s method.

Solution (a): Define g(x) = cos(x).
Then the fixed-point iteration alg. defined by
DPn, = COS(P,,—1) With pg = 0.3 computes the fixed-point p =
0.7390851.
g'(x) = —sin(x).
Apparently, g'(0.7390851) = —sin(0.7390851) # 0.



Speed up Convergence of Fixed Point Iteration

e |f we look for faster convergence methods, we must
have g'(p) = 0 where p is the fixed-point.

e Theorem 2.9

Let p be a solution of x = g(x). Suppose g’'(p) = 0and g"' is
continuous with |g” (x)| < M on an open interval I containing
p. Then there exists a § > 0 such that forpy € [p — §,p + 6],
the sequence defined by p,,.1 = g(p,,), whenn > 0,
converges at least quadratically to p. For sufficiently large n

M 2
[Pn+1 — 2l < Bl lpn — Dl

Remark:
Look for quadratically convergent fixed-point methods which
g(p) =p and g'(p) = 0.



Newton’s Method as Fixed-Point Problem

Consider to solve f(x) = 0 by Newton’s method:

_
Pn+1 = Pn Fipy)

Let’s define function g(x) by g(x) = x —

f(x)
fr(x)
p of f(x) = 0 is also the fixed-point of g(x) (assuming

f'(p) # 0).

. The zero

(Fre))2=f)fr(x)
(fr(x))?

Compute g'(x) tosee: g'(x) =1 —

(r'®) -s"®) _ )

(F' ®)°
Note: Newton’s method will converge at least quadratically if

f(p) = 0and f'(p) # 0.

Thusg'(p) =1 —



Revisit Example 2.3.1

Fixed-point method and Newton’s method are used
to solve cos(x) — x = 0 for x € [0,1], respectively.
Compare the order of convergence of these two
methods.



Multiple Roots

Newton’s method and Secant method have difficulty to solve
f(x) =0when f(p) =0and f'(p) = 0.

How to modify Newton’s method when f'(p) = 0? Here p is
the root of f(x) = 0.

Definition 2.10. Multiplicity of a Root

A solution p of f(x) = 0 is a zero of multiplicity m of f if for

x # p, we can write f(x) = (x — p)™q(x), where lim q(x) #
X->p

0

Theorem 2.11

f € C'[a, b] has a simple zero at p in (a, b) if and only if
f(p) =0,butf'(p) # 0.

Theorem 2.12

The function f € C™]a, b] has a zero of multiplicity m at point
p in (a, b) if and only if

0=F@) =1 =f"®) = =f"V(p),but f(™(p) 0



Example 1.

Let f(x) = e* — x — 1. Show that f has a zero
of multiplicity 2 at x = 0.



Modified Newton’s Method for Zeroes of Higher
Multiplicity (m > 1)

Define the new function u(x) = ;,((3;))
Write f(x) = (x — p)™q(x), hence
f(x) q(x)

M) = e T TP g+ - e @

Note that f(p) = 0 and p is a simple zero of u(x).
e Apply Newton’s method to solve u(x) = 0 to give:

x=g(x)=x— Hx)
u'(x)
@

LF' (]2 — o f" (x)
e Quadratic convergence of the modified Newton’s method:
_ . f(pn—l)f,(pn—l)

P = Pt T G P f a0 (1)




Drawbacks of modified Newton’s method:
e Compute f''(x) is expensive

e [teration formula is more complicated — more
expensive to compute

e Roundoff errors in denominator — both f'(x)
and f(x) approach zero.



Example 2.

Let f(x) = e* — x — 1. Use Newton’s method
and modified Newtion’s method to solve f(x) =
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