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Abstract

Various bacterial strains exhibit colonial branching patterns during growth on poor substrates.
These patterns reect bacterial cooperative self-organization and cybernetic processes of commu-
nication, regulation and control employed during colonial development. One method of modeling
is the continuous, or coupled reaction–di�usion approach, in which continuous time evolution
equations describe the bacterial density and the concentration of the relevant chemical �elds.
In the context of branching growth, this idea has been pursued by a number of groups. We
present an additional model which includes a lubrication uid excreted by the bacteria. We also
add �elds of chemotactic agents to the other models. We then present a critique of this whole
enterprise with focus on the models’ potential for revealing new biological features. c© 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

During the course of evolution, bacteria have developed sophisticated cooperative
behavior and intricate communication capabilities [1–5]. These include: direct cell–
cell physical interactions via extra-membrane polymers [6,7], collective production of
extracellular “wetting” uid for movement on hard surfaces [8,9], long range chem-
ical signaling, such as quorum sensing [10–12] and chemotactic signaling 1 [13–15],

∗ Corresponding author. E-mail: golding@orion.tau.ac.il.
1 Chemotaxis is a bias of movement according to the gradient of a chemical agent. Chemotactic signaling
is a chemotactic response to an agent emitted by the bacteria.
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collective activation and deactivation of genes [16–18] and even exchange of ge-
netic material [19–21]. Utilizing these capabilities, bacterial colonies develop complex
spatio-temporal patterns in response to adverse growth conditions.
It is now understood that the study of cooperative self-organization of bacterial

colonies is an exciting new multidisciplinary �eld of research, necessitating the merger
of biological information with the physics of non-equilibrium processes and the math-
ematics of non-linear dynamics. At this stage, several experimental systems have been
identi�ed, and preliminary modeling e�orts are making signi�cant progress in providing
a framework for the understanding of experimental observations [8,18,22–32].
Fujikawa and Matsushita [23,33,34] reported for the �rst time 2 that bacterial colonies

could grow elaborate branching patterns of the type known from the study of fractal for-
mation in the process of di�usion-limited-aggregation (DLA) [37–39]. This work was
done with Bacillus subtilis, but was subsequently extended to other bacterial species
such as Serratia marcescens and Salmonella anatum [40]. It was shown explicitly
that nutrient di�usion was the relevant dynamics responsible for the growth instability.
Later, we will see how models which couple nutrient di�usion to bacterial density can
naturally account for these structures.
Motivated by these observations, Ben-Jacob et al. [25,27,41] conducted new exper-

iments to see how adaptive bacterial colonies could be in the presence of external
“pressure”, here in the form of a limited nutrient supply and hard surface. The en-
deavor started with B. subtilis 168, which is non-motile on a solid agar surface, from
which a new species of bacteria has been isolated [25,41]. The new species was des-
ignated Paenibacillus dendritiformis var. dendron [42]. This species is motile on the
hard surface and its colonies exhibit branching patterns (Fig. 1). The new mode of tip-
splitting growth was found to be inheritable and transferable by a single cell, hence it is
referred to as a distinctive morphotype [43], and, to indicate the tip-splitting character
of the growth, it was denoted T morphotype. In the next section we describe in some
detail the observations of Ben-Jacob et al. and Matsushita et al. Additional studies of
branching colonial growth are reported by Matsuyama et al. [8,44] and Mendelson and
Salhi [18].
All the various strains reported in the studies quoted above exhibit branching patterns

during growth on a poor substrate. Drawing on the analogy with di�usive patterning
in non-living systems [45–48], we can state that complex patterns are expected. The
cellular reproduction rate that determines the growth rate of the colony is limited by
the level of nutrients available for the cells. The latter is limited by the di�usion
of nutrients towards the colony (for low nutrient substrate). Hence colony growth
under certain conditions should be similar to di�usion limited growth in non-living
systems as mentioned above [47,48]. The study of di�usive patterning in non-living
systems teaches us that the di�usion �eld drives the system towards decorated (on many
length scales) irregular fractal shapes. Indeed, bacterial colonies can develop patterns

2 We refer to the �rst time that branching growth was studied as such. Observations of branching colonies
occurred long ago [35,36].
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Fig. 1. Typical example of branching growth of the T morphotype for 1 g=l peptone level and 1.5% agar
concentration.

reminiscent of those observed during growth in non-living systems. But, this is certainly
not the end of the story. The colonies exhibit a richer behavior. This, ultimately, is
a reection of the additional levels of complexity involved when the building blocks
of the colonies, the bacteria, are themselves living systems. We now start to reveal
the cybernetic processes (communication, regulation and control) which are part of the
colonial adaptive self-organization, and their determination of the interaction between
genetic information and biophysical behavior.
How should one approach the modeling of the complex bacterial patterning? With

present computational power it is natural to use computer models as a main tool in
the study of complex systems. However, one must be careful not to be trapped in
the “reminiscence syndrome”, described by Cowan [49], as the tendency to devise a
set of rules which will mimic some aspect of the observed phenomena and then, to
quote J.D. Cowan “They say: ‘Look, isn’t this reminiscent of a biological or physical
phenomenon!’ They jump in right away as if it’s a decent model for the phenomenon,
and usually of course it’s just got some accidental features that make it look like
something”. Yet the reminiscence modeling approach has some indirect value. True,
doing so does not reveal (directly) the biological functions and behavior. However, it
does reect understanding of geometrical and temporal features of the patterns, which
indirectly might help in revealing the underlying biological principles. Another extreme
is the “realistic modeling” approach, where one constructs an algorithm that includes
in details all the known biological facts about the system. Such an approach sets
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a trajectory of ever including more and more details (vs. generalized features). The
model keeps evolving to include so many details that it loses any predictive power.
Here we try to promote another approach – the “generic modeling” one [50,27,51,31].

We seek to elicit, from the experimental observations and the biological knowledge,
the generic features and basic principles needed to explain the biological behavior and
to include these features in the model. We will demonstrate that such modeling, with
close comparison to experimental observations, can be used as a research tool to reveal
new understanding of the biological systems.
Generic modeling is not about using sophisticated, as it may, mathematical de-

scription to dress pre-existing understanding of complex biological behavior. Rather,
it means a cooperative approach, using existing biological knowledge together with
mathematical tools and synergetic point of view for complex systems to reach a new
understanding (which is reected in the constructed model) of the observed complex
phenomena.
The generic models can yet be grouped into two main categories: (1) Discrete mod-

els such as the communicating walkers models of Ben-Jacob et al. [27,52,30] and
the bions model of Kessler and Levine [50,53]. In this approach, the microorganisms
(bacteria in the �rst model and amoebae in second) are represented by discrete, ran-
dom walking entities (walkers and bions, respectively) which can consume nutrients,
reproduce, perform random or biased movement, and produce or respond to chemi-
cals. The time evolution of the chemicals is described by reaction–di�usion equations.
(2) Continuous or reaction–di�usion models [54,55]. In these models the microorgan-
isms are represented via their 2D density, and a reaction–di�usion equation of this
density describes their time evolution. This equation is coupled to the other reaction–
di�usion equations for the chemical �elds. In the context of branching growth, this
idea has been pursued recently by Mimura and Matsushita et al. [56,57], Kawasaki et
al. [58] and Kitsunezaki [59]. A summary and critique of this approach is provided by
Rafols [60].
Here we describe a new model which includes a lubrication uid and a model with

a cuto�, as was proposed by Kessler and Levine [61]. We compare the results obtained
by the various models and the experimental observations. Our main goal is to identify
the biological and mathematical requirements for branching patterns. We then study the
e�ect of nutrients- and signaling-chemotaxis, and conclude that chemotaxis is needed
to explain the wealth of experimental observations.

2. Experimental results

Several strains of bacteria were reported to produce tip-splitting branched patterns
under conditions of low level of nutrient. We describe here the experimental results of
Ben-Jacob et al. [25,41,27,62] – working with colonies of Paenibacillus dendritiformis
var. dendron (T morphotype) – and Matsushita, Fujikawa, Matsuyama and coworkers
[33,23,34,26,40] – working with colonies of Bacillus subtilis.
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2.1. Growth patterns of T morphotype

(a) Macroscopic observations. All manner of patterns are exhibited by T morpho-
type as the growth conditions are varied. An example of branching pattern is shown
in Fig. 1. This kaleidoscope of shapes may be grouped into a number of “essential”
patterns. For intermediate agar concentrations (about 1.5% – 1.5 g in 100ml), at very
high peptone levels (above 10 g=l) the patterns are compact (Fig. 2a). At somewhat
lower but still high peptone levels (about 5–10 g=l) the patterns, reminiscent of viscous
�ngering patterns in Hele-Shaw devices [47], exhibit quite pronounced radial symmetry
and may be characterized as dense �ngers (Fig. 2b), each �nger being much wider
than the distance between �ngers. For intermediate peptone levels, branching patterns
with lower fractal dimension (reminiscent of electro-chemical deposition) are observed
(Fig. 2c). The patterns are “bushy”, with branch width smaller than the distance be-
tween branches. As the peptone level is lowered, the patterns become more rami�ed
and fractal-like. Surprisingly, at even lower peptone levels (below 0.25 g=l for 2%
agar concentration) the colonies revert to organized structures: �ne branches forming
a well de�ned global envelope. We characterize these patterns as �ne radial branches
(Fig. 2d). For extremely low peptone levels (below 0.1 g=l), the colonies lose the �ne
radial structure and again exhibit fractal patterns (Fig. 3a). For high agar concentration
the branches are very thin (Fig. 3b).

