Lecture 4: Principles of Parallel Algorithm Design (part 4)
Mapping Technique for Load Balancing

• Sources of overheads:
 – Inter-process interaction
 – Idling

• Goals to achieve:
 – To reduce interaction time
 – To reduce total amount of time some processes being idle
 – Remark: these two goals often conflict

• Classes of mapping:
 – Static
 – Dynamic
Schemes for Static Mapping

• Mapping Based on Data Partitioning
• Task Graph Partitioning
• Hybrid Strategies
Mapping Based on Data Partitioning

• By owner-computes rule, mapping the relevant data onto processes is equivalent to mapping tasks onto processes

• Array or Matrices
 – Block distributions
 – Cyclic and block cyclic distributions

• Irregular Data
 – Example: data associated with unstructured mesh
 – Graph partitioning
1D Block Distribution

Example. Distribute rows or columns of matrix to different processes
Multi-D Block Distribution

Example. Distribute blocks of matrix to different processes

Figure 3.25. Examples of two-dimensional distributions of an array, (a) on a 4×4 process grid, and (b) on a 2×8 process grid.
Example. $n \times n$ dense matrix multiplication $C = A \times B$ using p processes

- Decomposition based on output data.
- Each entry of C use the same amount of computation.
- Either 1D or 2D block distribution can be used:
 - 1D distribution: $\frac{n}{p}$ rows are assigned to a process
 - 2D distribution: $\frac{n}{\sqrt{p}} \times \frac{n}{\sqrt{p}}$ size block is assigned to a process
- Multi-D distribution allows higher degree of concurrency.
- Multi-D distribution can also help to reduce interactions
Figure 3.26. Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-dimensional partitioning of the output matrix. Shaded portions of the input matrices A and B are required by the process that computes the shaded portion of the output matrix C.
Cyclic and Block Cyclic Distributions

• If the amount of work differs for different entries of a matrix, a block distribution can lead to load imbalances.

• Example. Doolittle’s method of LU factorization of dense matrix
Doolittle’s method of LU factorization

\[A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = LU = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ l_{21} & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \cdots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \cdots & u_{1n} \\ 0 & u_{22} & \cdots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & u_{nn} \end{bmatrix} \]

By matrix-matrix multiplication

\[u_{1j} = a_{1j}, \quad j = 1, 2, \ldots, n \ (1st \ row \ of \ U) \]
\[l_{j1} = a_{j1}/u_{11}, \quad j = 1, 2, \ldots, n \ (1st \ column \ of \ L) \]

For \(i = 2, 3, \ldots, n - 1 \) do

\[u_{ii} = a_{ii} - \sum_{t=1}^{i-1} l_{it} u_{ti} \]

\[u_{ij} = a_{ij} - \sum_{t=1}^{i-1} l_{it} u_{ti} \quad \text{for } j = i + 1, \ldots, n \ (ith \ row \ of \ U) \]

\[l_{ji} = \frac{a_{ji} - \sum_{t=1}^{i-1} l_{jt} u_{ti}}{u_{ii}} \quad \text{for } j = i + 1, \ldots, n \ (ith \ column \ of \ L) \]

End

\[u_{nn} = a_{nn} - \sum_{t=1}^{n-1} l_{nt} u_{tn} \]
Serial Column-Based LU

1. procedure COL_LU (A)
2. begin
3. for k := 1 to n do
4. for j := k to n do
6. endfor;
7. for j := k + 1 to n do
8. for i := k + 1 to n do
10. endfor;
11. endfor;
12. /*
13. After this iteration, column A[k + 1 : n, k] is logically the kth column of L and row A[k, k : n] is logically the kth row of U.
14. */
15. endfor;
16. end COL_LU

- Remark: Matrices L and U share space with A
Work used to compute Entries of L and U

$$
\begin{pmatrix}
A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix} \rightarrow \begin{pmatrix}
L_{1,1} & 0 & 0 \\
L_{2,1} & L_{2,2} & 0 \\
L_{3,1} & L_{3,2} & L_{3,3}
\end{pmatrix} \cdot \begin{pmatrix}
U_{1,1} & U_{1,2} & U_{1,3} \\
0 & U_{2,2} & U_{2,3} \\
0 & 0 & U_{3,3}
\end{pmatrix}
$$

1: $A_{1,1} \rightarrow L_{1,1} U_{1,1}$
2: $L_{2,1} = A_{2,1} U_{1,1}^{-1}$
3: $L_{3,1} = A_{3,1} U_{1,1}^{-1}$
4: $U_{1,2} = L_{1,1}^{-1} A_{1,2}$
5: $U_{1,3} = L_{1,1}^{-1} A_{1,3}$
6: $A_{2,2} = A_{2,2} - L_{2,1} U_{1,2}$
7: $A_{3,2} = A_{3,2} - L_{3,1} U_{1,2}$
8: $A_{2,3} = A_{2,3} - L_{2,1} U_{1,3}$
9: $A_{3,3} = A_{3,3} - L_{3,1} U_{1,3}$
10: $A_{2,2} \rightarrow L_{2,2} U_{2,2}$
11: $L_{3,2} = A_{3,2} U_{2,2}^{-1}$
12: $U_{2,3} = L_{2,2}^{-1} A_{2,3}$
13: $A_{3,3} = A_{3,3} - L_{3,2} U_{2,3}$
14: $A_{3,3} \rightarrow L_{3,3} U_{3,3}$

3.28. A typical computation in Gaussian elimination and the active part of the coefficient matrix during the kth iteration of the outer loop.
• Block distribution of LU factorization tasks leads to load imbalance.
Block-Cyclic Distribution

• A variation of block distribution that can be used to alleviate the load-imbalance.

