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Abstract
Fluid simulation has been an active research field in computer graphics for the last 30 years. Stam’s stable
fluids method, among others, is used for solving equations that govern fluids. This method solves a sparse linear
system during the diffusion and move steps, using either relaxation methods (Jacobi, Gauss-Seidel, etc), Conjugate
Gradient (and its variants), or others (not subject of study in this paper). A comparative performance analysis
between a parallel GPU-based (using CUDA) algorithm and a serial CPU-based algorithm, in both 2D and 3D,
is given with the corresponding implementation of Jacobi (J), Gauss-Seidel (GS) and Conjugate Gradient (CG)
solvers.
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1. INTRODUCTION

The stable fluids method was introduced by Stam
[Stam 99] to the field of computer graphics. It allows
for unconditionally stable physics-based fluid simulations.
During the study of this method, it became clear that dur-
ing its diffusion and move steps a sparse linear system had
to be solved. The performance and scalability (maximum
grid size that can be used in real-time) of this method is
directly related to the efficiency of the solver. Solvers that
converge to better values give better visual results. How-
ever, the solver must converge quickly, but not at the cost
of more computation, to allow real-time simulations. Inter-
estingly, and in spite of existing more than one alternative
to solve sparse linear systems (J, GS, CG, etc), an imple-
mentation (to the specific problem of stable fluids) and an
comparative analysis of the various solvers on different ar-
chitectures (GPU using CUDA and CPU) is hard to find,
not to say that they do not exist.

Solvers have to iterate repeatedly and update elements of
a grid. For each solver, the elements of the grid can be
accessed and updated in an asynchronous way (with some
minor changes in the GS solver). Therefore, this is a kind
of problem where clearly we get performance gains in us-
ing parallel computing resources such as GPUs. Since the
release of CUDA, i.e. an API for GPU processing, the sub-
ject of parallel computation on GPU has become more and
more attractive.

This paper addresses to: how to code these solvers on
GPU, evaluation of the gains and drawbacks of GPU im-
plementations, and is it possible to improve the scalability

of the stable fluids method using CUDA.

So, the main contributions of this paper are:

• CUDA-based implementation of stable fluids solvers
in 3D. There is already a CPU-based implementation
for stable fluids in 3D using a Gauss-Seidel solver,
which is due to Ash [Ash 05]. There is also a Cg
shading-based implementation using a Jacobi solver
for 3D stable fluids [Keenan 07]. However, at our best
knowledge, there is no CUDA-based implementation
of 3D stable fluids.

• A comparative study of CUDA-based implementa-
tions of 3D stable fluids using different solvers,
namely: Gauss-Seidel, Jacobi, and Conjugate Gradi-
ent.

This paper is organised as follows. Section 2 reviews the
previous work. Section 3 briefly describes the NVIDIA
Compute Unified Device Architecture (CUDA). Section 4
describes the method of stable fluids, including the Navier-
Stokes equations. Section 5 deals with the implementation
of the three sparse linear solvers mentioned above. Sec-
tion 6 carries out a performance analysis of both CPU- and
GPU-based implementations of the solvers. Finally, Sec-
tion 7 draws relevant conclusions and points out new di-
rections for future work.

2. PREVIOUS WORK

Since the appearance of the stable fluids method due to
Stam [Stam 99], much research work has been done with



this method. To solve the sparse linear system for an
2D simulation, in the diffusion and move steps, both the
Fast Fourier Transform (FFT) in Stam’s [Stam 01] and
the Gauss-Seidel relaxation in Stam’s [Stam 03] were used
(both implementations run on the CPU). The Gauss-Seidel
version was the only that could support internal and mov-
ing boundaries (tips in how to implement internal and mov-
ing boundaries are given in Stam’s [Stam 03]). Later on, in
2005, Stam’s Gauss-Seidel version was extended to 3D,
also for the CPU, by Ash [Ash 05]. In 2007, Ash’s 3D ver-
sion of stable fluids, was implemented for C’Nedra (open
source virtual reality framework) by Bongart [Bongart 07];
this version also runs on the CPU. Recently, in 2008, Kim
presented in [Kim 08] a full complexity and bandwidth
analysis of Stam’s stable fluids version [Stam 03].

In 2005, Stam’s stable fluids version was implemented
on the GPU by Harris [Harris 05] using the Cg language.
This version supported internal and moving boundaries,
but used Jacobi relaxation instead of the Gauss-Seidel re-
laxation. In 2007, an extension to 3D of Harris’work,
was carried out by Keenan et al [Keenan 07]. Still in
2007, when CUDA (see [Nickolls 08] for a quick in-
troduction to CUDA programming) was released, Good-
night’s OpenGL-CUFFT version of Stam’s [Stam 01] be-
came available [Goodnight 07]. The code of this imple-
mentation is still part of the CUDA SDK examples.