At high agar concentration and intermediate peptone levels the colonies display
a structure of concentric rings superimposed on a branching pattern (Fig. 4a). At
high agar concentration and very high peptone levels the colonies display a struc-
ture of concentric rings in a compact colony (Fig. 4b). At high agar concentrations
the branches also exhibit a global twist with the same handedness, as shown in Fig.
4c. Similar observations during growth of other bacterial strains have been reported by
Matsuyama et al. [26,44]. We referred to such growth patterns as having weak chirality
[3,52].

A closer look at an individual branch (Fig. 4d) reveals a phenomenon of density
variations within the branches. These three-dimensional structures arise from accumu-
lation of cells in layers. The aggregates can form spots and ridges which are either
scattered randomly, ordered in rows, or organized in a leaf-veins-like structure. The ag-
gregates are not frozen; the cells in them are motile and the aggregates are dynamically
maintained.

At the other extreme, of very soft agar (0.5% and below), the T morphotype does
not exhibit branching patterns. Instead, the growth is compact with density. In the
range of 0.5–1% agar concentration the colonies typically have a shape of many arms
stars.

(b) Microscopic observations. Under the microscope, bacterial cells are seen to per-
form a random-walk-like movement in a layer of uid on the agar surface. This wetting
uid is assumed to be excreted by the cells and=or drawn by the cells from the agar
[27,62]. The cellular movement is con�ned to this uid; isolated cells spotted on the
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Fig. 2. Examples of typical patterns of T morphotype for intermediate agar concentration (clockwise from
top left). (a) At very high peptone level (peptone 12 g=l, agar concentration 1.75%) the pattern is compact.
(b) At high peptone level (3 g=l, agar 2%) the pattern is of dense �ngers with pronounced radial symmetry
– similar to patterns observed in Hele-Shaw cell. (c) At intermediate peptone level (1 g=l, agar 1.75%) the
pattern is “bushy” fractal-like pattern, with branch width smaller than the distance between branches. (d) At
low peptone level (0:1 g=l, agar 1.75%) there are �ne radial branches with apparent circular envelope.

agar surface do not move. This is an important observation as we discuss later when
formulating the models. The uid’s boundary thus de�nes a local boundary for the
branch. Whenever the cells are active, the boundary propagates slowly, as a result of
the cellular movement and production of wetting uid.
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Fig. 3. (left) Fractal pattern for 0:01g=l peptone level and 1.75% agar concentration. (right) Dense branching
pattern for 4g=l peptone and 2.5% agar. Note that the branches are much thinner than those in Fig. 2b, i.e.
the branches are thinner for higher agar concentrations.

At very low agar concentrations (below 0.5%) the bacteria swim inside the agar
and not on its surface. Between 0.5% and 1% agar concentration some of the bacteria
move on the surface and some inside the agar.
The observations reveal also that the cells are active at the outer parts of the colony,

while closer to the center the cells are stationary (do not move) and some of them
sporulate (form spores). It is known that certain bacteria respond to adverse growth
conditions by entering a spore stage until more favorable growth conditions return.
Such spores are metabolically inert and exhibit a marked resistance to the lethal e�ects
if heat, drying, freezing, deleterious chemicals, and radiation.

2.2. Morphology selection, morphology diagram and velocity-pattern correlations

The emerging understanding of pattern determination in non-living includes the con-
cepts of morphology diagram, morphology selection, morphology velocity correlations
and morphology transitions [48]. In short, the patterns formed in many evolving azoic
(non-living) systems may often be grouped into a small number of “essential shapes”
or morphologies each representing a dominance of a di�erent underlying e�ect. If each
morphology is observed over a range of growth conditions, a morphology diagram
may exist. The existence of a morphology diagram implies the existence of a mor-
phology selection principle and vice versa. Ben-Jacob et al. proposed the existence of
a new morphology selection principle: the principle of the fastest growing morphology
[63,47], a principle which should be applicable for a wide range of growth conditions.
In general, if more than one morphology is a possible solution, only the fastest growing
one is nonlinearly stable and will be observed, that is, selected.
The new selection principle implies that the average velocity is an appropriate re-

sponse function for describing the growth processes and hence should be correlated
with the geometrical character of the growth. In other words, for each regime (essen-
tial shape) in the morphology diagram, there is a characteristic functional dependence
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Fig. 4. Patterns of colonies of T morphotype (clockwise from top left). (a) Pattern of concentric rings
superimposed on a branched colony for 2:5 g=l peptone level and 2.5% agar concentration. (b) Concentric
rings in a compact growth for 15 g=l peptone level and 2.25% agar concentration. (c) Weak chirality (global
twist of the branches) for 4 g=l peptone and 2.5% agar concentration. (d) Closer look at the branches (×50
magni�cation) shows density variations within each branch. Darker colors represent thicker layer of bacteria.

of the velocity on the growth parameters. At the boundaries between the regimes there
is either discontinuity in the velocity (�rst order-like transition) or in its slope (second
order-like transition).
At present, there is some evidence for the existence of the new selection principle

in non-living systems. The new principle might also be valid for pattern determination
during colonial development in bacteria [3,41]. The bacterial patterns may be grouped
into a small number of “essential shapes”, each observed over a range of growth
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conditions [23,34,25,41,18]. To prove this hypothesis, the next step would be to demon-
strate the velocity-pattern correlation during colonial growth.
A plot of the growth velocity as a function of nutrient level for 1.5% agar concen-

tration is shown in Ref. [62]. For the presented range of peptone levels it was found
that the velocity shows three distinct regimes of response, each corresponding also to a
distinct morphology (the �ne radial branches, branching patterns and dense �ngers), as
was predicted for non-living systems. The change in velocity suggests that the switch-
ing between morphologies is indeed a real morphology transition and not a simple
cross-over (see Ref. [48]). The transition at low peptone level (between �ne radial
branches and branching structure) might be a �rst order morphology transition, i.e. a
transition characterized by a jump in the velocity and hysteresis. The transition at the
higher peptone level (from branches to dense �ngering) seems to be second-order-like.
These observations of velocity-pattern correlations strongly support the existence of a
morphology selection principle which determines the selected colonial morphology for
a given morphotype.
In non-evolving (equilibrium) systems there is a phenomenon of critical uctuations

when the system is kept at the transition point between two phases. At that point the
system consists of a mixture of the two phases. In Ref. [48] it was shown that an
analogous phenomenon exists in evolving non-living systems and explained that this
fact provides additional support for the idea of morphology transitions. Fig. 5 shows
patterns exhibited by colonies grown at “critical” peptone levels, where transitions
between two morphologies occur. Similarly, for the uctuations displayed by non-living
systems, we observe a combination of the morphologies characterizing the patterns
above and below the critical point. These observations provide additional support for
the relevance of the concepts of morphology selection and morphology transition to
colonial development.

2.3. Growth patterns of B. subtilis

Matsushita and coworkers [33,23,34,26,40] studied the colonial branching patterns
and morphology diagram of the bacteria specie B. subtilis OG-01. A detailed summary
of these observations is provided by Rafols [60]. A typical morphology diagram is
shown in Fig. 6. Note that here the x-axis is the inverse agar concentration and the
y-axis is the nutrient level. These bacteria are not e�cient in producing a lubricat-
ing uid, hence above about 0.8% agar concentration they cannot move on the agar
surface: Under such conditions and low level of nutrients (below 1 g=l peptone), DLA-
like patterns are observed. As the level of nutrients is increased, the patterns become
compact, with a cellular structure at the interface.
For low agar concentrations (below 0.5%, so that the bacteria can move) and low

level of nutrients, dense branching patterns are observed. These patterns are replaced
by compact growth for higher levels of nutrients. Beautiful patterns of concentric rings
imposed on a dense branching growth (Fig. 7) are observed at high levels of nutrients
and intermediate agar concentric (about 0.75%). For more details see Ref. [60].
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Fig. 5. Coexistence of two morphologies near the critical point. The colony shows combination of the radial
symmetry morphology and the fractal-like morphology. The colony is grown on agar concentration of 1.75%
and 1 g=l peptone level.

