Lecture 11: Programming on GPUs (Part 2)
#include <stdio.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <curand_kernel.h>

#define N 50
__global__ void add(int *a, int *b, int *c){
 int tid = threadIdx.x; // handle the data at this index

 if(tid < N) c[tid] = a[tid] + b[tid];
}

int main()
{
 int a[N], b[N], c[N], i;
 int *dev_a, *dev_b, *dev_c;

 add <<<1, N>>>(dev_a, dev_b, dev_c);
 cudaMemcpy(c, dev_c, N*sizeof(int), cudaMemcpyDeviceToHost);
 for(i=0; i < N; i++)
 printf("%d + %d = %d\n", a[i], b[i], c[i]);

 return 0;
}
kernel_routine<<<gridDim, blockDim>>>(args);

- A collection of blocks from a grid (1D, or 2D)
 - Built-in variable `gridDim` specifies the size (or dimension) of the grid.
 - Each copy of the kernel can determine which block it is executing with the built-in variable `blockIdx`.

- Threads in a block are arranged in 1D, 2D, or 3D arrays.
 - Built-in variable `blockDim` specifies the size (or dimensions) of block.
 - `threadIdx` index (or 2D/3D indices) thread within a block
 - `maxThreadsPerBlock`: The limit is 512 threads per block
Language Extensions: Built-in Variables

- `dim3 gridDim;`
 - Dimensions of the grid in blocks (`gridDim.z` unused)
- `dim3 blockDim;`
 - Dimensions of the block in threads
- `dim3 blockIdx;`
 - Block index within the grid
- `dim3 threadIdx;`
 - Thread index within the block
Specifying 1D Grid and 1D Block

/// host code
int main(int argc, char **argv) {
 float *h_x, *d_x; // h=host, d=device
 int nbblocks=3, nthreads=4, nsize=3*4;

 h_x = (float *)malloc(nsize*sizeof(float));
 cudaMalloc((void **)&d_x,nsize*sizeof(float));
 my_first_kernel<<<nbblocks,nthreads>>>(d_x);
 cudaMemcpy(h_x,d_x,nsize*sizeof(float),
 cudaMemcpyDeviceToHost);
 for (int n=0; n<nsize; n++)
 printf(" n, x = %d %f \n",n,h_x[n]);
 cudaFree(d_x); free(h_x);
}

/// Kernel code
__global__ void my_first_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
 x[tid] = (float)threadIdx.x;
}

Within each block of threads, threadIdx.x ranges from 0 to blockDim.x-1, so each thread has a unique value for tid
GPU SUMs of a Long Vector

- Assume $65,535 \times 512 \gg N > 512$, so we need to launch threads across multiple blocks.
- Let’s use 128 threads per block. We need $N/128$ blocks.
 - $N/128$ is integer division. If N were < 128, $N/128$ would be 0.
 - Actually compute $(N+127)/128$ blocks.
- `add <<<(N+127)/128, 128>>>(dev_a, dev_b, dev_c);

```c
#define N 4000
__global__ void add(int *a, int *b, int *c){
    int tid = threadIdx.x + blockDim.x*blockIdx.x; // handle the data at this index
    if(tid < N)  c[tid] = a[tid] + b[tid]; // launch too many threads when N is not exact
} // multiple of 128
```
Specifying 1D Grid and 2D Block

If we want to use a 1D grid of blocks and 2D set of threads, then `blockDim.x, blockDim.y` give the block dimensions, and `threadIdx.x, threadIdx.y` give the thread indices.

```c
Main()
{
    int nblocks = 2;
    dim3 nthreads(16, 4);
    my_second_kernel<<<nblocks, nthreads>>>(d_x);
}
```

