
Debugging in Serial & Parallel

1

Basic Debugging

• Instrumentation method: instrument the code
with print statement to check values and follow
the execution of the program

• Use debugging tools

– gdb

2

Introduction to gdb

• GNU debugger “gdb” is a program to help find
bugs in the code.

• Compile the code with “-g” option to enable
debugging.

– “gcc -g -Wall -o hello hello.c”

– “-g” option tells gcc to create a symbol table so that
gdb can translate machine addresses into information
that programmers can read.

3

Running Within Debugger

Inside a debugger:

• Look at source code listing

• Do a line-by-line execution

• Insert “breakpoints” at certain functional points

• Monitor values of variables

• “Backtrace” when code crashes

4

Basic gdb Commands

• run: this starts the program.
– For example, if the program starts with “./prog in_put out_put”
– In gdb, it starts with “run in_put out_put”

• print: this prints the contents of a variable.
• quit: quit gdb
• continue: continue execution.
• step: execute the next line of code, step into functions.
• next: execute the next line of code, do not step into functions.
• break <line number>: stop execution when the code is in <in

number>.
• break <function>: stop execution when it reaches the <function>
• where: print a trace showing the sequence of function calls from

main().
• backtrace: gives a stack backtrace showing what the program was

doing
http://www.gnu.org/software/gdb/

5

http://www.gnu.org/software/gdb/

More Debugging Tools

• idb: part of the Intel compiler suite. It has a
special “-gdb” option for using gdb command
syntax.

• Idb-gui: GUI for Intel compiler suite debugger

• ddd: a graphic front-end for gdb.

• pgdbg: part of PGI compiler suite.

Memory Allocation Tools

• efence: or Electric Fence, tries to trap any out-of-
bounds references when using dynamic memory
allocation

6

Parallel Debugging

TotalView: The “premier” parallel debugger.
• On CRC, use command “module load totaview” to

load the debugger
• MPI programs behave as multiple processes within

TotalView.
• Compile a “debuggable” executable
• Start the program under Totalview

– totalview my_program
– Select ‘Parallel’ tab, and choose “mpich2” from the pull

down menu
– Then select number of tasks
– Set run arguments

• Now are read to start debugging
 7