Fig. 6. Morphology diagram of B. subtilis colonies grown by Matsushita et al. [23,33,26]. Taken with
permission from [60].
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Fig. 7. Colony of B. subtilis. Pattern of concentric rings superimposed on a branched colony. Taken with
permission from [60].

The di�erent morphologies correspond to di�erent growth velocities; DLA-like pat-
terns grow in about a month, compact patterns at intermediate concentrations of agar
grow in about a week, dense branching patterns and patterns of concentric rings grow
in few days, and compact patterns at low concentrations of agar grow in half a day.
From this we learn that indeed the growth velocity of the various morphologies is very
di�erent. Moreover, it seems that di�erent bacterial movement mechanisms correspond
to the di�erent regimes. Thus we expect a real transition between the various regimes
in the morphology diagram rather than a simple cross-over. Therefore, if velocity as
function of the growth parameters is to be measured, it will probably show a jump in
the velocity or its slope (�rst or second morphology transitions, respectively).

3. Biological background

Clearly we cannot begin to encompass all the biological background. Thus we will
describe here, based on our previous experience, only the most relevant information
for the understanding and modeling of the observed colonial patterning.

3.1. Bacterial surface translocation

The most widely studied mechanism used by bacteria for movement is swimming
with agella [64], but other mechanisms exist as well [65]. Most common types of
bacterial movements are categorized to be
• Swimming – Surface translocation produced through the action of agella. The cells
move individually and at random in the same manner as agellated bacteria move
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in wet mounts (i.e., nearly straight runs separated by brief tumbling). Swimming
takes place only in su�ciently thick surface uid. Microscope observations reveal
no organized ow-�eld pattern.

• Swarming – Surface translocation produced through the action of agella, but unlike
swimming, the movement is continuous and regularly follows the long axis of the
cell. The cells are predominantly aggregated in bundles during their movement, and
microscope observations reveal ow-�eld patterns highly organized in whirls and
bands.

• Gliding – Surface translocation occurring only in non-agellated bacteria and only
when in contact with solid surface. In all other respects, gliding is identical to
swarming.

3.2. Modeling bacterial movement

As for the movement of T morphotype, based on microscope observations of move-
ment and electron microscope observations of agella we identify the movement as
swimming. Cells tumble about every �T ≈ 1–5 depending on external conditions. The
speed of the bacterium between tumbling events is very sensitive to conditions such as
the liquid viscosity, temperature and pH level. Typically, it is of the order of 1–10 �m=s.
Swimming can be approximated by a random walk with variable step size [66]. At

low bacterial densities the random walk can be described by a di�usion equation with a
di�usion coe�cient Db≡ v2 �T =10−8–10−5 cm2=s. Low bacterial densities means that
the mean free path between bacterial collisions lc is longer than the tumbling length
lT ≡ v�T , thus collisions between the bacteria can be neglected. The mean free path
(or collision length) is

lc∝
{
�−1=3 in 3 dimensions ;
�−1=2 in 2 dimensions ;

(1)

where � is the 3D bacterial density and � is the 2D density – the projection of � on
the surface.
At high densities (lc¡lT ), the collisions cannot be neglected. In attempt to approx-

imate the dynamics in those conditions, one may want to consider the time of straight
motion to be lc=v instead of �T . Hence Db depends on the bacterial density to yield

Db∝
{
v�−1=3 in 3D ;
v�−1=2 in 2D :

(2)

This approximation is valid under the assumptions that a collision event is identical to
a tumbling event (abrupt uncorrelated change in direction of motion), that a tumbling
event is independent of the collisions, and that the speed between such events is not
a�ected by their frequency.
The assumption that a collision event is like a tumbling event poses many problems.

Even if the bacteria do not activate special response to collision it is unrealistic to
assume that collisions are elastic, or that the agella adopt immediately to the new
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orientation which changes during collisions. Thus it is reasonable to assume strong
correlation between the cell’s orientation before collision and the cell’s orientation after
collision. In addition, the orientation after the collision should be biased according with
the average direction of motion of the surrounding bacteria, as they carry the liquid with
them. The important parameter is not the collision length lc but re-orientation time �r .
The re-orientation time is the time it takes a bacterium to loose memory of its initial
orientation, i.e. the time span on which the �nal orientation has e�ectively no correlation
with the initial orientation. At low densities the re-orientation time �r is equal to
the tumbling time �T . As the density rises and the collisions become more frequent,
�r decrease. �r de�nes the densities above which the constant di�usion coe�cient
Db≡ v2 �T is not a good approximation. It is quite possible that these densities are
high enough so as to make the velocity and even the type of motion dependent on
bacterial density, making relation (2) irrelevant. In any case, high cellular densities
does mean an e�ective decrease in the di�usion coe�cient related to the bacterial
movement.
When swimming in an unstirred liquid, very low cellular densities also e�ect the

movement. The bacteria secrete various materials into the media and some of them, e.g.
enzymes and other polymers, change signi�cantly the physical properties of the liquid
making it more suitable for bacterial swimming. The secretion of these materials depend
on cellular density, thus at not-too-high densities the speed of swimming rise with the
cellular density. Hence the di�usion coe�cient related to the bacterial movement should
be a non-monotonic function of the bacterial density. Moreover, the speci�c functional
form might depend on the speci�c bacterial strain.
In other conditions there is similar but more pronounced e�ect. On semi-solid surface

the bacteria cannot swim at all inside the agar and they have to produce their own
layer of liquid to swim in it. A single T bacterium on the agar surface cannot produce
enough uid to swim in it, thus the bacteria cannot break out of the layer uid and
the branches of a T colony can be de�ned by this uid. Whenever bacteria enter
the shallower parts of the layer, at the edge of the branch, they become sluggish,
indicating that the depth of the layer e�ects the bacterial movement. It can be argued
(see Section 4.4) that in such cases the bacterial speed is related to the bacterial density
by a power law (at least in low densities). Not only the di�usion coe�cient related
to the bacterial movement is a non-monotonic function of the bacterial density (as in
a liquid agar), but it also vanishes for extremely low densities. In this case it is clear
that the speci�c functional form depend on the speci�c bacterial strain (B. subtilis.,
e.g., cannot move at all under such conditions).

3.3. Chemotaxis

Chemotaxis means changes in the movement of the cell in response to a gradient of
certain chemical �elds [67–69,66]. The movement is biased along the gradient either
in the gradient direction or in the opposite direction. Bacteria are too short to esti-
mate spatial gradients of the chemical by simply comparing concentrations at di�erent
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locations on their membrane [68] (but see Ref. [70] for a di�erent view). They deduce
the spatial gradients by calculating temporal derivatives along their path. It is known
that
E. coli, e.g., can compare successive measurements over a time interval of 3 s. The
actual chemotaxis in swimming bacteria is implemented by decreasing the tumbling
frequency as cells swim up the gradient of the attractant or down the gradient of re-
pellent. Thus the straight runs are important for gradient perception and the tumbling
timing is important for the response to this gradient.
Usually chemotactic response means a response to an externally produced �eld like

in the case of chemotaxis towards food. However, the chemotactic response can be
also to a �eld produced directly or indirectly by the bacterial cells. We will refer to
this case as chemotactic signaling.
Chemotaxis towards high concentration of nutrients is a well studied phenomenon

in bacteria [67,71]. When the center of a soft agar plate (0.35% agar concentration)
is inoculated with cells capable of chemotaxis, distinct circular bands of bacterial cells
become visible after a few hours of incubation. In fact, these patterns were used as
semi-quantitative indicators of chemotactic response [71]. Genetic experiments showed
that the creation of each of those bands depends solely on the chemotactic response
to a single chemical in the substrate (these chemicals are usually metabolizable, but
even cells that have lost the ability to metabolize a certain chemical form bands,
as long as they are attracted to it [67]). Berg et al. [72] showed that the bacteria
realize chemotactic response by modulating the periods between tumbling events –
they decrease the probability of tumbling when moving in a preferred direction along
the chemical gradient. This makes a bias in the random walk which result in a mean
drift of the bacteria in the desired direction, a drift that can be as large as v=10.
Bacteria sense the local concentration C of a chemical via membrane receptors bind-

ing the chemical’s molecules [67,69]. The cell measures the concentration by calcu-
lating the relative number of occupied receptors No=(No + Nf), where No and Nf are
the number of occupied and free receptors respectively. For a given chemical C, No
is determined by two characteristic times: the mean time of a receptor occupation –
�o, a constant determined by internal cellular processes – and the mean time lapse
when the receptor is free (�f). Since �f is inversely proportional to the concentration
of the chemical (with the proportion coe�cient determined by the receptor a�nity to
the chemical), we get

