2.5 Accelerating Convergence

Example. The Black-Scholes formula - A problem has "complicated" derivative
The Black-Scholes formula for a European call option is given by: $C=S_{0} N\left(d_{1}\right)-K e^{-r t} N\left(d_{2}\right)$.
C is the call price, S_{0} is the price of the underlying asset at $t=$ $0, K$ is the strike price at the maturity, r is the risk-free interest rate, $N(d)$ is the cumulative distribution function of the standard normal probability distribution, $d_{1}=\frac{\ln \left(\frac{S_{0}}{K}\right)+\left(r+\frac{\sigma^{2}}{2}\right) t}{\sigma \sqrt{t}}$, and $d_{2}=d_{1}-\sigma \sqrt{t} . \sigma$ is the variability in the marked price known as the volatility.

Q: Given a target price C^{*}, what is the corresponding volatility σ_{*} ?

Solution: Find the root of $f(\sigma)=S_{0} N\left(d_{1}\right)-K e^{-r t} N\left(d_{2}\right)-C^{*}$.

$$
\sigma_{n+1}=\sigma_{n}-\alpha f\left(\sigma_{n}\right)
$$

Where α is a small value.

Aitken's Δ^{2} Method

- Assume $\left\{p_{n}\right\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit p.
- Further assume $\frac{p_{n+1}-p}{p_{n}-p} \approx \frac{p_{n+2}-p}{p_{n+1}-p}$ when n is large
- Solving for p yields:

$$
p \approx \frac{p_{n+2} p_{n}-p_{n+1}^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

A little algebraic manipulation gives:

$$
p \approx p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}
$$

- Define $\widehat{p_{n}}=p_{n}-\frac{\left(p_{n+1}-p_{n}\right)^{2}}{p_{n+2}-2 p_{n+1}+p_{n}}$

Remark: The new sequence $\left\{\widehat{p_{n}}\right\}_{n=0}^{\infty}$ converges to p faster.

Definition 2.13

The forward difference Δp_{n} is defined by
$\Delta p_{n}=p_{n+1}-p_{n}$. High powers of Δ are defined recursively by
$\Delta^{k} p_{n}=\Delta\left(\Delta^{k-1} p_{n}\right)$.
Remark: $\widehat{p_{n}}$ can also be rewritten as

$$
\widehat{p_{n}}=p_{n}-\frac{\left(\Delta p_{n}\right)^{2}}{\Delta^{2} p_{n}}
$$

Theorem 2.14:
Suppose that $\left\{p_{n}\right\}_{n=0}^{\infty}$ converges linearly to the limit p and that $\lim _{n \rightarrow \infty} \frac{p_{n+1}-p}{p_{n}-p}<1$. Then the Aitken's Δ^{2}
sequence $\left\{\widehat{p_{n}}\right\}_{n=0}^{\infty}$ converges to p faster than $\left\{p_{n}\right\}_{n=0}^{\infty}$ in
the sense that $\lim _{n \rightarrow \infty} \frac{\widehat{p_{n}}-p}{p_{n}-p}=0$.

Example. Consider the sequence $\left\{p_{n}\right\}_{n=0}^{\infty}$ generated by the fixed point iteration $p_{n+1}=\cos \left(p_{n}\right), p_{0}=0$.

iteration	p_{n}	$\widehat{p_{n}}$
0	0.000000000000000	0.685073357326045
1	1.000000000000000	0.728010361467617
2	0.540302305868140	0.733665164585231
3	0.857553215846393	0.736906294340474
4	0.654289790497779	0.738050421371664
5	0.793480358742566	0.738636096881655
6	0.701368773622757	0.738876582817136
7	0.763959682900654	0.738992243027034
8	0.722102425026708	0.739042511328159
9	0.750417761763761	0.739065949599941
10	0.731404042422510	0.739076383318956
11	0.744237354900557	0.739081177259563^{*}
12	0.735604740436347	0.739083333909684^{*}