`dim3` is a special CUDA datatype with 3 components `.x, .y, .z` each initialized to 1.

```c
/// Kernel code
__global__ void my_second_kernel(float *x)
{
    int tid = threadIdx.x + blockDim.x* threadIdx.y +blockDim.x*blockDim.y*blockIdx.x;
    x[tid] = (float) threadIdx.x;
}
```
In 3D blocks of threads, thread ID is computed by:
threadIdx.x + threadIdx.y * blockDim.x + threadIdx.z * blockDim.x * blockDim.y

```cpp
__global__ void KernelFunc(...);

main()
{
    dim3 DimGrid(100, 50);  // 5000 thread blocks
    dim3 DimBlock(4, 8, 8);  // 256 threads per block
    KernelFunc<<< DimGrid, DimBlock>>>(...);
}
```
GPU Sums of Arbitrarily Long Vectors

- Neither dimension of a grid of blocks may exceed 65,535.
- Let’s use 1D grid and 1D block.

```c
__global__ void add(int *a, int *b, int *c) {
    int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

    while (tid < N) {
        c[tid] = a[tid] + b[tid];
        tid += blockDim.x*gridDim.x;
    }
}
```

Principle behind this implementation:
- Initial index value for each parallel thread is:
  ```c
  int tid = threadIdx.x + blockIdx.x*blockDim.x;
  ```
- After each thread finishes its work at current index, increment each of them by the total number of threads running in the grid, which is `blockDim.x*gridDim.x`
#define N (55*1024)
__global__ void add(int *a, int *b, int *c){
 int tid = threadIdx.x + blockIdx.x*blockDim.x; // handle the data at this index

 while(tid < N){
 c[tid] = a[tid] + b[tid];
 tid += blockDim.x*gridDim.x;
 }
}

int main()
{
...
 add <<<128, 128>>>(dev_a, dev_b, dev_c);
...
}
Matrix Multiplication

• Demonstrate basic features of memory and thread management in CUDA programs
 – Leave shared memory usage until later
 – Local, register usage
 – Thread ID usage
 – Memory data transfer API between host and device
 – Assume square matrix for simplicity
• \(P = M \times N \) of size WIDTH \times WIDTH

• **Without blocking:**
 - One thread handles one element of \(P \)
 - \(M \) and \(N \) are loaded WIDTH times from global memory
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 {
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
 }
}
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
 int size = Width * Width * sizeof(float);
 float *Md, *Nd, *Pd;

 // 1. Allocate and Load M, N to device memory
 cudaMalloc(&Md, size);
 cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);

 cudaMalloc(&Nd, size);
 cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

 // Allocate P on the device
 cudaMalloc(&Pd, size);
}
// 2. Kernel invocation code –
...

// 3. Read P from the device
cudaMemcpy(P, Pd, size, cudaMemcpyDeviceToHost);

// Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{

 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;
 for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
 }

 Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
}
void MatrixMulOnDevice(float* M, float* N, float* P, int Width) {

 ...

 //2. Kernel invocation code – to be shown later
 // Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

 // Launch the device computation threads
 MatrixMulKernel<<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);

 ...
}
• One Block of threads compute matrix Pd
 – Each thread computes one element of Pd
• Each thread
 – Loads a row of matrix Md
 – Loads a column of matrix Nd
 – Perform one multiply and addition for each pair of Md and Nd elements
 – Compute to off-chip memory access ratio close to 1:1 (not very high)
• Size of matrix limited by the number of threads allowed in a thread block
\[P = M \times N \text{ of size WIDTH} \times \text{WIDTH} \]

With blocking:
- One **thread block** handles one BLOCK_SIZE \(\times\) BLOCK_SIZE (or TILE_WIDTH \(\times\) TILE_WIDTH) sub-matrix (tile) \(P_{d_{sub}}\) of \(P\)
 - Block size equal tile size
 - Each thread calculates one element
- \(M\) and \(N\) are only loaded \(\text{WIDTH}/\text{BLOCK_SIZE}\) times from global memory
- Generate a 2D grid of \((\text{WIDTH}/\text{TILE_WIDTH})^2\) blocks
<table>
<thead>
<tr>
<th>Block(0,0)</th>
<th>Block(1,0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_{0,0}$</td>
<td>$P_{1,0}$</td>
</tr>
<tr>
<td>$P_{0,1}$</td>
<td>$P_{1,1}$</td>
</tr>
<tr>
<td>$P_{0,2}$</td>
<td>$P_{1,2}$</td>
</tr>
<tr>
<td>$P_{0,3}$</td>
<td>$P_{1,3}$</td>
</tr>
</tbody>
</table>