No
Nf + No

=
�o

�f + �o
=

C
K + C

; (3)

where K ≡ (C �f)=�o is constant. It is crucial to note that when estimating gradients of
chemicals, the cells actually measure changes in the receptors’ occupancy No=(No+Nf)
and not in the concentration itself. Using Eq. (3) we obtain

@
@x

(
No

No + Nf

)
=

K
(K + C)2

@C
@x
: (4)
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This means that the chemical gradient times a factor K=(K + C)2 is measured. This
dependence in known as the “receptor law” [73]. For very high concentration the
chemotaxis response vanishes due to saturation of the receptors. The chemotactic re-
sponse also vanishes at the opposite limit of small concentration, as the concentration
reception is masked by external and internal noises. This e�ect is not included in the
receptor law, which should be changed accordingly.
The receptor law is needed to explain the bands reported by Adler [67,71]. It can

be shown that linear chemotactic response to a nutrient cannot produce such bands.
A non-linear response like the “receptor law” must be included for the bands to form.
Moreover, high concentration of the attractant represses both the strength of the chemo-
tactic response [67] and the velocity of the expanding band [74]. These observations
are accounted for by the “receptor law” for chemotactic response if one assumes that
the average gradient sensed by the cells is proportional to the initial concentration of
the chemical [67,74].
The bacterial ux due to chemotaxis can be described by

Jchem≡ �(�)�(C)∇C ; (5)

where �(C)∇C is the gradient sensed by the cell (with �(C) having the units of 1
over chemical’s concentration) and �(�) is the bacterial response to the sensed gradient
(having the same units as a di�usion coe�cient). �(C) is usually taken to be either
constant or the “receptor law”.
The function of the bacterial response � is positive for attractive chemotaxis (move-

ment towards high concentrations) and negative for repulsive chemotaxis. If the move-
ment is in liquid and at low bacterial densities, then |�(�)| ∝ �Db. In a lubrication uid
which e�ect the bacterial movement, the chemotaxis is e�ected in the same way the
di�usion is; |�(�; l)| ∝ �Db(�; l).
In the case of high bacterial densities, collisions between bacteria can disrupt both the

perception of chemical gradient and the bacterial response. As the collisions prevent the
bacteria from moving on a straight line between tumbling events, the e�ective response
to chemotaxis is reduced.

3.4. Food consumption, reproduction and starvation

The T bacteria, like most bacteria, reproduce by �ssion of the cell into two daughter
cells which are practically identical to the mother cell. The crucial step in the cell
division is the replication of the genetic material and its sharing between the daughter
cells. Haste replication of DNA might lead to many errors – most organisms limit the
rate of replication to about 1000 bases per second. Thus the reproduction must take
at least minimal reproduction time �R. This reproduction time �R is about 25min in
Bacilli.
For reproduction, as well as for movement and other metabolic processes, bacteria

and all other organisms need inux of energy. Any organism which does not get its
energy directly from sunlight (by photo-synthesis) needs an external supply of food.
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Fig. 8. Electron microscope observation of T bacteria. Round or oval shapes with bright center are spores.
Elongated shapes are living cells. The cells engol�ng oval shapes are pre-spores.

In the patterning experiments the bacteria eat nutrient from the agar. As long as there
is enough nutrient and no signi�cant amount of toxic materials, food is consumed
(for cell replication and internal processes) at maximal rate 
c. To estimate 
c we
assume that a bacterium needs to consume an amount of food CR of about 3× 10−12 g.
It is three times its weight – one quanta for doubling body mass, one quanta used for
movement and all other metabolic processes during the reproduction time �R, and one
quanta is for the reduced entropy of making organized cell out of food. Hence 
c is
about 2 fg=s (1 fg= 10−15 g).
If nutrient is de�cient for a long enough period of time, the T cells may enter a

special stationary state – a state of a spore – which enables them to survive much
longer without food. The bacterial cells employ very complex mechanisms tailored
for the process of sporulation. They stop normal activity – like movement – and use
all their internal reserves to metamorphose from an active volatile cell to a sedentary
durable “seed”. While the spores themselves do not emit any chemicals (as they have
no metabolism), the pre-spores (sporulating cells, see Fig. 8) do not move and emit a
very wide range of waste materials, some of which unique to the sporulating cell. These
emitted chemicals might be used by other cells as a signal carrying information about
the conditions at the location of the pre-spores. Ben-Jacob et al. [27,62,75] suggested
that such materials are repelling the bacteria (“repulsive chemotactic signaling”) as if
they escape a dangerous location.
When bacteria are grown in a petri dish, nutrients are usually provided by adding

peptone, a mixture including all the amino acids and sugars as source of carbon.
Bacteria which are not defective in synthesis of any amino acid can grow also on a
minimal agar in which a single source of carbon and no amino acids are provided.
Such growth might seem to be easier to model as the growth is limited by the di�usion
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of a single chemical. However, during growth on minimal agar there is usually a higher
rate of waste products accumulation, introducing other complications into the model.
Moreover many of our strains are auxotrophic i.e. defective in synthesis of some amino
acids and need an external supply of it. Providing the bacteria with these amino acids
and only a single carbon source might pose us the question as to what is the limiting
factor in the growth of the bacteria. For all those reasons we prefer to use peptone as
nutrient source.
We said that if there is ample supply of food, bacteria reproduce in a maximal rate

of one division in �R. If the available amount of food is limited, bacteria consume the
maximum amount of food they can. In the limit of low bacterial density, the available
amount of food over the tumbling time �T is the food contained in the area �T

√
DbDn,

where Db and Dn are the di�usion coe�cients of the bacteria and the food, respectively.
Hence the rate of food consumption is given by n

√
DbDn (whether Db is constant or

not).
In a continuous model, reproduction of bacteria translate to a growth term of the

bacterial density which is � times the eating rate per bacteria. In the limit of high
nutrient it is �=�R, and in the limit of low nutrient it is proportional to n�. This brings
to mind Michaelis–Menten law [73] of [K=(1+n)]n� with K;  constants. Many authors
take only the low nutrient limit of this expression, Kn�, although it is not biologically
established that the bacteria in the experiments are limited by the availability of food
and not by their maximal consumption rate.

4. Reaction–di�usion models

In this section we deal with continuous, reaction–di�usion models for bacterial
growth. The models under study are due to Fisher and Kolmogorov [76,77], Kessler
and Levine [61], Kitsunezaki [59], Kawasaki et al. [58] and Mimura et al. [56,57].
The models are all two-dimensional (2D), with b(x; t) denoting the density of bacteria
projected on a 2D plane and n(x; t) is the 2D nutrient density. The equations for the
various models will be written in dimensionless units, and the reader is referred to the
Appendix for a discussion about the relations with real units.
In general, the rate of change of the bacteria density can be described by [73]

@b
@t
=movement + “birth”− “death” : (6)

As discussed in Section 3, the movement of bacteria consists of various possible mech-
anisms, of which we will concentrate on swimming, so that the motion is described
as di�usion (either linear or non-linear). The “birth” term in Eq. (6) corresponds to
bacterial reproduction, which depends on the supply of nutrients. The “death” term
represents the transition of bacteria into a non moving state.
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Fig. 9. Reaction term f(b) (above) and Landau–Ginzburg free energy �(b) (below) for the
Fisher–Kolmogorov equation.

