5.1 Elementary Theory of Initial-Value Problems

Definition 5.1 A function $f(t, y)$ is said to satisfy a Lipschitz condition in the variable y on a set $D \subset R^{2}$ if a constant $L>0$ exists with

$$
\left|f\left(t, y_{1}\right)-f\left(t, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

whenever $\left(t, y_{1}\right)$ and $\left(t, y_{2}\right)$ are in D. The constant L is called a Lipschitz constant for f.

Exercise 5.1 Show that $f(t, y)=\frac{2}{t} y+t^{2} e^{t}$ satisfies a Lipschitz condition on the interval $D=\{(t, y) \mid 1 \leq t \leq 2$ and $-2 \leq y \leq 5\}$.

Definition 5.2 A set $D \subset R^{2}$ is said to be convex if whenever $\left(t_{1}, y_{1}\right)$ and (t_{2}, y_{2}) belongs to D and $\lambda \in[0,1]$, the point $\left((1-\lambda) t_{1}+\lambda t_{2},(1-\lambda) y_{1}+\lambda y_{2}\right)$ also belongs to D.

Remark:

1. Convex means that line segment connecting $\left(t_{1}, y_{1}\right)$ and $\left(t_{2}, y_{2}\right)$ is in D whenever $\left(t_{1}, y_{1}\right)$ and $\left(t_{2}, y_{2}\right)$ belongs to D.
2. The set $D=\{(x, y) a \leq t \leq b$ and $-\infty \leq y \leq \infty\}$ is convex.

Theorem 5.3 Suppose $f(t, y)$ is defined on a convex set $D \subset R^{2}$. If a constant $L>0$ exists with

$$
\left|\frac{\partial f}{\partial y}(t, y)\right| \leq L
$$

for all $(t, y) \in D$, then f satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L.

Theorem 5.4 (existence \& uniqueness) Suppose that $D=\{(x, y) a \leq$ $t \leq b$ and $-\infty<y<\infty\}$ and that $f(t, y)$ is continuous on D. If f satisfies a Lipschitz condition on D in the variable y, then the initial-value problem (IVP)

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta
$$

has a unique solution $y(t)$ for $a \leq t \leq b$.
Example 2. Show that there is a unique solution to the IVP

$$
y^{\prime}=1+t \sin (t y), \quad 0 \leq t \leq 2, \quad y(0)=0
$$

Definition 5.5 The IVP $\frac{d y}{d t}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta$ is said to be a well-posed problem if:

1. A unique solution $y(t)$, to the problem exists, and
2.There exist constant $\varepsilon_{0}>0$ and $k>0$ such that for any ε with $\varepsilon_{0}>$ $\varepsilon>0$, whenever $\delta(t)$ is continuous with $|\delta(t)|<\varepsilon$ for all t in [a,b], and when $\left|\delta_{0}\right|<\varepsilon$, the IVP (a perturbed problem associated with original $\frac{d y}{d t}=f(t, y)$)

$$
\frac{d z}{d t}=f(t, z)+\delta(t), \quad a \leq t \leq b, \quad z(a)=\beta+\delta_{0}
$$

has a unique solution $z(t)$ that satisfies

$$
|z(t)-y(t)|<k \varepsilon \quad \text { for all } t \text { in }[a, b]
$$

Why well-posedness? Numerical methods always solve perturbed problem because of round-off errors.

Example 3. Show the IVP $y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, y(0)=0.5$ is well-posed on $D=\{(t, y) \mid 0 \leq t \leq 2$ and $-\infty \leq y \leq \infty\}$
Theorem 5.6 Suppose $D=\{(x, y) a \leq t \leq b$ and $-\infty<y<\infty\}$ and that $f(t, y)$ is continuous on D and satisfies a Lipschitz condition on D in the variable y, then IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta
$$

is well-posed.

Example. Show the IVP $y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5$ is well-posed on $D=\{(x, y) 0 \leq t \leq 2$ and $-\infty<y<\infty\}$
Solution: $\left|\frac{\partial}{\partial y}\left(y-t^{2}+1\right)\right|=|1|=1$.
Function $\left(y-t^{2}+1\right)$ satisfies Lipschitz condition with $\mathrm{L}=1$.
So Theorem 5.6 implies the IVP is well posed.

