5.10 Stability

Consistency and Convergence

Definition 5.18 A one-step difference equation with local truncation error $\tau_{i}(h)$ is said to be consistent if

$$
\lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|\tau_{i}(h)\right|=0
$$

Remark: A method is consistent implies that the difference equation approaches the differential equation as $h \rightarrow 0$.

Definition 5.19 A one-step difference equation is said to be convergent if

$$
\lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|w_{i}-y\left(t_{i}\right)\right|=0
$$

where $y\left(t_{i}\right)$ is the exact solution and w_{i} is the approximate solution.

Example 1. Consider to solve $y^{\prime}=f(t, y), \quad a \leq t \leq b, y(a)=\alpha$. Let $\left|y^{\prime \prime}(t)\right| \leq M$, an $f(t, y)$ be continuous and satisfy a Lipschitz condition with Lipschitz constant L. Show that Euler's method is consistent and convergent.
Solution:

$$
\begin{aligned}
&\left|\tau_{i+1}(h)\right|=\left|\frac{h}{2} y^{\prime \prime}\left(\xi_{i}\right)\right| \leq \frac{h}{2} M \\
& \lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|\tau_{i}(h)\right| \leq \lim _{h \rightarrow 0} \frac{h}{2} M=0
\end{aligned}
$$

Thus Euler's method is consistent.
By Theorem 5.9,

$$
\max _{1 \leq i \leq N}\left|w_{i}-y\left(t_{i}\right)\right| \leq \frac{M h}{2 L}\left[e^{L(b-a)}-1\right]
$$

$$
\lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|w_{i}-y\left(t_{i}\right)\right| \leq \lim _{h \rightarrow 0} \frac{M h}{2 L}\left[e^{L(b-a)}-1\right]=0
$$

Thus Euler's method is convergent.
The rate of convergence of Euler's method is $O(h)$.

Stability: small changes in the initial conditions produce correspondingly small changes in the subsequent approximations. The one-step method is stable if there is a constant K and a step size $h_{0}>0$ such that the difference between two solutions w_{i} and \widetilde{w}_{i} with initial values α and $\tilde{\alpha}$ respectively, satisfies $\left|w_{i}-\widetilde{w}_{i}\right|<K|\alpha-\tilde{\alpha}|$ whenever $h<h_{0}$ and $n h \leq b-a$.

Theorem 5.20 Suppose the IVP $y^{\prime}=f(t, y), \quad a \leq t \leq b, y(a)=\alpha$ is approximated by a one-step difference method in the form

$$
\begin{aligned}
& w_{0}=\alpha \\
& w_{i+1}=w_{i}+h \phi\left(t_{i}, w_{i}, h\right) \quad \text { where } i=0,2, \ldots N .
\end{aligned}
$$

Suppose also that $h_{0}>0$ exists and $\phi(t, w, h)$ is continuous with a Lipschitz condition in w with constant L on D,
$D=\left\{(t, w, h) \mid a \leq t \leq b,-\infty<w<\infty, 0 \leq h \leq h_{0}\right\}$. Then:
(1) The method is stable;
(2) The method is convergent if and only if it is consistent, which is equivalent to

$$
\phi(t, y, 0)=f(t, y), \quad \text { for all } a \leq t \leq b
$$

(3) If a function τ exists s.t. $\left|\tau_{i}(h)\right| \leq \tau(h)$ when $0 \leq h \leq h_{0}$, then

$$
\left|w_{i}-y\left(t_{i}\right)\right| \leq \frac{\tau(h)}{L} e^{L\left(t_{i}-a\right)}
$$

Example 2. Show modified Euler method
$w_{i+1}=w_{i}+\frac{h}{2}\left(f\left(t_{i}, w_{i}\right)+f\left(t_{i+1}, w_{i}+h f\left(t_{i}, w_{i}\right)\right)\right) \quad$ is stable and convergent. Suppose $f(t, y)$ satisfied a Lipschitz condition on $\{(t, w) \mid a \leq$ $t \leq b$, and $-\infty<w<\infty\}$ for y variable with Lipschitz constant L, $f(t, y)$ is also continuous.

Multi-Step Methods

Definition. The local truncation error $\tau_{i+1}(h)$ of a m-step method of the form:

$$
\begin{gathered}
w_{0}=\alpha, w_{1}=\alpha_{1}, \ldots, w_{m-1}=\alpha_{m-1} \\
w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
+h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)\right. \\
\left.+\cdots+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right] \\
-\left[b_{m} f\left(t_{i+1}, y_{i+1}\right)+b_{m-1} f\left(t_{i}, y_{i}\right)+\cdots+b_{0} f\left(t_{i+1-m}, y_{i+1-m}\right)\right]
\end{gathered}
$$

Definition. A m-step multistep is consistent if $\lim _{h \rightarrow 0}\left|\tau_{i}(h)\right|=0$, for all $i=m, m+1, \ldots, N$ and
$\lim _{h \rightarrow 0}\left|\alpha_{i}-y\left(t_{i}\right)\right|=0$, for all $i=1,2, \ldots, m-1 .\left\{\alpha_{i}\right\}$ are the starting values computed by some one-step method.

