5.10 Stability

Consistency and Convergence

Definition 5.18 A one-step difference equation with local truncation error $\tau_i(h)$ is said to be *consistent* if

$$\lim_{h\to 0} \max_{1\le i\le N} |\tau_i(h)| = 0$$

Remark: A method is consistent implies that the difference equation approaches the differential equation as $h \to 0$.

Definition 5.19 A one-step difference equation is said to be *convergent* if

$$\lim_{h \to 0} \max_{1 \le i \le N} |w_i - y(t_i)| = 0$$

where $y(t_i)$ is the exact solution and w_i is the approximate solution.

Example 1. Consider to solve y' = f(t,y), $a \le t \le b$, $y(a) = \alpha$. Let $|y''(t)| \le M$, an f(t,y) be continuous and satisfy a Lipschitz condition with Lipschitz constant L. Show that Euler's method is consistent and convergent.

Solution:

$$|\tau_{i+1}(h)| = |\frac{h}{2}y''(\xi_i)| \le \frac{h}{2}M$$

$$\lim_{h \to 0} \max_{1 \le i \le N} |\tau_i(h)| \le \lim_{h \to 0} \frac{h}{2}M = 0$$

Thus Euler's method is consistent.

By Theorem 5.9,

$$\max_{1 \le i \le N} |w_i - y(t_i)| \le \frac{Mh}{2L} [e^{L(b-a)} - 1]$$

$$\lim_{h \to 0} \max_{1 \le i \le N} |w_i - y(t_i)| \le \lim_{h \to 0} \frac{Mh}{2L} [e^{L(b-a)} - 1] = 0$$

Thus Euler's method is convergent.

The rate of convergence of Euler's method is O(h).

Stability: small changes in the initial conditions produce correspondingly small changes in the subsequent approximations. The one-step method is **stable** if there is a constant K and a step size $h_0 > 0$ such that the difference between two solutions w_i and \widetilde{w}_i with initial values α and $\widetilde{\alpha}$ respectively, satisfies $|w_i - \widetilde{w}_i| < K|\alpha - \widetilde{\alpha}|$ whenever $h < h_0$ and $nh \le b - a$.

Theorem 5.20 Suppose the IVP y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$ is approximated by a one-step difference method in the form

$$w_0 = \alpha$$
,

$$w_{i+1} = w_i + h\phi(t_i, w_i, h)$$
 where $i = 0, 2, ... N$.

Suppose also that $h_0 > 0$ exists and $\phi(t, w, h)$ is continuous with a Lipschitz condition in w with constant L on D,

$$D = \{(t, w, h) | a \le t \le b, -\infty < w < \infty, 0 \le h \le h_0\}$$
. Then:

- (1) The method is *stable*;
- (2) The method is *convergent* if and only if it is *consistent*, which is equivalent to

$$\phi(t, y, 0) = f(t, y), \quad \text{for all } a \le t \le b$$

(3) If a function τ exists s.t. $|\tau_i(h)| \le \tau(h)$ when $0 \le h \le h_0$, then

$$|w_i - y(t_i)| \le \frac{\tau(h)}{L} e^{L(t_i - a)}.$$

Example 2. Show modified Euler method

 $w_{i+1} = w_i + \frac{h}{2} (f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i)))$ is stable and convergent. Suppose f(t, y) satisfied a Lipschitz condition on $\{(t, w) | a \le t \le b$, and $-\infty < w < \infty\}$ for y variable with Lipschitz constant L, f(t, y) is also continuous.

Multi-Step Methods

Definition. The **local truncation error** $\tau_{i+1}(h)$ of a m-step method of the form:

$$\begin{aligned} w_0 &= \alpha, w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1} \\ w_{i+1} &= a_{m-1} w_i + a_{m-2} w_{i-1} + \dots + a_0 w_{i+1-m} \\ &+ h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1} f(t_i, w_i) \\ &+ \dots + b_0 f(t_{i+1-m}, w_{i+1-m})] \\ &\vdots \\ \tau_{i+1}(h) &= \frac{y(t_{i+1}) - a_{m-1} y(t_i) - a_{m-2} y(t_{i-1}) - \dots - a_0 y(t_{i+1-m})}{h} \\ &- [b_m f(t_{i+1}, y_{i+1}) + b_{m-1} f(t_i, y_i) + \dots + b_0 f(t_{i+1-m}, y_{i+1-m})] \end{aligned}$$

Definition. A *m*-step multistep is **consistent** if $\lim_{h\to 0} |\tau_i(h)| = 0$, for all i = m, m+1, ..., N and $\lim_{h\to 0} |\alpha_i - y(t_i)| = 0$, for all i = 1, 2, ..., m-1. $\{\alpha_i\}$ are the starting values computed by some one-step method.

