5.1 Elementary Theory of Initial-Value Problems

Definition 5.1 A function f(t, y) is said to satisfy a Lipschitz condition in the variable y on a set $D \subset R^2$ if a constant L > 0 exists with $|f(t, y_1) - f(t, y_2)| \le L|y_1 - y_2|$ whenever (t, y_1) and (t, y_2) are in D. The constant L is called a Lipschitz constant for f.

Exercise 5.1 Show that $f(t, y) = \frac{2}{t}y + t^2e^t$ satisfies a Lipschitz condition on the interval $D = \{(t, y) | 1 \le t \le 2 \text{ and } -2 \le y \le 5\}.$

Definition 5.2 A set $D \subset R^2$ is said to be **convex** if whenever (t_1, y_1) and (t_2, y_2) belongs to D and $\lambda \in [0,1]$, the point $((1 - \lambda)t_1 + \lambda t_2, (1 - \lambda)y_1 + \lambda y_2)$ also belongs to D. *Remark*:

1. Convex means that line segment connecting (t_1, y_1) and (t_2, y_2) is in *D* whenever (t_1, y_1) and (t_2, y_2) belongs to *D*.

2. The set $D = \{(x, y) | a \le t \le b \text{ and } -\infty \le y \le \infty\}$ is convex.

Theorem 5.3 Suppose f(t, y) is defined on a convex set $D \subset \mathbb{R}^2$. If a constant L > 0 exists with

$$\left|\frac{\partial f}{\partial y}(t,y)\right| \le L$$

for all $(t, y) \in D$, then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Theorem 5.4 (existence & uniqueness) Suppose that $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on *D*. If *f* satisfies a Lipschitz condition on *D* in the variable *y*, then the initial-value problem (IVP)

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta,$$

has a unique solution $y(t)$ for $a \le t \le b$.

Example 2. Show that there is a unique solution to the IVP $y' = 1 + tsin(ty), \quad 0 \le t \le 2, \quad y(0) = 0.$

Definition 5.5 The IVP $\frac{dy}{dt} = f(t, y)$, $a \le t \le b$, $y(a) = \beta$ is said to be a well-posed problem if:

1.A unique solution y(t), to the problem exists, and

2. There exist constant $\varepsilon_0 > 0$ and k > 0 such that for any ε with $\varepsilon_0 > \varepsilon > 0$, whenever $\delta(t)$ is continuous with $|\delta(t)| < \varepsilon$ for all t in [a, b], and when $|\delta_0| < \varepsilon$, the IVP (*a perturbed problem associated with original* $\frac{dy}{dt} = f(t, y)$) $\frac{dz}{dt} = f(t, z) + \delta(t), \quad a \le t \le b, \quad z(a) = \beta + \delta_0$ has a unique solution z(t) that satisfies $|z(t) - y(t)| < k\varepsilon$ for all t in [a, b].

Why well-posedness? Numerical methods always solve perturbed problem because of round-off errors.

Example 3. Show the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 is well-posed on $D = \{(t, y) | 0 \le t \le 2 \text{ and } -\infty \le y \le \infty \}$

Theorem 5.6 Suppose $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on D and satisfies a Lipschitz condition on D in the variable y, then IVP

$$y' = f(t, y), \quad a \leq t \leq b, \ y(a) = \beta,$$

is well-posed.

Example. Show the IVP $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5is well-posed on $D = \{(x, y) \ 0 \le t \le 2 \text{ and } -\infty < y < \infty\}$ **Solution**: $\left|\frac{\partial}{\partial y}(y - t^2 + 1)\right| = |1| = 1$. Function $(y - t^2 + 1)$ satisfies Lipschitz condition with L =1. So **Theorem 5.6** implies the IVP is well posed.

