
Lecture 4: Principles of Parallel
Algorithm Design (part 2)

1

Task Interaction Graphs

• Tasks generally share input, output or intermediate data

– Ex. Matrix-vector multiplication: originally there is only one
copy of b, tasks will have to communicate b.

• Task-interaction graph

– Node = task

– Edge(undirected/directed) = interaction or data exchange

• Task-dependency graph vs. task-interaction graph

– Task-dependency graph represents control dependency

– Task-interaction graph represents data dependency

2

Example: Task-Interaction Graph

Sparse matrix-vector multiplication

• Tasks: each task computes an entry of y[]

• Assign ith row of A to Task i. Also assign b[i] to
Task i.

3

Processes and Mapping

• Mapping: the mechanism by which tasks are
assigned to processes for execution.

• Process: a logic computing agent that performs
tasks, which is an abstract entity that uses the
code and data corresponding to a task to produce
the output of that task.

• Why use processes rather than processors?
– We rely on OS to map processes to physical

processors.

– We can aggregate tasks into a process

4

Criteria of Mapping

1. Maximize the use of concurrency by mapping independent
tasks onto different processes

2. Minimize the total completion time by making sure that
processes are available to execute the tasks on critical path
as soon as such tasks become executable

3. Minimize interaction among processes by mapping tasks
with a high degree of mutual interaction onto the same
process.

5

Basis for Choosing Mapping
Task-dependency graph

Makes sure the max. concurrency
Task-interaction graph

Minimum communication.

Example: Mapping Database Query to Processes

6

• 4 processes can be used in total since the max. concurrency is 4.
• Assign all tasks within a level to different processes.

P0 P1 P2 P3

P0 P2

P0

P0 P1 P2 P3

P0

P0

P0

Decomposition Techniques

How to decompose a computation into a set of
tasks?

• Recursive decomposition

• Data decomposition

• Exploratory decomposition

• Speculative decomposition

7

Recursive Decomposition

• Ideal for problems to be solved by divide-and-
conquer method.

• Steps

1. Decompose a problem into a set of independent
sub-problems

2. Recursively decompose each sub-problem

3. Stop decomposition when minimum desired
granularity is achieved or (partial) result is
obtained

8

Quicksort Example

Sort a sequence A of n elements in the increasing order.

9

• Select a pivot
• Partition the sequence around the pivot
• Recursively sort each sub-sequence

Task: the work of partitioning a given sub-sequence

Recursive Decomposition for Finding Min

Find the minimum in an array of numbers A of length n

10

procedure Serial_Min(A,n)
begin
 min = A[0]
 for i:= 1 to n-1 do
 if(A[i] < min) min := A[i]
 endfor;
 return min;
end Serial_Min

procedure Recursive_MIN(A,n)
begin
 if (n == 1) then
 min := A[0];
 else
 lmin := Recursive_MIN(A,n/2);
 rmin := Recursive_MIN(&[A/2],n-n/2);
 if(lmin < rmin) then
 min := lmin;
 else
 min := rmin;
 endelse;
 endelse;
 return min;
end Recursive_MIN

Task-Dependency Graph for Recursive_MIN

• Let the task be finding the minimum of two numbers.

• Example. Find min. from {4,9,1,7,8,11,2,12}

11

Min(4,9) Min(1,7) Min(8,11) Min(2,12)

Min(4,1) Min(8,2)

Min(1,2)

Data Decomposition

Steps

1. The data on which the computations are
performed are partitioned

2. Data partition is used to induce a partitioning
of the computations into tasks.

• Data Partitioning
– Partition output data

– Partition input data

– Partition input + output data

– Partition intermediate data

12

Data Decomposition Based on Partitioning Output Data

• If each element of the output can be computed
independently of others as a function of the input.

• Partitioning computations into tasks is natural. Each
task is assigned with the work of computing a
portion of the output.

• Example. Dense matrix-vector multiplication.

13

Example: Output Data Decomposition

Matrix-matrix multiplication: 𝐶 = 𝐴 × 𝐵
• Partition matrix C into 2× 2 submatrices
• Computation of C then can be partitioned into four tasks.

14

Remark: data-decomposition is different from task decomposition.
Same data decomposition can have different task decompositions.

Data Decomposition Based on Partitioning Input Data

• Ideal if output is a single unknown value or
the individual elements of the output can not
be efficiently determined in isolation.

– Example. Finding the minimum, maximum, or sum
of a set of numbers.

– Example. Sorting a set.

• Partitioning the input data and associating a
task with each partition of the input data.

15

Example: Input Data Decomposition

Count the frequency of itemsets in database transactions.

16

Partition computation by partitioning the set of transactions

Data Decomposition Based on Partitioning Input and Output Data

17

Partitioning both input and output data to achieve additional
concurrency

Data Decomposition Based on Partitioning Intermediate Data

• Applicable for problems which can be solved
by multi-stage computations such that the
output of one stage is the input to the
subsequent stage.

• Partitioning can be based on input or output
of an intermediate stage.

18

Example: Intermediate Data Decomposition

Dense matrix-matrix multiplication
• Original output data decomposition yields a

maximum degree of concurrency of 4.

19

20

A1,1

A2,1

Stage 1:

B1,1 B1,2
D1,1,1 D1,1,2

D1,2,1 D1,2,2

A1,2

A2,2 B2,1 B2,2

D2,1,1 D2,1,2

D2,2,1 D2,2,2

Stage 2:

D1,1,1 D1,1,2

D1,2,1 D1,2,2

+
D2,1,1 D2,1,2

D2,2,1 D2,2,2

C1,1 C1,2

C2,1 C2,2

𝐷𝑘,𝑖,𝑗 = 𝐴𝑖,𝑘𝐵𝑘,𝑗

𝐶𝑖,𝑗 = 𝐷1,𝑖,𝑗 + 𝐷2,𝑖,𝑗

21

Let 𝑫𝒌,𝒊,𝒋 = 𝑨𝒊,𝒌 ∙ 𝑩𝒌,𝒋

Task-dependency graph

Owner-Computes Rule

• Decomposition based on partitioning
input/output data is referred to as the owner-
computes rule.
– Each partition performs all the computations involving

data that it owns.

• Input data decomposition
– A task performs all the computations that can be done

using these input data.

• Output data decomposition
– A task computes all the results in the partition

assigned to it.

22