TILE_WIDTH = 2

Block(0,1) Block(1,1)
Revised Matrix Multiplication Kernel

```c
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
    // Calculate the row index of the Pd element and M
    int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
    // Calculate the column index of Pd and N
    int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

    float Pvalue = 0;
    // each thread computes one element of the block sub-matrix
    for (int k = 0; k < Width; ++k)
        Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

    Pd[Row*Width+Col] = Pvalue;
}
```
Multithreading

• Cores in a streaming multiprocessor (SM) are Single Instruction Multiple Threads (SIMT) cores:
 – all cores execute the same instructions simultaneously, but with different data.
 – minimum of 32 threads all doing the same thing at (almost) the same time.
 – no “context switching”; each thread has its own registers, which limits the number of active threads
 – threads on each SM execute in groups of 32 called “warps” — execution alternates between “active” warps, with warps becoming temporarily “inactive” when waiting for data
• Suppose we have 1000 blocks, and each one has 128 threads – how does it get executed?

• On current Fermi hardware, would probably get 8 blocks running at the same time on each SM, and each block has 4 warps =) 32 warps running on each SM

• Each clock tick, SM warp scheduler decides which warp to execute next, choosing from those not waiting for
 – data coming from device memory (memory latency)
 – completion of earlier instructions (pipeline delay)

• Programmer doesn’t have to worry about this level of detail (can always do profiling later), just make sure there are lots of threads / warps
__global__ void good_kernel(float *x)
{
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
 x[tid] = threadIdx.x;
}

• 32 threads in a warp address neighboring elements of array x.

• If the data is correctly “aligned” so that x[0] is at the beginning of a cache line, then x[0]-x[31] will be in the same cache line.
 – Cache line is the basic unit of data transfer, 128 bytes cache line (32 floats or 16 doubles).

• Good spatial locality.
__global__ void bad_kernel(float *x) {
 int tid = threadIdx.x + blockDim.x*blockIdx.x;
 x[1000*tid] = threadIdx.x;
}

• Different threads within a warp access widely spaced elements of array x.
• Each access involves a different cache line, so performance is poor.
Software View

At the top level, we have a master process which runs on the CPU and performs the following steps:

1. initializes card
2. allocates memory in host and on device
 - cudaMalloc(),...
3. copies data from host to device memory
 - cudaMemcpy(..., cudaMemcpyHostToDevice);
4. launches multiple instances of execution “kernel” on device
 - kernel_routine<<<gridDim, blockDim>>>(args);
5. copies data from device memory to host
 - cudaMemcpy(..., cudaMemcpyDeviceToHost);
6. repeats 3-5 as needed
7. de-allocates all memory and terminates
 - cudaFree()
Software View

At a lower level, within the GPU:

1. each instance of the execution kernel executes on an SM

2. if the number of instances exceeds the number of SMs, then more than one will run at a time on each SM if there are enough registers and shared memory, and the others will wait in a queue and execute later

3. all threads within one instance can access local shared memory but can’t see what the other instances are doing (even if they are on the same SM)

4. there are no guarantees on the order in which the instances execute
CUDA Memories

- Each thread can:
 - Read/write per-thread registers
 - Read/write per-thread local memory
 - Read/write per-block shared memory
 - Read/write per-grid global memory
 - Read/only per-grid constant memory
Access Times

- Register – dedicated HW - single cycle
- Shared Memory – dedicated HW - single cycle
- Local Memory – DRAM, no cache - *slow*
- Global Memory – DRAM, no cache - *slow*
- Constant Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Texture Memory – DRAM, cached, 1…10s…100s of cycles, depending on cache locality
- Instruction Memory (invisible) – DRAM, cached
Variable Types