Steffensen's Method

- Steffensen's Method combines fixed-point iteration and the Aitken's Δ^{2} method:

Step 0. Suppose we have a fixed point iteration:

$$
p_{0}, \quad \mathrm{p}_{1}=\mathrm{g}\left(\mathrm{p}_{0}\right), \quad \mathrm{p}_{2}=\mathrm{g}\left(\mathrm{p}_{1}\right)
$$

Once we have we have p_{0}, p_{1} and p_{2}, we can compute

$$
p_{0}^{(1)}=p_{0}-\frac{\left(p_{1}-p_{0}\right)^{2}}{\left(p_{2}-2 p_{1}+p_{0}\right)}
$$

Step 1. Then we "restart" the fixed point iteration with

$$
p_{1}^{(1)}=g\left(p_{0}^{(1)}\right), \quad p_{2}^{(1)}=g\left(p_{1}^{(1)}\right)
$$

and compute:

$$
p_{0}^{(2)}=p_{0}^{(1)}-\frac{\left(p_{1}^{(1)}-p_{0}^{(1)}\right)^{2}}{\left(p_{2}^{(1)}-2 p_{1}^{(1)}+p_{0}^{(1)}\right)}
$$

Step 2. We "restart" the fixed point iteration with

$$
p_{1}^{(2)}=g\left(p_{0}^{(2)}\right), \quad p_{2}^{(2)}=g\left(p_{1}^{(2)}\right)
$$

and compute:

$$
p_{0}^{(3)}=p_{0}^{(2)}-\frac{\left(p_{1}^{(2)}-p_{0}^{(2)}\right)^{2}}{\left(p_{2}^{(2)}-2 p_{1}^{(2)}+p_{0}^{(2)}\right)}
$$

Example. Compare fixed-point iteration, Newton's method and Steffensen's method for solving:

$$
f(x)=x^{3}+4 x^{2}-10=0 .
$$

Solution:

$$
\begin{gathered}
x^{3}+4 x^{2}=10 \\
x^{2}(x+4)=10 \\
x^{2}=\frac{10}{x+4}
\end{gathered}
$$

Fixed point iteration: $p_{n+1}=g\left(p_{n}\right)=\sqrt{\frac{10}{p_{n}+4}}$

i	p_{n}	$g\left(p_{n}\right)$
0	1.50000	1.34840
1	1.34840	1.36738
2	1.36738	1.36496
3	1.36496	1.3652
4	1.36526	1.36523
5	1.36523	1.36523

2. Newton's method

i	x_{n}	$f\left(x_{n}\right)$
0	1.50000	$1.51600 \mathrm{e}-01$
1	1.36495	$-3.11226 \mathrm{e}-04$
2	1.36523	$-1.35587 \mathrm{e}-09$

3. Steffensen's method

$\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{0})}$	$\boldsymbol{p}_{\mathbf{1}}^{(\mathbf{0})}$	$\boldsymbol{p}_{\mathbf{2}}^{(\mathbf{0})}$	$\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{1})}=\left\{\Delta^{\mathbf{2}}\right\}\left(\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{0})}\right)$	$\boldsymbol{p}_{\mathbf{2}}^{(\mathbf{0})}-\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{1})} \mid$
1.50000	1.34840	1.36738	1.36527	$3.96903 \mathrm{e}-05$
	$\boldsymbol{p}_{\mathbf{1}}^{(\mathbf{1})}$	$\boldsymbol{p}_{\mathbf{2}}^{(\mathbf{1})}$	$\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{2})}=\left\{\Delta^{\mathbf{2}}\right\}\left(\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{1})}\right)$	$\left\|\boldsymbol{p}_{\mathbf{2}}^{(\mathbf{1})}-\boldsymbol{p}_{\mathbf{0}}^{(\mathbf{2})}\right\|$
	1.36523	1.36523	1.36523	$2.80531 \mathrm{e}-12$