5.2 Euler's Method

Consider to solve $\begin{cases}\frac{d y}{d t}=f(t, y) & a \leq t \leq b \\ y(t=a)=\alpha & \end{cases}$
Choose integer N. Let $h=\frac{b-a}{N}$, and $t_{i}=a+i h$ with $i=$ $0,1, \ldots, N . t_{i}$ are called mesh points.
We want to compute approximate solutions
$w_{0}, w_{1}, w_{2}, \ldots, w_{i}, w_{i+1}, \ldots w_{N}$ step by step with

Step 0: $w_{0}=\alpha$	$\begin{aligned} & \text { Step 2: } \\ & w_{2} \approx y\left(t_{2}\right) \end{aligned}$	Step i : $w_{i} \approx y\left(t_{i}\right)$	$\begin{aligned} & \text { Step } N: \\ & w_{N} \approx y\left(t_{N}\right) \end{aligned}$
$\begin{aligned} & \text { Step 1: } \\ & a \backsim w_{1} \approx y\left(t_{1}\right) \end{aligned}$			b

Let $w_{0}=\alpha, w_{i} \approx y\left(t_{i}\right)$, for each $i=0,1, \ldots, N$.

Euler's method:

$w_{0}=\alpha$
$w_{i+1}=w_{i}+h f\left(t_{i}, w_{i}\right)$, for each $i=0,1, \ldots, N-1$.

Example 1. Solve $y^{\prime}=y-t^{2}+1, \quad 0 \leq t \leq 2, \quad y(0)=0.5$ numerically with time step size $h=0.2$.

Geometric interpretation of Euler's Method

$f\left(t_{i}, w_{i}\right) \approx y^{\prime}\left(t_{i}\right)=f\left(t_{i}, y\left(t_{i}\right)\right)$ implies $f\left(t_{i}, w_{i}\right)$ is an approximation to slope of $y(t)$ at t_{i}

Error bound

Theorem 5.9 Suppose $D=\{(x, y) a \leq t \leq b$ and $-\infty<y<\infty\}$ and that $f(t, y)$ is continuous on D and satisfies a Lipschitz condition on D in the variable y with Lipschitz constant L and that a constant M exists with

$$
\left|y^{\prime \prime}(t)\right| \leq M, \quad \text { for all } t \in[a, b] .
$$

Let $y(t)$ denote the unique solution to the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\beta,
$$

and $w_{0}, w_{1}, \cdots, w_{n}$ as in Euler's method. Then

$$
\left|y\left(t_{i}\right)-w_{i}\right| \leq \frac{h M}{2 L}\left[e^{L\left(t_{i}-a\right)}-1\right] .
$$

Example 2 The solution to the IVP $y^{\prime}=y-t^{2}+1,0 \leq t \leq 2$, $y(0)=0.5$ was approximated by Euler's method with $h=0.2$. Find the bound for approximation.

Effects of round-off error

Theorem 5.10 Let $y(t)$ be the unique solution to the IVP

$$
y^{\prime}=f(t, y), \quad a \leq t \leq b, \quad y(a)=\alpha
$$

and $u_{0}, u_{1}, \ldots, u_{N}$ be approximate solution obtained using

$$
\left\{\begin{array}{c}
u_{0}=\alpha+\delta_{0} \\
u_{i+1}=u_{i}+h f\left(t_{i}, u_{i}\right)+\delta_{i+1}, \quad \text { for each } i=0,1, \ldots, N-1
\end{array}\right.
$$

If $\left|\delta_{i}\right|<\delta$ for each $i=0,1, \ldots, N$ and the hypotheses of Theorem 5.9 holds for $y^{\prime}=f(t, y)$, then

$$
\left|y\left(t_{i}\right)-u_{i}\right| \leq \frac{1}{L}\left(\frac{h M}{2}+\frac{\delta}{h}\right)\left[e^{L\left(t_{i}-a\right)}-1\right]+\left|\delta_{0}\right| e^{L\left(t_{i}-a\right)}
$$

for each $i=0,1, \ldots, N$.
Let $E(h)=\frac{h M}{2}+\frac{\delta}{h}$. Minimal value of $E(h)$ occurs when $h=\sqrt{\frac{2 \delta}{M}}$.