5.2 Euler's Method

Consider to solve
$$\begin{cases} \frac{dy}{dt} = f(t, y) & a \le t \le b\\ y(t = a) = \alpha \end{cases}$$

Choose integer *N*. Let $h = \frac{b-a}{N}$, and $t_i = a + ih$ with i = 0,1, ..., N. t_i are called mesh points. **We want to compute approximate solutions** $w_0, w_1, w_2, ..., w_i, w_{i+1}, ... w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ... w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ... w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ... w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $v_0, w_1, w_2, ..., w_i, w_{i+1}, ..., w_N$ step by step with $w_0 = a$ $w_2 \approx y(t_2)$ $w_i \approx y(t_i)$ $w_N \approx y(t_N)$ $w_1 \approx y(t_1)$ $w_1 \approx y(t_1)$ $w_1 \approx y(t_1)$ $w_2 \approx y(t_1)$ $w_1 \approx y(t_1)$ $w_2 \approx y(t_2)$

Let
$$w_0 = \alpha$$
, $w_i \approx y(t_i)$, for each $i = 0, 1, ..., N$.

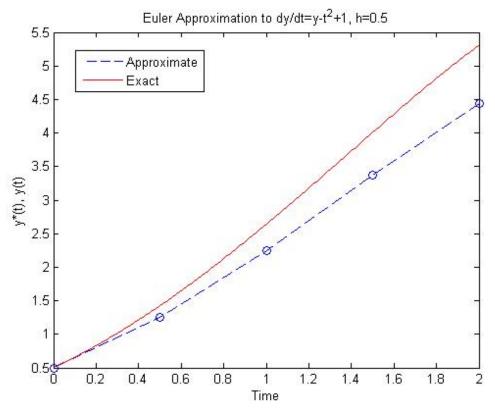
Euler's method:

 $w_0 = \alpha$

 $w_{i+1} = w_i + hf(t_i, w_i)$, for each i = 0, 1, ..., N - 1.

Example 1. Solve $y' = y - t^2 + 1$, $0 \le t \le 2$, y(0) = 0.5 numerically with time step size h = 0.2.

<u>Geometric interpretation of Euler's Method</u> $f(t_i, w_i) \approx y'(t_i) = f(t_i, y(t_i))$ implies $f(t_i, w_i)$ is an approximation to slope of y(t) at t_i



Error bound

Theorem 5.9 Suppose $D = \{(x, y) | a \le t \le b \text{ and } -\infty < y < \infty\}$ and that f(t, y) is continuous on D and satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L and that a constant M exists with

$$|y''(t)| \le M$$
, for all $t \in [a, b]$.

Let y(t) denote the unique solution to the IVP

$$y' = f(t, y), \quad a \leq t \leq b, \quad y(a) = \beta,$$

and w_0, w_1, \dots, w_n as in Euler's method. Then

$$|y(t_i) - w_i| \le \frac{hM}{2L} [e^{L(t_i - a)} - 1].$$

Example 2 The solution to the IVP $y' = y - t^2 + 1, 0 \le t \le 2$, y(0) = 0.5 was approximated by Euler's method with h = 0.2. Find the bound for approximation.

Effects of round-off error

Theorem 5.10 Let
$$y(t)$$
 be the unique solution to the IVP
 $y' = f(t, y), \quad a \le t \le b, \quad y(a) = a,$
and u_0, u_1, \dots, u_N be approximate solution obtained using
 $\begin{cases} u_0 = a + \delta_0 \\ u_{i+1} = u_i + hf(t_i, u_i) + \delta_{i+1}, & \text{for each } i = 0, 1, \dots, N-1 \end{cases}$
If $|\delta_i| < \delta$ for each $i = 0, 1, \dots, N$ and the hypotheses of Theorem
5.9 holds for $y' = f(t, y)$, then
 $|y(t_i) - u_i| \le \frac{1}{L} \left(\frac{hM}{2} + \frac{\delta}{h}\right) \left[e^{L(t_i - a)} - 1\right] + |\delta_0|e^{L(t_i - a)}$
for each $i = 0, 1, \dots, N.$

Let
$$E(h) = \frac{hM}{2} + \frac{\delta}{h}$$
. Minimal value of $E(h)$ occurs when $h = \sqrt{\frac{2\delta}{M}}$.