Definition. A m-step multistep is convergent if

$$
\lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|w_{i}-y\left(t_{i}\right)\right|=0
$$

Theorem 5.21 Suppose the IVP $y^{\prime}=f(t, y), a \leq t \leq b, y(a)=\alpha$ is approximated by an explicit Adams predictor-corrector method with an m step Adams-Bashforth predictor equation $w_{i+1}=w_{i}+h\left[b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]$ with local truncation error $\tau_{i+1}(h)$ and an ($m-1$)-step implicit Adams-Moulton corrector
equation $w_{i+1}=w_{i}+h\left[\tilde{b}_{m-1} f\left(t_{i}, w_{i}\right)+\cdots+\tilde{b}_{0} f\left(t_{i+2-m}, w_{i+2-m}\right)\right]$ with local truncation error $\tilde{\tau}_{i+1}(h)$. In addition, suppose that $f(t, y)$ and $f_{y}(t, y)$ are continuous on $\{(t, y) \mid a \leq t \leq b$, and $-\infty<y<\infty\}$ and that $f_{y}(t, y)$ is bounded. Then the local truncation error $\sigma_{i+1}(h)$ of the predictor-corrector method is $\sigma_{i+1}(h)=\tilde{\tau}_{i+1}(h)+\tau_{i+1}(h) \tilde{b}_{m-1} f_{y}\left(t_{i+1}, \theta_{i+1}\right)$
where θ_{i+1} is a number between zero and $h \tau_{i+1}(h)$.
Moreover, there exist constant k_{1} and k_{2} such that

$$
\left|w_{i}-y\left(t_{i}\right)\right| \leq\left[\max _{0 \leq j \leq m-1}\left|w_{j}-y\left(t_{j}\right)\right|+k_{1} \sigma(h)\right] e^{k_{2}\left(t_{i}-a\right)}
$$

where $\sigma(h)=\max _{m \leq j \leq N}\left|\sigma_{j}(h)\right|$.

Example. Consider the IVP $y^{\prime}=0, \quad 0 \leq t \leq 10, y(0)=1$, which is solved by $w_{i+1}=-4 w_{i}+5 w_{i-1}+h\left(4 f\left(t_{i}, w_{i}\right)+2 f\left(t_{i-1}, w_{i-1}\right)\right)$. If in each step, there is a round-off error ε, and $w_{1}=1+\varepsilon$. Find out how error propagates with respect to time.
Solution: $w_{2}=-4(1+\varepsilon)+5(1)=1-4 \varepsilon$

$$
\begin{aligned}
& w_{3}=-4(1-\varepsilon)+5(1+\varepsilon)=1+21 \varepsilon \\
& \quad w_{4}=-4(1+21 \varepsilon)+5(1-4 \varepsilon)=1-104 \varepsilon
\end{aligned}
$$

Definition. Consider to solve the IVP: $y^{\prime}=f(t, y), \quad a \leq t \leq$ $b, y(a)=\alpha$. by an m-step multistep method

$$
\begin{gathered}
w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots\right. \\
\left.+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]
\end{gathered}
$$

The characteristic polynomial of the method is given by

$$
P(\lambda)=\lambda^{m}-a_{m-1} \lambda^{m-1}-a_{m-2} \lambda^{m-2}-\cdots-a_{1} \lambda-a_{0} .
$$

Remark:

(1) The characteristic polynomial can be viewed as derived by solving $y^{\prime}=0, y(a)=\alpha$ using the m-step multistep method.
(2) If λ is a root of the characteristic polynomial, then $w_{i}=(\lambda)^{i}$ for each i is a solution to $w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m}$.
This is because $\lambda^{i+1}-a_{m-1} \lambda^{i}-a_{m-2} \lambda^{i-1}-\cdots-a_{0} \lambda^{i+1-m}=$ $\lambda^{i+1-m}\left(\lambda^{m}-a_{m-1} \lambda^{m-1}-a_{m-2} \lambda^{m-2}-\cdots-a_{1} \lambda-a_{0}\right)=0$
(3) If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}$ are distinct zeros of the characteristic polynomial, solution to $w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m}$ can be represented by $w_{i}=\sum_{j=1}^{m} c_{j} \lambda_{j}^{i}$ for some unique constants c_{1}, \ldots, c_{m}.
(4) $w_{i}=\alpha$ is a solution to $w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+$ $a_{0} w_{i+1-m}$, this is because $y(t)=\alpha$ is the exact solution to $y^{\prime}=0$, $y(a)=\alpha$.
(5) From (4), $0=\alpha-a_{m-1} \alpha-a_{m-2} \alpha-\cdots-a_{0} \alpha=\alpha\left[1-a_{m-1}-\right.$ $\left.a_{m-2}-\cdots-a_{0}\right]$. Compare this with definition of characteristic polynomial, this shows that $\lambda=1$ is one of the zeros of the characteristic polynomial.
(6) Let $\lambda_{1}=1$ and $c_{1}=\alpha$, solution to $y^{\prime}=0, \quad y(0)=\alpha$ is expressed as $w_{i}=\alpha+\sum_{j=2}^{m} c_{j} \lambda_{j}^{i}$. This means that c_{2}, \ldots, c_{m} would be zero if all the calculations were exact. However, c_{2}, \ldots, c_{m} are not zero in practice due to round-off error.
(*) The stability of a multistep method with respect to round-off error is dictated by magnitudes of zeros of the characteristic polynomial. If $\left|\lambda_{j}\right|>$ 1 for any of $\lambda_{2}, \lambda_{3}, \ldots, \lambda_{m}$, the round-off error grows exponentially.