• Steps
 1. Partition an array into many more blocks than the number of available processes
 2. Assign blocks to processes in a round-robin manner so that each process gets several non-adjacent blocks.
(a) The rows of the array are grouped into blocks each consisting of two rows, resulting in eight blocks of rows. These blocks are distributed to four processes in a wraparound fashion.

(b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a 2×2 grid of processes in a wraparound fashion.

- **Cyclic distribution**: when the block size = 1
Graph Partitioning

- Assign equal number of nodes (or cells) to each process
- Minimize edge count of the graph partition

Random Partitioning

Partitioning for Minimizing Edge-Count
Mappings Based on Task Partitioning

• Mapping based on task partitioning can be used when computation is naturally expressed in the form of a static task-dependency graph with known sizes.

• Finding optimal mapping minimizing idle time and minimizing interaction time is NP-complete.

• Heuristic solutions exist for many structured graphs.
Mapping a Binary Tree Task-Dependency Graph

• Finding min.

• Mapping the tree graph onto 8 processes
• Mapping minimizes the interaction overhead by mapping independent tasks onto the same process (i.e., process 0) and others on processes only one communication link away from each other
• Idling exists. This is inherent in the graph
Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3 processes

• Arrow distribution

\[C_0 = (4, 5, 6, 7, 8) \]
\[C_1 = (0, 1, 2, 3, 8, 9, 10, 11) \]
\[C_2 = (0, 4, 5, 6) \]
• Partitioning task interaction graph to reduce interaction overhead
Schemes for Dynamic Mapping

• When static mapping results in highly imbalanced distribution of work among processes or when task-dependency graph is dynamic, use dynamic mapping
• Primary goal is to balance load – dynamic load balancing
 – Example: Dynamic load balancing for AMR
• Types
 – Centralized
 – Distributed
Centralized Dynamic Mapping

• Processes
 – Master: manage a group of available tasks
 – Slave: depend on master to obtain work

• Idea
 – When a slave process has no work, it takes a portion of available work from master
 – When a new task is generated, it is added to the pool of tasks in the master process

• Potential problem
 – When many processes are used, master process may become bottleneck

• Solution
 – Chunk scheduling: every time a process runs out of work it gets a group of tasks.
Distributed Dynamic Mapping

• All processes are peers. Tasks are distributed among processes which exchange tasks at run time to balance work

• Each process can send or receive work from other processes
 – How are sending and receiving processes paired together
 – Is the work transfer initiated by the sender or the receiver?
 – How much work is transferred?
 – When is the work transfer performed?
Techniques to Minimize Interaction Overheads

• Maximize data locality
 – Maximize the reuse of recently accessed data
 – Minimize volume of data-exchange
 • Use high dimensional distribution. Example: 2D block distribution for matrix multiplication
 – Minimize frequency of interactions
 • Reconstruct algorithm such that shared data are accessed and used in large pieces.
 • Combine messages between the same source-destination pair
Techniques to Minimize Interaction Overheads

- Minimize contention and hot spots
 - Contention occurs when multi-tasks try to access the same resources concurrently: multiple processes sending messages to the same process; multiple simultaneous accesses to the same memory block.

- Using \(C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j} \) causes contention. For example, \(C_{0,0}, C_{0,1}, C_{0,\sqrt{p}-1} \) attempt to read \(A_{0,0} \) at once.

- A contention-free manner is to use:
 \[
 C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k) \% \sqrt{p}} B_{(i+j+k) \% \sqrt{p},j}
 \]
 All tasks \(P_{*,j} \) that work on the same row of \(C \) access block \(A_{i,(i+j+k) \% \sqrt{p}} \), which is different for each task.
Techniques to Minimize Interaction Overheads

• Overlap computations with interactions
 – Use non-blocking communication

• Replicate data or computations
 – Replicate a copy of shared data on each process if possible, so that there is only initial interaction during replication.

• Use collective interaction operations

• Overlap interactions with other interactions
Parallel Algorithm Models

• Data parallel
 – Each task performs similar operations on different data
 – Typically statically map tasks to processes

• Task graph
 – Use task dependency graph to promote locality or reduce interactions

• Master-slave
 – One or more master processes generating tasks
 – Allocate tasks to slave processes
 – Allocation may be static or dynamic

• Pipeline/producer-consumer
 – Pass a stream of data through a sequence of processes
 – Each performs some operation on it

• Hybrid
 – Apply multiple models hierarchically, or apply multiple models in sequence to different phases