
Lecture 6: Parallel Matrix
Algorithms (part 3)

1

A Simple Parallel Matrix-Matrix Multiplication

Let 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 and 𝐵 = [𝑏𝑖𝑗]𝑛×𝑛 be n × n matrices. Compute 𝐶 =

𝐴𝐵

• Computational complexity of sequential algorithm: 𝑂(𝑛3)

• Partition 𝐴 and 𝐵 into 𝑝 square blocks 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 (0 ≤ 𝑖, 𝑗 < 𝑝)

of size (𝑛/ 𝑝) × (𝑛/ 𝑝) each.

• Use Cartesian topology to set up process grid. Process 𝑃𝑖,𝑗 initially

stores 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 and computes block 𝐶𝑖,𝑗 of the result matrix.

• Remark: Computing submatrix 𝐶𝑖,𝑗 requires all submatrices 𝐴𝑖,𝑘 and

𝐵𝑘,𝑗 for 0 ≤ 𝑘 < 𝑝.

2

• Algorithm:

– Perform all-to-all broadcast of blocks of A in each row of
processes

– Perform all-to-all broadcast of blocks of B in each column
of processes

– Each process 𝑃𝑖,𝑗 perform 𝐶𝑖,𝑗 = 𝐴𝑖,𝑘 𝐵𝑘,𝑗
𝑝−1
𝑘=0

3

Performance Analysis

• 𝑝 rows of all-to-all broadcasts, each is among a group of 𝑝

processes. A message size is
𝑛2

𝑝
, communication time: 𝑡𝑠𝑙𝑜𝑔 𝑝 +

𝑡𝑤
𝑛2

𝑝
𝑝 − 1

• 𝑝 columns of all-to-all broadcasts, communication time:

𝑡𝑠𝑙𝑜𝑔 𝑝 + 𝑡𝑤
𝑛2

𝑝
𝑝 − 1

• Computation time: 𝑝 × (𝑛/ 𝑝)3= 𝑛3/𝑝

• Parallel time: 𝑇𝑝 =
𝑛3

𝑝
+ 2 𝑡𝑠𝑙𝑜𝑔 𝑝 + 𝑡𝑤

𝑛2

𝑝
𝑝 − 1

4

Memory Efficiency of the Simple Parallel Algorithm

• Not memory efficient

– Each process 𝑃𝑖,𝑗 has 2 𝑝 blocks of 𝐴𝑖,𝑘 and 𝐵𝑘,𝑗

– Each process needs Θ(𝑛2/ 𝑝) memory

– Total memory over all the processes is Θ(𝑛2 × 𝑝),
i.e., 𝑝 times the memory of the sequential
algorithm.

5

Cannon’s Algorithm of Matrix-Matrix Multiplication

6

Goal: to improve the memory efficiency.

Let 𝐴 = [𝑎𝑖𝑗]𝑛×𝑛 and 𝐵 = [𝑏𝑖𝑗]𝑛×𝑛 be n × n matrices. Compute 𝐶 =

𝐴𝐵

• Partition 𝐴 and 𝐵 into 𝑝 square blocks 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 (0 ≤ 𝑖, 𝑗 < 𝑝)

of size (𝑛/ 𝑝) × (𝑛/ 𝑝) each.

• Use Cartesian topology to set up process grid. Process 𝑃𝑖,𝑗 initially

stores 𝐴𝑖,𝑗 and 𝐵𝑖,𝑗 and computes block 𝐶𝑖,𝑗 of the result matrix.

• Remark: Computing submatrix 𝐶𝑖,𝑗 requires all submatrices 𝐴𝑖,𝑘 and

𝐵𝑘,𝑗 for 0 ≤ 𝑘 < 𝑝.

• The contention-free formula:

 𝐶𝑖,𝑗 = 𝐴𝑖, 𝑖+𝑗+𝑘 % 𝑝𝐵 𝑖+𝑗+𝑘 % 𝑝,𝑗
𝑝−1
𝑘=0

Cannon’s Algorithm
// make initial alignment

for 𝑖, 𝑗 :=0 to 𝑝 − 1 do

 Send block 𝐴𝑖,𝑗 to process 𝑖, 𝑗 − 𝑖 + 𝑝 𝑚𝑜𝑑 𝑝 and block 𝐵𝑖,𝑗 to process

 𝑖 − 𝑗 + 𝑝 𝑚𝑜𝑑 𝑝, 𝑗 ;

endfor;

Process 𝑃𝑖,𝑗 multiply received submatrices together and add the result to 𝐶𝑖,𝑗;

// compute-and-shift. A sequence of one-step shifts pairs up 𝐴𝑖,𝑘 and 𝐵𝑘,𝑗

// on process 𝑃𝑖,𝑗 . 𝐶𝑖,𝑗= 𝐶𝑖,𝑗+𝐴𝑖,𝑘𝐵𝑘,𝑗

for step :=1 to 𝑝 − 1 do

 Shift 𝐴𝑖,𝑗 one step left (with wraparound) and 𝐵𝑖,𝑗 one step up (with
wraparound);

 Process 𝑃𝑖,𝑗 multiply received submatrices together and add the result to 𝐶𝑖,𝑗;

Endfor;

Remark: In the initial alignment, the send operation is to: shift 𝐴𝑖,𝑗 to the left (with
wraparound) by 𝑖 steps, and shift 𝐵𝑖,𝑗 to the up (with wraparound) by 𝑗 steps. 7

Cannon’s Algorithm for 3 × 3 Matrices

8

Initial A, B A, B initial
alignment

A, B after
shift step 1

A, B after
shift step 2

Performance Analysis

• In the initial alignment step, the maximum distance
over which block shifts is 𝑝 − 1
– The circular shift operations in row and column

directions take time: 𝑡𝑐𝑜𝑚𝑚 = 2(𝑡𝑠 +
𝑡𝑤𝑛

2

𝑝
)

• Each of the 𝑝 single-step shifts in the compute-

and-shift phase takes time: 𝑡𝑠 +
𝑡𝑤𝑛

2

𝑝
 .

• Multiplying 𝑝 submatrices of size (
n

𝑝
) × (

n

𝑝
)

takes time: 𝑛3/𝑝.

• Parallel time: 𝑇𝑝 =
𝑛3

𝑝
+ 2 𝑝 𝑡𝑠 +

𝑡𝑤𝑛
2

𝑝
+ 2(𝑡𝑠 +

𝑡𝑤𝑛
2

𝑝
)

9

int MPI_Sendrecv_replace(void *buf, int count,
MPI_Datatype datatype, int dest, int sendtag, int source,
int recvtag, MPI_Comm comm, MPI_Status *status);

• Execute a blocking send and receive. The same buffer is
used both for the send and for the receive, so that the
message sent is replaced by the message received.

• buf[in/out]: initial address of send and receive buffer

10

11

#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int myid, numprocs, left, right;
 int buffer[10];
 MPI_Request request;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 right = (myid + 1) % numprocs;
 left = myid - 1;
 if (left < 0)
 left = numprocs - 1;

 MPI_Sendrecv_replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD,
&status);

 MPI_Finalize();
 return 0;
}

http://mpi.deino.net/mpi_functions/MPI_Init.html
http://mpi.deino.net/mpi_functions/MPI_Comm_size.html
http://mpi.deino.net/mpi_functions/MPI_Comm_rank.html
http://mpi.deino.net/mpi_functions/MPI_Sendrecv_replace.html
http://mpi.deino.net/mpi_functions/MPI_Finalize.html