4.1. The Fisher–Kolmogorov equation

Mathematically, the above description is usually written as a reaction di�usion equa-
tion, for which the canonic example is the Fisher–Kolmogorov equation [76,77] (with-
out a death term):

@b
@t
=Db∇2b+ b(1− b) : (7)

This equation was originally presented to describe the spread of mutants in a popula-
tion. We will use it here as a starting point for our discussion of colonial development.
In this context, Db is the di�usion coe�cient describing the bacterial movement, and
the reaction term f(b)= b(1 − b) describes both the growth and “death” of bacteria.
The function f(b) is depicted in Fig. 9. Eq. (7) has two homogeneous solutions, a
stable solution b=1 and an unstable solution b=0. These solutions correspond to the
two extrema of the potential �=−∫

f(b)db, which can be thought of as a Landau–
Ginzburg free energy density (see Fig. 9). Thus, we can study the propagation of the
stable state (inside the colony) into the unstable one (outside the colony). It can be
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Fig. 10. Typical front obtained for the 1D di�usive Fisher–Kolmogorov model. Parameters: Db =0:1; Dn =1,
Initial food concentration n0 = 1.

shown [78–83] that in 1D there is a unique selected velocity of the front, chosen
according to the properties of the �xed point far ahead at in�nity.
In two dimensions, the propagation is in the form of a compact (as opposed to

branching) growth. That is, there is no Mullins–Sekerka instability [41,84–86]. In the
case of such instability, a small bump in a at interface will have a higher velocity
than the rest of the front and will therefore over-grow. Here, however, this will not
happen, because the front velocity is determined by the �xed point at in�nity, rather
than by local properties of the front.
The Fisher–Kolmogorov model is an appropriate description of the growth when

bacteria are grown under nutrient-rich conditions, in which case the growth dynamics
is not limited by the supply of food [87]. Here we are interested in the opposite
case, where nutrient supply is limited. For a more realistic description of colonial
development on a nutrient-poor surface, we must take into account the interaction of
bacteria with the nutrient �eld n(x; t). In the simplest case, this is described by the
Di�usive Fisher–Kolmogorov equation [85,86]:

@b
@t
=Db∇2b+ f(b; n) ; (8)

@n
@t
=Dn∇2n− �f(b; n) ; (9)

where �¿0 is the conversion ratio of food into bacteria (3 picogram per bacteria,
see Section 3). In this model the food consumed by the bacteria is reduced from the
food �eld and converted into bacteria. The shape of a one-dimensional front obtained
for f(b; n)= bn is depicted in Fig. 10. It turns out that this model (as the original
Fisher–Kolmogorov model) has a selected front velocity, determined by the conditions
at in�nity, and therefore does not exhibit di�usive (Mullins–Sekerka) instability, and
a two dimensional growth is compact rather than branched. An additional way of
understanding why compact growth is obtained even under poor nutrient levels is to
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Fig. 11. Landau–Ginzburg free energy �(b) for the solid–liquid phase-�eld model. Note the meta-stable
point at b=0 and the stable one at b=1.

note that the model, as it is, does not impose a minimal bacteria density in the colony,
so that the density can be adjusted according to the initial food level. In the real
biological system, however, some minimal density is required in order to create the
lubricating uid (needed for movement), and so compact growth usually is not possible.
For further understanding the requirements for a branching pattern, let us recall the

case of solidi�cation from an under-cooled melt, which exhibits branching patterns
[47,48]. Our bacterial density b corresponds to the order parameter in the phase-�eld
model description of solidi�cation [88,89], whereas the di�usion of food is analogous to
the di�usion of heat away from the solid–liquid interface. In the case of solidi�cation,
the Landau–Ginzburg free energy is a tilted double-well (see Fig. 11). The meta-
stable state corresponds to the liquid phase. In the di�usive Fisher–Kolmogorov case,
the analog of the liquid state, i.e. the b=0 state, is unstable. Thus, according to the
solidi�cation case, if we modify the model and turn the b=0 state into a meta-stable
one, this can lead to branching growth.

4.2. A cuto� in the reaction term

In the case of bacteria, there is a feature of the system that might have a similar
e�ect to the meta-stability in solidi�cation. This is the discreteness of bacteria, for
which the continuous description is not always valid. Kessler and Levine [61] argue
that when describing a discrete system using continuous models, a cuto� near the �xed
point must be imposed, i.e. the reaction term must be set to zero when the (bacterial-)
density is below some threshold. They have shown that inclusion of such a cuto� leads
to a Mullins–Sekerka instability, and branching patterns may appear when a death term
is also included, as explained below.
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Fig. 12. Growth term f(b) (above) and Landau–Ginzburg free energy �(b) (below) for the Kessler–Levine
correction. Cuto� value �=1, nutrient level n=1.

To show this, we consider the di�usive Fisher equations with a cuto�:

@b
@t
=Db∇2b+ bn�(b− �) ; (10)

@n
@t
=∇2n− nb�(b− �) ; (11)

where � is the threshold density for growth, and � is the Heaviside step function.
The food consumption term is of the form f(n; b)= nb, which is the widely used low-
nutrient approximation for the Michaelis–Menten law (Section 3.4). The value of the
threshold for bacterial growth, �, is taken to be one bacterium per 1–10 �m2. Note that
this corresponds to the case where the distance between bacteria is of the order of the
length between tumbles. Fig. 12 depicts the reaction term and the Landau–Ginzburg
free energy for this model. As can be seen in Fig. 13, an instability of the front indeed
appears, and the compact growth pattern has a surface broken by “fjords”. However,
the Mullins–Sekerka instability is not su�cient to produce branches. The emerging dips
soon “heal”, so that branches are not formed. One way to obtain branching growth is
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Fig. 13. 2D growth pattern of the Kessler–Levine correction with no death term. Parameters are:
Db=0:01; �=0:25; n0 = 1.

Fig. 14. 2D growth pattern (b + s) of the Kessler–Levine correction with a death term. Parameters are:
Db=0:01; �=0:25; n0 = 1; �=0:01.

to add a “death” term to the model, thus

@b
@t
=Db∇2b+ bn�(b− �)− �b ; (12)

@n
@t
=∇2n− nb�(b− �) ; (13)

@s
@t
= �b ; (14)

where � is the rate of bacterial di�erentiation into non-moving state, and s(x; t) is the
density of “frozen” bacteria. This modi�ed model exhibits distinct branching patterns,
as seen on Fig. 14. The explanation for this e�ect lies in the fact that now, with a death
term present, bacteria left behind the propagating front become non-motile (“dead”).
They are unable to move and close the “fjords”, thus allowing real branches to form.
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4.3. Reaction–di�usion with lubrication

We have so far ignored the e�ect of the lubricating �eld on the motion of the bacte-
ria. We present here a new model which incorporates an additional �eld that describes
the lubricating uid. The �eld, denoted as l, is the local height of the lubrication uid
on the agar surface. Its dynamics is governed by a reaction di�usion equation. The
bacterial di�usion is coupled to this �eld.
The dynamics of the �eld is given by

@l
@t
=−∇Jl + �bn(lmax − l)− �l ; (15)

where Jl is the uid ux (to be discussed), � is the production rate and � is the
absorption rate of the uid by the agar.
We assume that the uid production depends on the bacterial density. As the pro-

duction of lubrication probably demands substantial energy, it should also depend on
the nutrients level. We assume that the absorption of uid into the agar depends on
the local amount of uid (i.e. the height of the uid layer). In this model the produc-
tion depends linearly on the concentrations of both the bacteria and the nutrients. The
production term cannot become negative as the lubrication height cannot exceed lmax.
The lubrication uid ows by di�usion and by convection caused by bacterial motion.

A simple description of the convection is that each bacterium drags along its movement
the uid surrounding it:

Jl=−Dll�∇l+ jJb ; (16)

where Dl is the lubrication di�usion coe�cient, Jb is the bacterial ux and j is the
amount of uid dragged by each bacterium. The di�usion term of the uid depends
on the height of the uid to the power �. The nonlinearity causes the uid to have
a sharp boundary at its front, as is observed in the experiments of bacterial colonies
development.
We now turn to the e�ect of the lubrication on bacterial di�usion. An increase in the

amount of lubrication decreases the friction between the bacteria and the agar surface.
The term “friction” is used here in a very loose manner to represent the total e�ect
of any force or process that slows down the bacteria. It might include, for example,
the drag which acts on a body moving in shallow layer of viscous uid. It might
include the probability that a agellum will adhere or get tangled with the polymers of
the agar. As the bacterial motion is over-damped, the local speed of the bacteria (or the
mean step length, when neglecting collisions between bacteria) is proportional to the
self-generated propulsion force divided by the friction. It can be shown that variation
of the step length leads to variation of the di�usion coe�cient, with the di�usion
coe�cient proportional to the step length to the power of two. We assume that the
friction is inversely related to the local lubrication height through some power law:
friction∼ l and ¡0. Following our arguments the bacterial ux is

Jb=−Dbl−2∇b : (17)
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Fig. 15. 2D growth patterns (b + s) of the model with lubrication. (a) Parameters are
= − 1=2; �=0:01; �=2; Db =0:5; Dl =0:5; �=1; n0 = 1:5; j=0:01; lmax = 2; �=1. (b) Parameters are as
in (a), except a higher absorption rate �=0:1. (c) Parameters are as in (a), except a di�erent exponent for
the bacterial di�usion =−1. (d) Parameters are as in (c), except a higher absorption rate �=0:03.