<table>
<thead>
<tr>
<th>Variable declaration</th>
<th>Memory</th>
<th>Scope</th>
<th>Lifetime</th>
</tr>
</thead>
<tbody>
<tr>
<td>device local</td>
<td>int LocalVar;</td>
<td>local</td>
<td>thread</td>
</tr>
<tr>
<td>device shared</td>
<td>int SharedVar;</td>
<td>shared</td>
<td>block</td>
</tr>
<tr>
<td>device</td>
<td>int GlobalVar;</td>
<td>global</td>
<td>grid</td>
</tr>
<tr>
<td>device constant</td>
<td>int ConstantVar;</td>
<td>constant</td>
<td>grid</td>
</tr>
</tbody>
</table>

- **__device__** indicates this is a global variable in the GPU
 - the variable can be read and modified by any kernel
 - its lifetime is the lifetime of the whole application
 - can also declare arrays of fixed size
 - can read/write by host code using standard cudaMemcpy

- **__device__** is optional when used with __local__, __shared__, or __constant__
• **Constant variables**
 – Very similar to global variables, except that they can’t be modified by kernels
 – defined with global scope within the kernel file using the prefix __constant__
 – initialized by the host code using cudaMemcpyToSymbol, cudaMemcpyFromSymbol or cudaMemcpy in combination with cudaMemcpySymbolAddress
 – Only 64KB of constant memory, but big benefit is that each SM has a 8KB cache

• **Pointers** can only point to memory allocated or declared in global memory:
 – Allocated in the host and passed to the kernel:
    ```c
    __global__ void KernelFunc(float* ptr)
    ```
 – Obtained as the address of a global variable:
    ```c
    float* ptr = &GlobalVar;
    ```

• **Automatic variables** without any qualifier reside in a register
 – Except arrays that reside in local memory

```
__global__ void lap(int I, int J, float *u1, float *u2) {
    int i = threadIdx.x + blockIdx.x*blockDim.x;
    int j = threadIdx.y + blockIdx.y*blockDim.y;
    int id = i + j*I;
    if (i==0 || i==I-1 || j==0 || j==J-1) {
        u2[id] = u1[id]; // Dirichlet b.c.’s }
    else {
        u2[id] = 0.25f * ( u1[id-1] + u1[id+1] 
         + u1[id-I] + u1[id+I] );
    }
}
```
Shared Memory

```c
__shared__ int x_dim;
__shared__ float x[128];
```

- declares data to be shared between all of the threads in the thread block – any thread can set its value, or read it.

- Advantages of using shared memory
 - essential for operations requiring communication between threads
 - useful for data re-use
 - alternative to local arrays in device memory
 - reduces use of registers when a variable has same value for all threads
• If a thread block has more than one warp, it’s not pre-determined when each warp will execute its instructions – warp 1 could be many instructions ahead of warp 2, or well behind.

• Consequently, almost always need thread synchronization to ensure correct use of shared memory.

• Instruction
 – __syncthreads();

• inserts a “barrier”; no thread/warp is allowed to proceed beyond this point until the rest have reached it

• Total size of shared memory is specified by an optional third arguments when launching the kernel:
 – kernel<<<blocks,threads,shared_bytes>>>(...)
Active Blocks per SM