Definition. A *m*-step multistep is **convergent** if $\lim_{h\to 0} \max_{1\leq i\leq N} |w_i-y(t_i)|=0$

Theorem 5.21 Suppose the IVP $y' = f(t, y), a \le t \le b, y(a) = \alpha$ is approximated by an explicit Adams predictor-corrector method with an m-Adams-Bashforth predictor step equation $w_{i+1} = w_i + h[b_{m-1}f(t_i, w_i) + \dots + b_0f(t_{i+1-m}, w_{i+1-m})]$ with local truncation error $\tau_{i+1}(h)$ and an (m-1)-step implicit Adams-Moulton equation corrector $w_{i+1} = w_i + h[\tilde{b}_{m-1}f(t_i, w_i) + \dots + \tilde{b}_0f(t_{i+2-m}, w_{i+2-m})]$ with local truncation error $\tilde{\tau}_{i+1}(h)$. In addition, suppose that f(t,y) and $f_v(t,y)$ are continuous on $\{(t,y) | a \le t \le b, \text{ and } -\infty < y < \infty\}$ and that $f_{\nu}(t,y)$ is bounded. Then the local truncation error $\sigma_{i+1}(h)$ of the predictor-corrector method is $\sigma_{i+1}(h) = \tilde{\tau}_{i+1}(h) + \tau_{i+1}(h)\tilde{b}_{m-1}f_{\nu}(t_{i+1},\theta_{i+1})$ where θ_{i+1} is a number between zero and $h\tau_{i+1}(h)$. Moreover, there exist constant k_1 and k_2 such that

$$|w_i - y(t_i)| \le \left[\max_{0 \le j \le m-1} |w_j - y(t_j)| + k_1 \sigma(h) \right] e^{k_2(t_i - a)}$$

where $\sigma(h) = \max_{m \le j \le N} |\sigma_j(h)|$.

Example. Consider the IVP y' = 0, $0 \le t \le 10$, y(0) = 1, which is solved by $w_{i+1} = -4w_i + 5w_{i-1} + h(4f(t_i, w_i) + 2f(t_{i-1}, w_{i-1}))$. If in each step, there is a round-off error ε , and $w_1 = 1 + \varepsilon$. Find out how error propagates with respect to time.

Solution:
$$w_2 = -4(1+\varepsilon) + 5(1) = 1 - 4\varepsilon$$

 $w_3 = -4(1-\varepsilon) + 5(1+\varepsilon) = 1 + 21\varepsilon$
 $w_4 = -4(1+21\varepsilon) + 5(1-4\varepsilon) = 1 - 104\varepsilon$.

Definition. Consider to solve the IVP: y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$. by an *m*-step multistep method

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$$

$$h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots$$

$$+b_0 f(t_{i+1-m}, w_{i+1-m})],$$

The characteristic polynomial of the method is given by

$$P(\lambda) = \lambda^m - a_{m-1}\lambda^{m-1} - a_{m-2}\lambda^{m-2} - \dots - a_1\lambda - a_0.$$

Remark:

- (1) The **characteristic polynomial** can be viewed as derived by solving y' = 0, $y(a) = \alpha$ using the *m*-step multistep method.
- (2) If λ is a root of the characteristic polynomial, then $w_i = (\lambda)^i$ for each i is a solution to $w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$.

