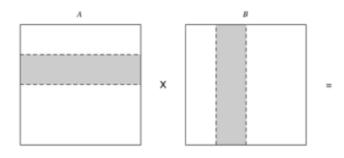
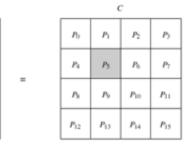
Lecture 6: Parallel Matrix Algorithms (part 3)

A Simple Parallel Matrix-Matrix Multiplication

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be $n \times n$ matrices. Compute C = AB

- Computational complexity of sequential algorithm: $O(n^3)$
- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ $(0 \le i, j < \sqrt{p})$ of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.





- Algorithm:
 - Perform all-to-all broadcast of blocks of A in each row of processes
 - Perform all-to-all broadcast of blocks of B in each column of processes
 - Each process $P_{i,j}$ perform $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$

Performance Analysis

- \sqrt{p} rows of all-to-all broadcasts, each is among a group of \sqrt{p} processes. A message size is $\frac{n^2}{p}$, communication time: $t_s log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1)$
- \sqrt{p} columns of all-to-all broadcasts, communication time: $t_s log \sqrt{p} + t_w \frac{n^2}{p} (\sqrt{p} - 1)$
- Computation time: $\sqrt{p} \times (n/\sqrt{p})^3 = n^3/p$
- Parallel time: $T_p = \frac{n^3}{p} + 2\left(t_s \log\sqrt{p} + t_w \frac{n^2}{p}\left(\sqrt{p} 1\right)\right)$

Memory Efficiency of the Simple Parallel Algorithm

- Not memory efficient
 - Each process $P_{i,j}$ has $2\sqrt{p}$ blocks of $A_{i,k}$ and $B_{k,j}$
 - Each process needs $\Theta(n^2/\sqrt{p})$ memory
 - Total memory over all the processes is $\Theta(n^2 \times \sqrt{p})$, i.e., \sqrt{p} times the memory of the sequential algorithm.

Cannon's Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be $n \times n$ matrices. Compute C = AB

- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ $(0 \le i, j < \sqrt{p})$ of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- The contention-free formula:

$$C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} B_{(i+j+k)\%\sqrt{p},j}$$

Cannon's Algorithm

// make initial alignment

for i, j := 0 to $\sqrt{p} - 1$ do Send block $A_{i,j}$ to process $(i, (j - i + \sqrt{p}) mod\sqrt{p})$ and block $B_{i,j}$ to process $((i - j + \sqrt{p}) mod\sqrt{p}, j);$

endfor;

Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$;

// compute-and-shift. A sequence of one-step shifts pairs up $A_{i,k}$ and $B_{k,j}$ // on process $P_{i,j}$. $C_{i,j} = C_{i,j} + A_{i,k}B_{k,j}$ for step :=1 to $\sqrt{p} - 1$ do

Shift $A_{i,j}$ one step left (with wraparound) and $B_{i,j}$ one step up (with wraparound);

Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$; Endfor;

Remark: In the initial alignment, the send operation is to: shift $A_{i,j}$ to the left (with wraparound) by *i* steps, and shift $B_{i,j}$ to the up (with wraparound) by *j* steps. 7

Cannon's Algorithm for 3×3 Matrices

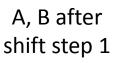
A(0,2)	A(0,0)	A(0,1)
A(1,0)	A(1,1)	A(1,2)
A(2,1)	A(2,2)	A(2,0)

B(2,0)	B(0,1)	B(1,2)
B(0,0)	B(1,1)	B(2,2)
B(1,0)	B(2,1)	B(0,2)

A, B after shift step 2

A(0,1)	A(0,2)	A(0,0)
A(1,2)	A(1,0)	A(1,1)
A(2,0)	A(2,1)	A(2,2)
B(1,0)	B(2,1)	B(0,2)

B(1,0)	B(2,1)	B(0,2)
B(2,0)	B(0,1)	B(1,2)
B(0,0)	B(1,1)	B(2,2)



A(0,0)	A(0,1)	A(0,2)
A(1,1)	A(1,2)	A(1,0)
A(2,2)	A(2,0)	A(2,1)

A(0,0)	A(0,1)	A(0,2)
A(1,0)	A(1,1)	A(1,2)
A(2,0)	A(2,1)	A(2,2)

B(0,0)	B(1,1)	B(2,2)	
B(1,0)	B(2,1)	B(0,2)	,
B(2,0)	B(0,1)	B(1,2)	

A, B initial

alignment

<		
B(0,0)	B(0,1)	B(0,2)
B(1,0)	B(1,1)	B(1,2)
B(2,0)	B(2,1)	B(2,2)

Performance Analysis

- In the initial alignment step, the maximum distance over which block shifts is $\sqrt{p}\,-1$
 - The circular shift operations in row and column directions take time: $t_{comm} = 2(t_s + \frac{t_w n^2}{n})$
- Each of the \sqrt{p} single-step shifts in the computeand-shift phase takes time: $t_s + \frac{t_w n^2}{n}$.
- Multiplying \sqrt{p} submatrices of size $(\frac{n}{\sqrt{p}}) \times (\frac{n}{\sqrt{p}})$ takes time: n^3/p .
- Parallel time: $T_p = \frac{n^3}{p} + 2\sqrt{p}\left(t_s + \frac{t_w n^2}{p}\right) + 2(t_s + \frac{t_w n^2}{p})$

int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status);

- Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.
- *buf*[in/out]: initial address of send and receive buffer

```
#include "mpi.h"
#include <stdio.h>
```

```
int main(int argc, char *argv[])
```

```
int myid, numprocs, left, right;
int buffer[10];
MPI_Request request;
MPI_Status status;
```

```
<u>MPI_Init</u>(&argc,&argv);

<u>MPI_Comm_size</u>(MPI_COMM_WORLD, &numprocs);

<u>MPI_Comm_rank</u>(MPI_COMM_WORLD, &myid);
```

<u>MPI Sendrecv replace</u>(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD, &status);

```
<u>MPI Finalize();</u>
return 0;
```