• Each block require certain resources:
 – threads
 – registers (registers per thread × number of threads)
 – shared memory (static + dynamic)
• Together these decide how many blocks can be run simultaneously on each SM – up to a maximum of 8 blocks
• General advice:
 – number of active threads depends on number of registers each needs
 – good to have at least 2-4 active blocks, each with at least 128 threads
 – smaller number of blocks when each needs lots of shared memory
 – larger number of blocks when they don’t need shared memory
 – On Fermi card:
 • maybe 2 big blocks (512 threads) if each needs a lot of shared memory
 • maybe 6 smaller blocks (256 threads) if no shared memory needed
 • or 4 small blocks (128 threads) if each thread needs lots of registers
• Global memory resides in device memory (DRAM) - much slower access than shared memory
• So, a profitable way of performing computation on the device is to **tile data** to take advantage of fast shared memory:
 – **Partition** data into subsets that fit into shared memory
 – **Handle** each data subset with one thread block by:
 • Loading the subset from global memory to shared memory, **using multiple threads to exploit memory-level parallelism**
 • Performing the computation on the subset from shared memory; each thread can efficiently multi-pass over any data element
 • Copying results from shared memory to global memory
• **Constant memory** also resides in device memory (DRAM) - much slower access than shared memory
 – But... cached!
 – Highly efficient access for read-only data
• Carefully divide data according to access patterns
 – R/Only → constant memory (very fast if in cache)
 – R/W shared within Block → shared memory (very fast)
 – R/W within each thread → registers (very fast)
 – R/W inputs/results → global memory (very slow)
#define imin(a,b) ((a)<(b)?(a):(b))
const int N = 33*1024;
const int threadsPerBlock = 256;
const int blocksPerGrid = imin(32, (N+threadsPerBlock-1)/threadsPerBlock);
int main(){
 float *a, *b, c, *partial_c;
 float *dev_a, *dev_b, *dev_partial_c;
 a = (float*)malloc(N*sizeof(float)); b = (float*)malloc(N*sizeof(float));
 partial_c = (float*)malloc(blocksPerGrid*sizeof(float));
 cudaMemcpy((void**)&dev_a,a,N*sizeof(float));
 cudaMemcpy((void**)&dev_b,b,N*sizeof(float));
 cudaMemcpy((void**)&dev_partial_c,partial_c,blocksPerGrid*sizeof(float));
 // initialize a[] and b[] ...
 cudaMemcpy(dev_a,a,N*sizeof(float),cudaMemcpyHostToDevice);
 cudaMemcpy(dev_b,b,N*sizeof(float),cudaMemcpyHostToDevice);
 dot<<<blocksPerGrid,threadsPerBlock>>>(dev_a,dev_b,dev_partial_c);
 cudaMemcpy(partial_c,dev_partialc,blocksPerGrid*sizeof(float),cudaMemcpyDeviceToHost);
 c = 0;
 for(int i=0; i<blocksPerGrid;i++) c += partial_c[i];
 // cuda memory free, etc.
}
__global__ void dot(float *a, float*b, float *c){
 __shared__ float cache[threadMaxThreads];
 //this buffer will be used to store each thread’s running sum
 // the compiler will allocate a copy of shared variables for each block
 int tid = threadIdx.x + blockIdx.x*blockDim.x;
 int cacheIndex = threadIdx.x;
 float temp = 0.0;
 while(tid < N){
 temp += a[tid]*b[tid];
 tid += blockDim.x*gridDim.x;
 }
 // set the cache values
 cache[cacheIndex]=temp;
}

// we need to sum all the temporary values in the cache.
// need to guarantee that all of these writes to the shared array
// complete before anyone to read from this array.

// synchronize threads in this block
__syncthreads(); // This call guarantees that every thread in the block has
 // completed instructions prior to __syncthreads() before the
 // hardware will execute the next instruction on any thread.
// each thread will add two of values in cache[] and
// store the result back to cache[].
// We continue in this fashion for log_2(threadsPerBlock)
// steps till we have the sum of every entry in cache[].
// For reductions, threadsPerBlock must be a power of 2

int i=blockDim.x/2;
while(i!=0){
 if(cacheIndex <i)
 cache[cacheIndex] += cache[cacheIndex+i];
 __syncthreads();
 i/=2;
}
if(cacheIndex==0)
 c[blockIdx.x]=cache[0];
}
Shared Memory to Reuse Global Memory Data

• Each input element is read by Width threads.
• Load each element into Shared Memory and have several threads use the local version to reduce the memory bandwidth – Tiled algorithms
Tiled Multiplication

- Break up the execution of the kernel into phases so that the data accesses in each phase is focused on one subset (tile) of Md and Nd
- Each block computes one square sub-matrix Pd_{sub} of size $TILE_WIDTH$
- Each thread computes one element of Pd_{sub}
Every Md and Nd Element is used exactly twice in generating a 2X2 tile of P.