This is because $\lambda^{i+1} - a_{m-1}\lambda^i - a_{m-2}\lambda^{i-1} - \dots - a_0\lambda^{i+1-m} = \lambda^{i+1-m}(\lambda^m - a_{m-1}\lambda^{m-1} - a_{m-2}\lambda^{m-2} - \dots - a_1\lambda - a_0) = 0$

- (3) If $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_m$ are distinct zeros of the **characteristic polynomial**, solution to $w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \cdots + a_0w_{i+1-m}$ can be represented by $w_i = \sum_{j=1}^m c_j \lambda_j^i$ for some unique constants $c_1, ..., c_m$.
- (4) $w_i = \alpha$ is a solution to $w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \cdots + a_0w_{i+1-m}$, this is because $y(t) = \alpha$ is the exact solution to y' = 0, $y(a) = \alpha$.
- (5) From (4), $0 = \alpha a_{m-1}\alpha a_{m-2}\alpha \dots a_0\alpha = \alpha[1 a_{m-1} a_{m-2} \dots a_0]$. Compare this with definition of characteristic polynomial, this shows that $\lambda = 1$ is one of the zeros of the characteristic polynomial.

- (6) Let $\lambda_1 = 1$ and $c_1 = \alpha$, solution to y' = 0, $y(0) = \alpha$ is expressed as $w_i = \alpha + \sum_{j=2}^m c_j \lambda_j^i$. This means that c_2, \dots, c_m would be zero if all the calculations were exact. However, c_2, \dots, c_m are not zero in practice due to round-off error.
- (*) The stability of a multistep method with respect to round-off error is dictated by magnitudes of zeros of the characteristic polynomial. If $|\lambda_j| > 1$ for any of $\lambda_2, \lambda_3, ..., \lambda_m$, the round-off error grows exponentially.

Example. Analyze stability of $w_{i+1} = -4w_i + 5w_{i-1} + h(4f(t_i, w_i) + 2f(t_{i-1}, w_{i-1}))$ for solving y' = 0, $0 \le t \le 10$, y(0) = 1, with initial condition $w_0 = 1$, $w_1 = 1 + \delta$. δ is due to round-off error.

Definition 5.22 Let $\lambda_1, \lambda_2, ..., \lambda_m$ be the roots of the **characteristic** equation $P(\lambda) = \lambda^m - a_{m-1}\lambda^{m-1} - a_{m-2}\lambda^{m-2} - \cdots - a_1\lambda - a_0 = 0$ associated with the *m*-step multistep method

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$$

$$+h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots$$

$$+b_0 f(t_{i+1-m}, w_{i+1-m})],$$

If $|\lambda_i| \le 1$ and all roots with absolute value 1 are simple roots, then the difference equation is said to satisfy the **root condition**.

Stability of multistep method

Definition 5.23

- 1) Methods that satisfy the root condition and have $\lambda = 1$ as the only root of the characteristic equation with magnitude one are called **strongly stable**.
- 2) Methods that satisfy the root condition and have more than one distinct roots with magnitude one are called **weakly stable**.
- 3) Methods that do not satisfy the root condition are called **unstable**.

Example. Show 4th order Adams-Bashforth method

$$w_{i+1} = w_i + \frac{h}{24} [55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3})]$$

is strongly stable.

Solution: The characteristic equation of the 4th order Adams-Bashforth method is

$$P(\lambda) = \lambda^4 - \lambda^3 = 0$$
$$0 = \lambda^4 - \lambda^3 = \lambda^3(\lambda - 1)$$

 $P(\lambda)$ has roots $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = 0, \lambda_4 = 0$.

Therefore $P(\lambda)$ satisfies root condition and the method is strongly stable.

Example. Show 4th order Miline's method

$$w_{i+1} = w_{i-3} + \frac{4h}{3} \left[2f(t_i, w_i) - f(t_{i-1}, w_{i-1}) + 2f(t_{i-2}, w_{i-2}) \right]$$

is weakly stable.

Solution: The characteristic equation $P(\lambda) = \lambda^4 - 1 = 0$

$$0 = \lambda^4 - 1 = (\lambda^2 - 1)(\lambda^2 + 1)$$

 $P(\lambda)$ has roots $\lambda_1 = 1$, $\lambda_2 = -1$, $\lambda_3 = i$, $\lambda_4 = -i$.

All roots have magnitude one. So the method is weakly stable.

Theorem 5.24 A multistep method

$$w_{i+1} = a_{m-1}w_i + a_{m-2}w_{i-1} + \dots + a_0w_{i+1-m}$$

$$+h[b_m f(t_{i+1}, w_{i+1}) + b_{m-1}f(t_i, w_i) + \dots$$

$$+b_0 f(t_{i+1-m}, w_{i+1-m})],$$

is stable **if and only if** it satisfies the root condition. If it is also consistent, then it is stable **if and only if** it is convergent.