For the complete model we took simple bacterial growth and death terms. The model
is

@b
@t
=Db∇(l−2∇b) + bn− �b ; (18)

@n
@t
=∇2n− bn ;

@l
@t
=∇(Dll�∇l+ jDbl−2∇b) + �bn(lmax − l)− �l ;

@s
@t
= �b : (19)

For the initial condition, we set

n(x; t)= n0; b(x; t)= b0(x) ; (20)

where n0 is the initial concentration of nutrients and b0(x) is the initial bacterial dis-
tribution. In the simulations, b0(x) is localized at the center.
Preliminary results show that the model can reproduce branching patterns (Fig. 15).

At low values of the absorption rate the model exhibits dense �ngers. At higher values
of the absorption rate the model exhibits �ner branches. We obtain �ner branches also
if we change other parameters that e�ectively decrease the amount of lubrication. We
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Fig. 16. Pro�le of the fronts of the bacterial �eld (solid line) and of the lubricating �eld (dashed line) from
the 2D model with lubrication. The bacterial �eld was scaled by a factor of 40. Left: Parameters are as in
Fig. 15a. Right: Parameters are as in Fig. 15c.

can relate these conditions to high agar concentration. In this model, as in the non-
linear di�usion model described below, the bacterial �eld and the lubricating �eld have
a front “wall” with compact support (Fig. 16).

4.4. Non-linear di�usion

It is possible to introduce a simpli�ed model, where the uid �eld is not included,
and is replaced by a density-dependent di�usion coe�cient for the bacteria Db∼ bk
[90,91]. For this purpose, a few assumptions are needed about the dynamics at low
bacterial and lubrication density:
• The production of lubricant is proportional to the bacterial density to the power
�¿0.

• There is a sink in the equation for the time evolution of the lubrication �eld, e.g.
absorption of the lubricant into the agar. This sink is proportional to the lubrication
density to the power �¿0.

• Over the bacterial length scale, the two processes above are much faster than the
di�usion process, so the lubrication density is proportional to the bacterial density
to the power of �=�.

• The friction is proportional to the lubrication density to the power ¡0.
Given the above assumptions, the lubrication �eld can be removed from the dynam-
ics and be replaced by a density dependent di�usion coe�cient. This coe�cient is
proportional to the bacterial density to the power k ≡−2�=�¿0.
A model of this type is o�ered by Kitsunezaki [59]:

@b
@t
=∇(D0bk∇b) + nb− �b ; (21)
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Fig. 17. 1D front obtained for the Kitsunezaki model. Parameters are: D0 = 0:1; k =1; �=0:15; n0 = 1.

Fig. 18. 1D front obtained for the Kitsunezaki model with k =2. All other parameters as in Fig. 17.

@n
@t
=∇2n− bn ; (22)

@s
@t
= �b : (23)

For k¿0 the 1D model gives rise to a front “wall”, with compact support (i.e. b=0
outside a �nite domain, see Fig. 17). For k¿1 this wall has an in�nite slope (Fig. 18).
The propagation velocity in this case is determined by the condition at the front, not at
in�nity [90,92]. We therefore expect a Mullins–Sekerka instability in 2D (as is claimed
in [59]). Indeed, the model exhibits branching patterns for suitable parameter values
and initial conditions (Fig. 19). Note, that the compact support exhibited by this model
(that is, the abrupt disappearance of bacterial presence outside the colony boundary)
is much more in accordance with experimental observations than the long “tail” of
bacterial density appearing in the Fisher–Kolmogorov case (recall Fig. 10).
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Fig. 19. 2D growth pattern (b + s) of the Kitsunezaki model. Parameters are: D0 = 0:1, k =1, �=0:15,
n0 = 1.

Another state-dependent di�usion coe�cient was proposed and studied by
Kawasaki et al. [58], which took Db∼ nb. They justify this form by the observa-
tion that bacteria are active mostly at the edge of the colony – the only area where
there is high amount of bacteria and food. Their model, too, exhibits branching shapes
(see Fig. 20). This is due to the b dependence of the di�usion coe�cient, which leads
to front instability, just as in the Kitsunezaki model. The fact that Db also depends
on n prevents bacteria inside the colony from moving – and closing the dips created
by the instability. In this way, branches are created without a need for a death term.
A similar mechanism of “food” dependent di�usion coe�cient was used by Tu et al.
[93], who describe a mean-�eld model for DLA. Their model, too, does not include a
death term yet produces branching patterns.

4.5. A meta-stable reaction term

As mentioned earlier, meta-stability of the growth term can lead to branching pat-
terns. Mimura et al. [56,57] have studied the following model, for which b=0 is a
meta-stable �xed point:

@b
@t
=Db∇2b+ �bn− �b

(b+ 1)(n+ 1)
; (24)
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Fig. 20. 2D growth pattern (b) of the Kawasaki et al. model. Parameters are: Db = n ∗ b; n0 = 0:71.

@n
@t
=∇2n− nb ; (25)

@s
@t
=

�b
(b+ 1)(n+ 1)

(26)

(see the Appendix for relations to real units). In this model, Db does not depend on
bacterial density, and its value is said to vary with agar concentration. The key feature
of this model is that the total bacteria growth term (multiplication minus inactivation),
depicted in Fig. 21, gives a meta-stable state at b=0. This means that in order to initiate
bacterial growth, a threshold value of b∗= {�=[�n(n + 1)]} − 1 must be reached (this
value corresponds to bacterial density of the order of 0.1 bacteria=�m2. This feature
contradicts the observations, that even a small number of bacteria, inoculated on a
substrate, will multiply and later begin to move. This does not imply that the model is
incorrect. A possible interpretation is that the �eld b actually describes a combination
of lubricant + bacteria. In this case, however, as we have explained before, we would
expect the model to exhibit a non-linear di�usion. Hence we believe that this model
might provide a better description of the bacteria if the di�usion term is replaced with a
non-linear di�usion term. Fig. 22 depicts a 1D front obtained for the model. The model
as it is exhibits various branching patterns, patterns of concentric rings and compact
growth (Fig. 23).
Mimura et al. argue that the model captures the experimental morphology diagram

they observed. This is a very crucial point. If indeed the above claim is correct, it
implies that the observed patterns can be reproduced with no need for additional
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Fig. 21. Growth term f(b) (above) and Landau–Ginzburg free energy �(b) (below) for the Mimura et al.
model. Parameters are: �=20; �=2400; n=5. Note the stable point at b=0.

Fig. 22. 1D front obtained for the Mimura et al. model. Parameters are: Db =0:1; n0 = 10; �=20; �=2400.

biological features. However, using the discrete communicating walkers model [27],
Ben-Jacob et al. have concluded that the additional features of chemotactic response
have to be included. So, in order to check this point we have performed more detailed
comparison between the Mimura et al. model and the experimental observations.
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Fig. 23. Various 2D patterns (b+s) obtained for the Mimura et al. model: (a) DLA-like (Db =0:05; n0 = 10).
(b) dense branches (Db =0:09; n0 = 10). (b) Concentric rings (Db =0:05; n0 = 12). (c) Compact growth
(Db =0:1; n0 = 14). In all cases, �=2400; �=20.

First, we consider the DLA-like growth. In this case, the bacteria do not move on
the agar surface, and the growth is indeed very similar to the DLA algorithm, as was
proposed by Matsushita et al. [33,37]. It is now understood that in a mean-�eld DLA
model the particle density (density of bacteria in the present case) can not be described
by a di�usion term. Instead, it has to be described by a di�usion multiplied by the
nutrients �eld [93], which di�ers from the linear di�usion in the model of Mimura
et al. Indeed, close inspection of the fractal pattern created by the model reveals that
it di�ers from the observed DLA-like patterns.
Another test of the model is the predicted pattern of concentric rings. It has already

been pointed out by Rafols [60] that the model’s pattern di�ers from the observed
one. In the experiment, branching growth slows down. The branches become wider and
growth stops. Then, after bacterial di�erentiation, a new cycle of branches growth starts
with thin branches emitted from the stationary wide branches [60]. This description
di�ers from the model patterning shown in Fig. 23.
In Fig. 24 we exhibit results of numerical simulations for various levels of peptone

and for agar concentration for which concentric rings are observed. The sequence of
patterns from DLA-like at low peptone to concentric rings at high levels of peptone
di�er from the similar sequence of observed patterns presented in Ref. [60].
We have also tested the change in patterns as we vary the agar concentration (see

Fig. 25). When we plot the growth velocity as a function of the agar concentration
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Fig. 24. Mimura et al. model: The e�ect of changing the initial nutrient level n0. For all pictures
Db =0:05; �=2400; �=20.

Fig. 25. Mimura et al. model: The e�ect of changing Db. For all pictures n0 = 10; �=2400; �=20.
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Fig. 26. Colonial growth velocity vs. Db for the Mimura et al. model. Parameter values as in Fig. 25.