<table>
<thead>
<tr>
<th></th>
<th>$P_{0,0}$ thread $0,0$</th>
<th>$P_{1,0}$ thread $1,0$</th>
<th>$P_{0,1}$ thread $0,1$</th>
<th>$P_{1,1}$ thread $1,1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_{0,0} \times N_{0,0}$</td>
<td>$M_{0,0} \times N_{1,0}$</td>
<td>$M_{0,1} \times N_{0,0}$</td>
<td>$M_{0,1} \times N_{1,0}$</td>
<td></td>
</tr>
<tr>
<td>$M_{1,0} \times N_{0,1}$</td>
<td>$M_{1,0} \times N_{1,1}$</td>
<td>$M_{1,1} \times N_{0,1}$</td>
<td>$M_{1,1} \times N_{1,1}$</td>
<td></td>
</tr>
<tr>
<td>$M_{2,0} \times N_{0,2}$</td>
<td>$M_{2,0} \times N_{1,2}$</td>
<td>$M_{2,1} \times N_{0,2}$</td>
<td>$M_{2,1} \times N_{1,2}$</td>
<td></td>
</tr>
<tr>
<td>$M_{3,0} \times N_{0,3}$</td>
<td>$M_{3,0} \times N_{1,3}$</td>
<td>$M_{3,1} \times N_{0,3}$</td>
<td>$M_{3,1} \times N_{1,3}$</td>
<td></td>
</tr>
</tbody>
</table>

Access order
Breaking Md and Nd into Tiles
Each Phase of a Thread Block Uses One Tile from Md and One from Nd

<table>
<thead>
<tr>
<th>Time</th>
<th>Md</th>
<th>Nd</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T_{0,0}$</td>
<td>$\text{Md}_{0,0}$</td>
<td>$\text{Nd}_{0,0}$</td>
<td>$\text{PValue}{0,0} += \text{Mds}{0,0} \times \text{Nds}{0,0} + \text{Mds}{1,0} \times \text{Nds}_{0,1}$</td>
<td>$\text{Md}_{2,0}$</td>
</tr>
<tr>
<td>$T_{1,0}$</td>
<td>$\text{Md}_{1,0}$</td>
<td>$\text{Nd}_{1,0}$</td>
<td>$\text{PValue}{1,0} += \text{Mds}{0,0} \times \text{Nds}{1,0} + \text{Mds}{1,0} \times \text{Nds}_{1,1}$</td>
<td>$\text{Md}_{3,0}$</td>
</tr>
<tr>
<td>$T_{0,1}$</td>
<td>$\text{Md}_{0,1}$</td>
<td>$\text{Nd}_{0,1}$</td>
<td>$\text{PdValue}{0,1} += \text{Mds}{0,1} \times \text{Nds}{0,0} + \text{Mds}{1,1} \times \text{Nds}_{0,1}$</td>
<td>$\text{Md}_{2,1}$</td>
</tr>
<tr>
<td>$T_{1,1}$</td>
<td>$\text{Md}_{1,1}$</td>
<td>$\text{Nd}_{1,1}$</td>
<td>$\text{PdValue}{1,1} += \text{Mds}{0,1} \times \text{Nds}{1,0} + \text{Mds}{1,1} \times \text{Nds}_{1,1}$</td>
<td>$\text{Md}_{3,1}$</td>
</tr>
</tbody>
</table>

time
• Each **thread block** should have many threads
 – TILE_WIDTH of 16 gives 16*16 = 256 threads

• There should be many thread blocks
 – A 1024*1024 Pd gives 64*64 = 4096 Thread Blocks