Example. Analyze stability of $w_{i+1}=-4 w_{i}+5 w_{i-1}+h\left(4 f\left(t_{i}, w_{i}\right)+\right.$ $2 f\left(t_{i-1}, w_{i-1}\right)$) for solving $y^{\prime}=0, \quad 0 \leq t \leq 10, y(0)=1$, with initial condition $w_{0}=1, w_{1}=1+\delta . \delta$ is due to round-off error.

Definition 5.22 Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ be the roots of the characteristic equation $P(\lambda)=\lambda^{m}-a_{m-1} \lambda^{m-1}-a_{m-2} \lambda^{m-2}-\cdots-a_{1} \lambda-a_{0}=0$ associated with the m-step multistep method

$$
\begin{aligned}
& w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
& +h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots\right. \\
& \left.+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]
\end{aligned}
$$

If $\left|\lambda_{i}\right| \leq 1$ and all roots with absolute value 1 are simple roots, then the difference equation is said to satisfy the root condition.

Stability of multistep method

Definition 5.23

1) Methods that satisfy the root condition and have $\lambda=1$ as the only root of the characteristic equation with magnitude one are called strongly stable.
2) Methods that satisfy the root condition and have more than one distinct roots with magnitude one are called weakly stable.
3) Methods that do not satisfy the root condition are called unstable.

Example. Show $4^{\text {th }}$ order Adams-Bashforth method

$$
w_{i+1}=w_{i}
$$

$$
+\frac{h}{24}\left[55 f\left(t_{i}, w_{i}\right)-59 f\left(t_{i-1}, w_{i-1}\right)+37 f\left(t_{i-2}, w_{i-2}\right)\right.
$$

$$
\left.-9 f\left(t_{i-3}, w_{i-3}\right)\right]
$$

is strongly stable.
Solution: The characteristic equation of the $4^{\text {th }}$ order Adams-Bashforth method is

$$
\begin{gathered}
P(\lambda)=\lambda^{4}-\lambda^{3}=0 \\
0=\lambda^{4}-\lambda^{3}=\lambda^{3}(\lambda-1)
\end{gathered}
$$

$P(\lambda)$ has roots $\lambda_{1}=1, \lambda_{2}=0, \lambda_{3}=0, \lambda_{4}=0$.
Therefore $P(\lambda)$ satisfies root condition and the method is strongly stable.

Example. Show $4^{\text {th }}$ order Miline's method

$$
w_{i+1}=w_{i-3}+\frac{4 h}{3}\left[2 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1}, w_{i-1}\right)+2 f\left(t_{i-2}, w_{i-2}\right)\right]
$$

is weakly stable.
Solution: The characteristic equation $P(\lambda)=\lambda^{4}-1=0$

$$
0=\lambda^{4}-1=\left(\lambda^{2}-1\right)\left(\lambda^{2}+1\right)
$$

$P(\lambda)$ has roots $\lambda_{1}=1, \lambda_{2}=-1, \lambda_{3}=i, \lambda_{4}=-i$.
All roots have magnitude one. So the method is weakly stable.

Theorem 5.24 A multistep method

$$
\begin{gathered}
w_{i+1}=a_{m-1} w_{i}+a_{m-2} w_{i-1}+\cdots+a_{0} w_{i+1-m} \\
+h\left[b_{m} f\left(t_{i+1}, w_{i+1}\right)+b_{m-1} f\left(t_{i}, w_{i}\right)+\cdots\right. \\
\left.+b_{0} f\left(t_{i+1-m}, w_{i+1-m}\right)\right]
\end{gathered}
$$

is stable if and only if it satisfies the root condition. If it is also consistent, then it is stable if and only if it is convergent.