(Fig. 26), it does not show a jump in the velocity or its slope. In other words, the model
seems to exhibit a simple crossover between the patterns rather than a morphology
transition as the observations seem to indicate.
The above results lead us to conclude that the Mimura et al. model does capture some

of the observed branching patterns, yet the complete description of the observations
requires additional features to be included. Speci�cally, we propose to include nonlinear
di�usion. We also believe that chemotactic response does play an important role for
poor growth conditions. To further test this conclusion, we present in the next section a
study of patterns produced by the reaction–di�usion models when chemotactic responses
are included.

5. Incorporation of chemotactic signaling in the continuous models

So far we have seen several models for the branching colonies, each with its own
mechanism of di�usive instability, which produces patterns resembling the observed
ones. Is there a way to distinguish between the models so as to �nd out what are
the biological features underlying the di�usive instability? We rely on results from an
atomistic model – the Communicating Walkers model [27,94,75] – for an indication
of what are the biological features relevant to the di�erent morphologies.
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5.1. Chemotactic-based branching growth: insights from the Communicating Walkers
model

Ben-Jacob et al. argued that for the colonial adaptive self-organization the T mor-
photype employs several kinds of chemotactic responses. Usually chemotactic response
means a bias of the movement in response to a gradient of an externally produced �eld
like in the case of food chemotaxis. However, it could also be a response to a �eld
produced directly or indirectly by the bacterial cells – chemotactic signaling.
Three kinds of chemotactic responses are suggested to be employed by the T mor-

photype, each dominant in di�erent regime of the morphology diagram. One response
is the food chemotaxis we have mentioned earlier. According to the “receptor law”, it
is expected to be dominant for some range of nutrient levels (the corresponding levels
of peptone are determined by the constant K). The two other kinds of chemotactic
responses are signaling chemotaxis. One is long-range repulsive chemotaxis where the
chemical is secreted by starved bacteria at the inner parts of the colony. The second
signal is a short-range attractive chemotaxis where the chemical is secreted by bacteria
at the colony’s front, bacteria which are immersed in toxic waste products. The length
scale of each signal is determined by the di�usion constant of the chemical agent and
the rate of its spontaneous decomposition.
Ampli�cation of di�usive instability due to nutrients chemotaxis: In non-living sys-

tems, the more rami�ed patterns (lower fractal dimension) are observed for lower
growth velocity. Based on growth velocity as function of peptone level and based on
growth dynamics, Ben-Jacob et al. concluded that in the case of bacterial colonies there
is a need for mechanism that can both increase the growth velocity and maintain, or
even decrease, the fractal dimension. Ben-Jacob et al. suggested food chemotaxis to be
the required mechanism. It provides an outward drift to the cellular movements; thus,
it should increase the rate of envelope propagation. At the same time, being a response
to an external �eld it should also amplify the basic di�usion instability of the nutrients
�eld. Hence, it can support faster growth velocity together with a rami�ed pattern of
low fractal dimension.
The Communicating Walkers model was used to test the above hypothesis. The

simulations showed that as expected, the inclusion of food chemotaxis in the model
led to a considerable increase of the growth velocity without signi�cant change in the
fractal dimension of the pattern.
Repulsive chemotactic signaling: We focus now on the formation of the �ne radial

branching patterns at low peptone levels. From the study of non-living systems it is
known that, in the same manner that an external di�usion �eld leads to the di�usion
instability, an internal di�usion �eld will stabilize the growth. It is natural to assume
that such a �eld is produced by some sort of chemotactic agent. To regulate the
organization of the branches, it must be a long-range signal. To result in radial branches
it must be a repulsive chemical produced by cells at the inner parts of the colony. The
must probable candidates are the bacteria entering a pre-spore stage due to depletion
of nutrient. This proposal has also been veri�ed by simulations of the Communicating
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Walkers model. In the presence of repulsive chemotaxis the patterns become much
denser with a smooth circular envelope, while the branches are thinner and radially
oriented.

5.2. Results for the continuous models

We incorporate the e�ect of chemotaxis in the continuous models by introducing a
chemotactic ux Jchem, which is written (for the case of a chemorepellent and a linear
di�usion) as [73]

Jchem =−b�(r)∇r ; (27)

where r(x; t) is the concentration of chemorepellent and �(r) is the chemotactic sensi-
tivity to the repellent. In the case of a chemoattractant, e.g. a nutrient, the expression
for the ux will have an opposite sign.
Recall that in the case of the “receptor law”, the sensitivity �(r) takes the form:

�(r)=
�0K

(K + r)2
: (28)

Thus, we obtain the reaction di�usion chemotaxis equation:

@b
@t
=−∇(−D∇b− b�(r)∇r) + f(b) : (29)

In addition, one has to write an equation describing the di�usion and the production
and decomposition of the chemorepellent. This is written as follows:

ṙ=Dr∇2r + �rs− 
rbr − �rr ; (30)

where Dr is the di�usion coe�cient of the chemorepellent, �r is the emission rate of
repellent by pre-spores, 
r is the decomposition rate of the repellent by active bacteria,
and �r is the rate of self decomposition of the repellent.
We have tested the e�ect of food chemotaxis and repulsive chemotaxis in sev-

eral of the aforementioned reaction–di�usion models, and present here results for the
Kitsunezaki nonlinear di�usion model and the Mimura et al. meta-stable model.
When treating the non-linear di�usion model, we must modify the expression for

the chemotactic ux, in order to incorporate the density dependence of the bacterial
movement. Thus, similarly to the di�usion coe�cient, which is written as Db=D0bk ,
we modify the chemotactic ux to become:

Jchem = �(b)�(r)∇r ; (31)

where �(b)= b · bk = bk+1 is the bacterial response to the chemotactic agent. For the
linear di�usion case, �(b) degenerates again to b.
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Fig. 27. 2D growth pattern (b+ s) of the Kitsunezaki model with food chemotaxis included. �0f =3. Other
parameters as in Fig. 19.

Fig. 27 depicts a pattern developed by the Kitsunezaki model when food chemotaxis
is included. All of the parameters are the same as in Fig. 19 (no chemotaxis). Although
the patterns are very similar, the growth velocity when food chemotaxis is included is
about twice the velocity in the absence of chemotactic response. In other words, the
velocity is doubled with no change in the fractal dimension.
The e�ect of repulsive chemotactic signaling is demonstrated in Fig. 28 – again with

otherwise identical parameters to those in Fig. 19. It can be seen that the previously
fractal-like shape has turned into a radial branching pattern with a circular envelope.
Thus, for the two types of chemotactic response – food and repulsive, the results

we observe are similar to those obtained for the communicating walkers model. This
agreement is not surprising, as both models capture the important feature of a lubrica-
tion uid. Recall also that the nonlinear di�usion model is the only one which exhibits
a sharp front in 1D.
The e�ect of chemotactic response in the Mimura et al. model is presented in

Figs. 29 and 30. The chemotactic response was added to a previously DLA-like colony
(Fig. 23a). The addition of food chemotaxis turns the colony into a densely branched
one, with branches much thicker than before. The repulsive chemotaxis makes the
branches radially oriented, but they become thicker than before. Thus, the e�ect of
chemotactic responses in this model di�ers from the one obtained for both the walker
model and the Kitsunezaki model. We believe this to stem from the fact that the model
does not include nonlinear di�usion to capture the e�ect of lubrication.
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Fig. 28. 2D growth pattern (b+ s) of the Kitsunezaki model with repulsive chemotactic signaling included.
Parameters are: �0r =1; Dr =1; �r =0:25; 
r =0; �r =0:001. Other parameters as in Fig. 19.

