2.5 Accelerating Convergence

Example. The Black-Scholes formula – A problem has "complicated" derivative

The Black-Scholes formula for a European call option is given by: $C = S_0 N(d_1) - K e^{-rt} N(d_2).$

C is the call price, S_0 is the price of the underlying asset at t =0, K is the strike price at the maturity, r is the risk-free interest rate, N(d) is the cumulative distribution function of the

standard normal probability distribution, $d_1 = \frac{\ln(\frac{S_0}{K}) + (r + \frac{\sigma^2}{2})t}{\sigma \sqrt{t}}$, and $d_2 = d_1 - \sigma \sqrt{t}$. σ is the variability in the marked price known as the volatility.

Q: Given a target price C^* , what is the corresponding volatility σ_* ?

Solution: Find the root of $f(\sigma) = S_0 N(d_1) - K e^{-rt} N(d_2) - C^*$. $\sigma_{n+1} = \sigma_n - \alpha f(\sigma_n)$ Where α is a small value.

Aitken's Δ^2 Method

- Assume $\{p_n\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit p.
- Further assume $\frac{p_{n+1}-p}{p_n-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$ when n is large
- Solving for *p* yields:

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

A little algebraic manipulation gives:

$$p \approx p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

• Define $\widehat{p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$
Remark: The new sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster.

Definition 2.13

The **forward difference** Δp_n is defined by

 $\Delta p_n = p_{n+1} - p_n$. High powers of Δ are defined recursively by $\Delta^k p_n = \Delta(\Delta^{k-1}p_n)$.

Remark: $\widehat{p_n}$ can also be rewritten as

$$\widehat{p_n} = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}$$

Theorem 2.14:

Suppose that $\{p_n\}_{n=0}^{\infty}$ converges linearly to the limit pand that $\lim_{n\to\infty} \frac{p_{n+1}-p}{p_n-p} < 1$. Then the Aitken's Δ^2 sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that $\lim_{n\to\infty} \frac{\widehat{p_n}-p}{p_n-p} = 0$. Example. Consider the sequence $\{p_n\}_{n=0}^{\infty}$ generated by the fixed point iteration $p_{n+1} = \cos(p_n)$, $p_0 = 0$.

iteratio	on	p_n		$\widehat{p_n}$
0	0.000	0000000	00000	0.685073357326045
1	1.000	0000000	00000	0.7 28010361467617
2	0 .540	3023058	68140	0.73 3665164585231
3	0 .857	⁷⁵⁵³²¹⁵⁸	46393	0.73 6906294340474
4	0 .654	2897904	97779	0.73 8050421371664
5	0.7 93	34803587	42566	0.73 8636096881655
6	0.7 01	13687736	22757	0.73 8876582817136
7	0.7 63	39596829	00654	0.73 8992243027034
8	0.7 22	21024250	26708	0.7390 42511328159
9	0.7 50)4177617	63761	0.7390 65949599941
10	0.73	14040424	22510	0.7390 76383318956
11	0.7 44	12373549	00557	0.73908 1177259563*
12	0.73	56047404	36347	0.73908 3333909684*

Steffensen's Method

• Steffensen's Method combines fixed-point iteration and the Aitken's Δ^2 method:

Step 0. Suppose we have a fixed point iteration:

 $p_{0}, \quad p_{1} = g(p_{0}), \quad p_{2} = g(p_{1})$ Once we have we have p_{0}, p_{1} and p_{2} , we can compute $p_{0}^{(1)} = p_{0} - \frac{(p_{1} - p_{0})^{2}}{(p_{2} - 2p_{1} + p_{0})}$ Step 1. Then we "restart" the fixed point iteration with $p_{1}^{(1)} = g(p_{0}^{(1)}), \quad p_{2}^{(1)} = g(p_{1}^{(1)})$

and compute:

$$p_0^{(2)} = p_0^{(1)} - \frac{\left(p_1^{(1)} - p_0^{(1)}\right)^2}{\left(p_2^{(1)} - 2p_1^{(1)} + p_0^{(1)}\right)}.$$

Step 2. We "restart" the fixed point iteration with $p_1^{(2)} = g\left(p_0^{(2)}\right), \quad p_2^{(2)} = g\left(p_1^{(2)}\right)$

and compute:

$$p_0^{(3)} = p_0^{(2)} - \frac{\left(p_1^{(2)} - p_0^{(2)}\right)^2}{\left(p_2^{(2)} - 2p_1^{(2)} + p_0^{(2)}\right)}.$$

Example. Compare fixed-point iteration, Newton's method and Steffensen's method for solving:

Solution:

$$f(x) = x^{3} + 4x^{2} - 10 = 0.$$

$$x^{3} + 4x^{2} = 10$$

$$x^{2}(x+4) = 10$$

$$x^{2} = \frac{10}{x+4}$$

Fixed point iteration:
$$p_{n+1} = g(p_n) = \sqrt{\frac{10}{p_n+4}}$$

i	<i>p</i> _n	$g(p_n)$	
0	1.50000	1.34840	
1	1.34840	1.36738	
2	1.36738	1.36496	
3	1.36496	1.3652	
4	1.36526	1.36523	
5	1.36523	1.36523	

2. Newton's method

i	×n	$f(x_n)$
0	1.50000	1.51600e-01
1	1.36495	-3.11226e-04
2	1.36523	-1.35587e-09

3. Steffensen's method

$p_{0}^{(0)}$	$p_{1}^{(0)}$	$p_{2}^{(0)}$	$p_0^{(1)} = \{ \Delta^2 \} (p_0^{(0)})$	$ p_2^{(0)} - p_0^{(1)} $
1.50000	1.34840	1.36738	1.36527	3.96903e-05
	$p_{1}^{(1)}$	$p_{2}^{(1)}$	$p_0^{(2)} = \{ \triangle^2 \} (p_0^{(1)})$	$ p_2^{(1)} - p_0^{(2)} $
	1.36523	1.36523	1.36523	2.80531e-12