• Each thread block perform 2*256 = 512 float loads from global memory for 256 * (2*16) = 8,192 mul/add operations.
 – Memory bandwidth no longer a limiting factor
// Setup the execution configuration

dim3 dimBlock(TILE_WIDTH, TILE_WIDTH);
dim3 dimGrid(Width/TILE_WIDTH, Width/TILE_WIDTH);
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
 __shared__ float Mds[TILE_WIDTH][TILE_WIDTH];
 __shared__ float Nds[TILE_WIDTH][TILE_WIDTH];

 int bx = blockIdx.x; int by = blockIdx.y;
 int tx = threadIdx.x; int ty = threadIdx.y;

 // Identify the row and column of the Pd element to work on
 int Row = by * TILE_WIDTH + ty;
 int Col = bx * TILE_WIDTH + tx;
 float Pvalue = 0;

 // Loop over the Md and Nd tiles required to compute the Pd element
 for (int m = 0; m < Width/TILE_WIDTH; ++m) {
 // Collaborative loading of Md and Nd tiles into shared memory
 Mds[ty][tx] = Md[Row*Width + (m*TILE_WIDTH + tx)];
 Nds[ty][tx] = Nd[Col + (m*TILE_WIDTH + ty)*Width];
 __syncthreads();

 for (int k = 0; k < TILE_WIDTH; ++k)
 Pvalue += Mds[ty][k] * Nds[k][tx];
 Synchthreads();
 }
 Pd[Row*Width+Col] = Pvalue;
}
Performance on G80

- Each SM in G80 has 16KB shared memory
 - SM size is implementation dependent!
 - For TILE_WIDTH = 16, each thread block uses $2 \times 256 \times 4B = 2$KB of shared memory.
 - Can potentially have up to 8 Thread Blocks actively executing
 - This allows up to $8 \times 512 = 4,096$ pending loads. (2 per thread, 256 threads per block)
 - The next TILE_WIDTH 32 would lead to $2 \times 32 \times 32 \times 4B = 8$KB shared memory usage per thread block, allowing only up to two thread blocks active at the same time

- Using 16x16 tiling, we reduce the accesses to the global memory by a factor of 16
 - The 86.4B/s bandwidth can now support $(86.4/4) \times 16 = 347.6$ GFLOPS
2D Laplace Solver

• Jacobi iteration to solve discrete Laplace equation on a uniform grid

```java
for (int j=0; j<J; j++) {
    for (int i=0; i<I; i++) {
        id = i + j*I;  // 1D memory location
        if (i==0 || i==I-1 || j==0 || j==J-1)
            u2[id] = u1[id];
        else
            u2[id] = 0.25*( u1[id-1] + u1[id+1] + u1[id-I] + u1[id+I] );
```
• each thread responsible for one grid point
• each block of threads responsible for a block of the grid
• conceptually very similar to data partitioning in MPI distributed-memory implementations, but much simpler
• Each block of threads processes one of these grid blocks, reading in old values and computing new values.
__global__ void lap(int I, int J, float *u1, float *u2) {
 int i = threadIdx.x + blockIdx.x*blockDim.x;
 int j = threadIdx.y + blockIdx.y*blockDim.y;
 int id = i + j*I;
 if (i==0 || i==I-1 || j==0 || j==J-1) {
 u2[id] = u1[id]; // Dirichlet b.c.'s
 }
 else {
 u2[id] = 0.25 * (u1[id-1] + u1[id+1]
 + u1[id-I] + u1[id+I]);
 }
}
Assumptions:
• I is a multiple of blockDim.x
• J is a multiple of blockDim.y
 grid breaks up perfectly into blocks
• I is a multiple of 32

Can remove these assumptions by
• testing if i, j are within grid
• padding the array in x to make it a multiple of 32, so each row starts at the beginning of a cache line – this uses a special routine cudaMallocPitch
References

• J. Sanders and E. Kandrot, CUDA by Example, An Introduction to General-Purpose GPU Programming