Fig. 29. 2D growth pattern (b + s) of the Mimura et al. model with food chemotaxis included. �0f =0:06.
Other parameters as in Fig. 23a.
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Fig. 30. 2D growth pattern (b+ s) of the Mimura et al. model with repulsive chemotactic signaling included.
Parameters are: �0r =0:1; Dr =1; �r =0:2; 
r =0; �r =0:01. Other parameters as in Fig. 23a

6. Discussion

We �rst briey reviewed experimental observations of branching patterns in various
bacterial strains, under a range of growth conditions. Both the colonial patterns and
the optical microscope observations of the bacterial dynamics were presented. We have
also included a brief summary of the known key biological features required, as we
think, for successful modeling of the growth.
Our goal in this manuscript was to test reaction–di�usion models. To this end we

surveyed the reaction–di�usion models for branching growth that we are familiar with.
Mathematical analysis reveals that a number of di�erent features can lead to instability
of a propagating front: A density-dependent (i.e. nonlinear) di�usion coe�cient; a
lower cuto� in the growth term, and a meta-stable growth term. For this instability
to create pronounced branches, a death term must be added to the growth. Such a
term prevents bacteria inside the colony from moving and “healing” the dips on the
surface. Making the di�usion term nutrient dependent can lead to a similar e�ect. The
experimental observations provide a clear indication that the bacteria turn immobile,
so that a “death” term indeed has to be included in the models.
The fact that di�erent mathematical features can lead to similar (to the eye) branch-

ing patterns emphasizes how cautious we have to be in modeling the colonial devel-
opment. True, it might be that di�erent bacterial strains develop branching patterns by
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the employment of di�erent biological features (each might correspond to one of the
mathematical features). Yet, when we consider a speci�c bacterial strain, comparing
the experimentally observed and model’s patterns is not su�cient to tell us if indeed
the right biological features are included in the model.
What, then, is the right way to tackle the problem? The integrative way: One must

combine the mathematical knowledge (in this case, what mechanisms lead to instabil-
ity and branching) with an attempt to model the (assumed) generic biological features,
and comprehensive comparison with experimental results. As an example, the (mathe-
matical) mechanism of non-linear di�usion leads to a branching colony, with compact
support. We must then ask ourselves whether the movement of bacteria could be de-
scribed in such a way. The answer is positive. As we have explained earlier, the
lubrication uid can be modeled by a nonlinear di�usion of the bacteria.
For more critique test of the models, additional aspects of the growth (such as

functional dependence of the colonial growth velocity on growth conditions, branches
size and width distributions, etc.) have to be compared with the model predictions. One
should also compare the theory with more involved experimental tests, such as the e�ect
of imposed anisotropy, competition between neighboring colonies, and expression of
mutants (emergence of sectors) in expanding colonies.
Our conclusion from the study of bacterial branching growth is that the minimal

features of di�usion, food consumption, reproduction and inactivation are not su�cient
to explain the complete picture of the observed phenomena. We believe that additional
mechanisms must be introduced, and propose chemotactic signaling as plausible one.
This work has dealt with continuous models. Such models are not preferable to

discrete ones. Each has its advantages and disadvantages. The discrete walkers model,
for example, enables us to include the valuable feature of internal degrees of freedom,
but is computationally limited in the number of walkers that can be simulated, and
thus its scaling to the real problem is somewhat problematic. The best strategy is to
employ in parallel both the reaction–di�usion and the walkers approach.
To conclude, despite the di�culties and possible pitfalls, we hope to attract re-

searchers to this emerging new endeavor. After all, a signi�cant progress has been
made towards working out the cybernetic processes (communication, regulation and
control) during colonial development. Yet, many challenging puzzles are waiting to be
solved and tantalizing phenomena are waiting to be discovered.
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Appendix A. From real units to dimensionless models

Our goal is to relate the dimensionless equations with biophysical values of the
parameters. The procedure is to set the dimensional units to be the natural scales.

A.1. Deriving the equations

The di�usive Fisher–Kolmogorov equations in dimensional form (Section 4.1) are

@b
@t
=Db∇2b+ Ebnb;

@n
@t
=Dn∇2n− Ennb ; (A.1)

here b and n are the two dimensional concentration of bacteria and of nutrition, re-
spectively. The �eld b is measured in units of number of bacteria per area in cm2.
The �eld n is measured in units of grams per area in cm2. Experimentally nutrients are
usually measured in g=l. Note that 1 g=l corresponds to 0.3mg=cm2. Db and Dn are the
corresponding di�usion coe�cients in units of cm2=s. Eb is the bacterial reproduction
rate in units of s−1 per nutrition concentration. En is the nutrition consumption rate in
units of s−1 per bacteria concentration.
We change the variables to be dimensionless:

t→ tT; x→ xX; b→ bB; n→ nN ; (A.2)

the new variables are dimensionless and the capitals are their corresponding units. We
let the temporal and spatial units be the natural scales. The (microscopic) time scale
of the model is the bacterial reproduction time �R, so T = �R. The length scale is the
di�usion length of the nutrition during reproduction time. The nutrition available for
bacteria during reproduction time is proportional to the square of the di�usion length.
The length unit is

X =
√
Dn�R : (A.3)

After inserting the dimensionless variables into Eq. (A.1) we obtain

@b
@t
=Db=Dn∇2b+ (TN )Ebbn ; (A.4)

@n
@t
=∇2n− (TB)Enbn :
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We de�ne the relative di�usion coe�cient D≡Db=Dn and impose the following rela-
tions:

TBEn=1 ; (A.5)

TNEb=1 : (A.6)

We obtain the following dimensionless equations:

@b
@t
=D∇2b+ bn ;

@n
@t
=∇2n− bn : (A.7)

A.2. Evaluation of the parameters

We will estimate the values of the parameters Eb; En and Dn, and derive from them
the dimensional units. A review of some of the following biological arguments appears
in Section 3.4.
• The bacterial reproduction time, when bacteria grow under optimal conditions, is
about �R=25min. Colonies which exhibit branching patterns grow under limited
nutrition supply. Therefore the reproduction time will be longer, but in the same
order of magnitude. We set the time unit to be

T = �R=25min : (A.8)

• A typical value for the di�usion coe�cient of chemicals in agar is 10−7 cm2=s. So
we assume that Dn, the di�usion coe�cient of the nutrition in the agar, is similar.
We can �nd the length unit using Eq. (A.3):

X =0:01 cm=100 �m : (A.9)

• The nutrition concentration in the experiments conducted by Ben-Jacob et al. [3],
Rafols [60] and others was 0.1–5mg=cm2. We set N to have a similar value:

N =1mg=cm2 =10× 10−12 g=�2 = 10−7 g=X 2 : (A.10)

• The reproduction rate per bacterium (Eq. (A.1)) is EbNn, where n is the dimension-
less concentration. The rate is the inverse of the reproduction time, which depends
on the nutrition concentration. We assume that N is the concentration for which the
reproduction time is �R. Therefore,

EbN =1=�R (A.11)

and Eq. (A.6) is satis�ed.
• Similarly, EnN is the nutrition consumption rate per bacterium. We suggest that
during reproduction time, a single bacterium consumes an amount of nutrition three
times its mass, which is about 3 × 10−12 g. Therefore, the rate of nutrition
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consumption is

EnN ∼ 3× 10−12 g nutrition
bacteria

1
25min

: (A.12)

From Eqs. (A.5) and (A.10) we obtain the bacterial concentration:

B=N=TEnN =3 bacteria=�2 = 3× 104 bacteria=X 2 : (A.13)

The discrete time step of the numerical integration is measured in units of T . Sometimes
numeric stability demands that the time step will be less than one. Then, as an example,
a time step of 0:001 will correspond to 0:001T ∼ 1 s.

A.3. Equations with cuto� in the reaction term

The scaling performed in the previous section is also suitable for the cuto� equations
(Section 4.2). We are interested in the meaning of the cuto� �. Since � is measured
in units of B, we use Eq. (A.13) to translate numerical values to bacteria concentra-
tions. For example, �=3×10−5 corresponds to 1 bacteria=X 2, while �=1 corresponds
approximately to bacteria covering the agar surface in a continuous layer.

A.4. Mimura et al. model

The model’s equations in dimensional form (Section 4.5) are

@b
@t
=Db∇2b+ Ebbn− a0b

(an + n)(ab + b)
; (A.14)

@n
@t
=Dn∇2n− Enbn ;

@s
@t
=

a0b
(an + n)(ab + b)

;

where an and ab are constants which have the same units as n and b respectively. We
introduce dimensionless variables as previously (Eq. A.2), and impose relation (A.5).
We obtain:

@b
@t
= Db=Dn∇2b+

EbN
EnB

bn− a0T
BN

b
(an=N + n)(ab=B+ b)

;

@n
@t
= ∇2n− bn ;

@s
@t
=
a0T
BN

b
(an=N + n)(ab=B+ b)

: (A.15)

We de�ne new parameters:

D≡Db=Dn ; (A.16)
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�≡ EbN
EnB

; (A.17)

�≡ a0T
BN

: (A.18)

We set an=N =1 and ab=B=1 in the last term of the bacterial equation. (The assignment
is acceptable since Mimura et al. does not justify the exact form of that term, rather
they state that it is only its general properties that matters.) Changing to the new
parameters gives the dimensionless equations.
Scaling this model requires adjusting the values of the units. Relation (A:6) is re-

placed by relation (A:17), which is equivalent to

TNEb= � : (A.19)

Since Eq. (A.11) is still valid, we leave N unchanged. The other units re-scale accord-
ing to

T → �T; X → √
�X; B→ B=� (A.20)

compared to the values of the units evaluated in Section A:2:
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