The stable fluids method addressed the stability problem
of previous solvers, namely Kass and Miller method in
[Kass 90]. The Kass and Miller method could not be used
for large time steps; consequently it was not possible to use
it in real-time computer graphics applications. The reason
behind this was related to the usage of explicit integration,
done with the Jacobi solver, instead of stable fluids implicit
integration. In spite of the limitations of Kass and Miller
method, in 2004, there was a GPU Cg-based version of this
method implemented by Noe [Noe 04]. This GPU version
is used in real-time, thanks to the gains obtained from us-
ing the GPU.

As earlier mentioned, it is hard to find, not to say that
it does not exist, an comparative analysis of the various
solvers on different architectures (GPU and CPU). How-
ever, one might find performance analysis, comparing the
CPU and GPU versions, of individual methods. In 2007,
the CG method performance for the CPU and GPU was
analysed by Wiggers et al. in [Wiggers 07]. In 2008,
Amorim et al. [Amorim 08]) implemented the Jacobi
solver on both CPU and GPU, having then carried out a
performance analysis and comparison of both implemen-
tations.

Implementations of solvers, for the GPU using shad-
ing language APIs have already been addressed,
namely: Gauss-Seidel and Conjugate Gradient
(in [Kruger 03]), and Conjugate Gradient and multi-
grid solvers (in [Bolz 03]).

To understand the mathematics and algorithm of
CG method (and variants) the reader is referred to
Shewchuck [Shewchuk 94]. Carlson addressed the

problem of applying the CG method to fluids simula-
tions [Carlson 04]. The Preconditioned CG (PCG) was
also overviewed during SIGGRAPH 2007 fluid simulation
course [Bridson 07], where the source code for a C++
implementation of a sparse linear system solver was made
available. SIGGRAPH version builds up and stores the
non-null elements of the sparse matrix. When the sparse
matrix is stored in, memory access efficiency is crucial for
a good GPU implementation, which is a problem that was
addressed by Bell and Garland [Bell 08].

An overview on GPU programming, including the GPU
architecture, shading languages and recent APIs, such as
CUDA, intended to allow the usage of the capabilities of
GPUs parallel processing was addressed in [Owens 08].

In spite of the previous work described above, a CUDA
implementation of Gauss-Seidel and CG solvers for the
specific case of the stable fluids method seems to be non-
existent. This paper just proposes such CUDA-based im-
plementations. Besides, this paper also carries out a com-
parison between Jacobi, Gauss-Seidel and CG solvers, in
their CPU and CUDA implementations.

3. NVIDIA COMPUTE UNIFIED DEVICE ARCHI-
TECTURE (CUDA)

With the advent of the first graphics systems it became
clear that the parallel work required by graphics compu-
tations should be delegated to another component other
than the CPU. Thus, the first graphics cards arrived to al-
leviate graphics processing load of the CPU. However, the
graphics programming was basically done using a kind of
assembly language. With the arrival of the graphics pro-
gramming APIs (such as OpenGL or DirectX) and latter
the high-level shading languages (such as Cg or GLSL),
programming graphics became easier.

When, in 2007, NVIDIA CUDA (Program-
ming Guide [NVIDIA 08a] and Reference Man-
ual [NVIDIA 08b]) was released, it was made possible to
specify how and what work should be done in the NVIDIA
graphics cards. It became possible to program directly the
GPU, using the C\C++ programming language. CUDA is
available for Linux and Windows operative systems, and
includes the BLAS and the FFT libraries.

The CUDA programming logic separates the work (see
Fig. 1) that should be performed by the CPU (host) from
the work that should be performed by the GPU (device).
The host runs its own code and launches kernels to be ex-
ecuted by the GPU. After a kernel call, the control returns
immediately to the host, unless a lock is activated with
cudaThreadSynchronize. The GPU and the CPU
work simultaneously after a kernel call, each running its
own code (unless a lock is activated in the host). The GPU
runs the kernels by order of arrival (kernel 1 then kernel 2
as shown in Fig. 1), unless they are running on different
streams, i.e. kernel execution is asynchronous. If a lock
is activated the next kernel will be only called when the
previously called kernels finish their jobs.

A kernel has a set of parameters, aside from the pointers



Figure 1. CUDA work flow model.

to device memory variables or copies of CPU data. The
parameters of a kernel specify the number of blocks in a
grid (in 2D only), the number of threads (in x, y, z direc-
tions) of each grid block, the size of shared memory per
block (0 by default) and the stream to use (0 by default).
The maximum number of threads allowed by block is 512
(x× y × z threads per block). All blocks of the same grid
have the same number of threads. Blocks work in parallel
either asynchronously or synchronously. With this infor-
mation the kernel specifies how the work will be divided
over a grid.

When talking about CUDA, four kinds of memory are con-
sidered (see Fig. 2). Host memory refers to the CPU-
associated RAM, and can only be accessed by the host.
The device has three kinds of memory: constant memory,
global memory and shared memory. Constant and global
memory are accessible by all threads in a grid. Global
memory has read/write permissions from each thread of a
grid. Constant memory only allows read permission from
each thread of a grid. The host may transfer data from
RAM to the device global or constant memory or vice-
versa. Shared memory is the memory shared by all threads
of a block. All threads within the same block have read-
/write permissions to use the block shared memory.

4. STABLE FLUIDS

The motion of a viscous fluid can be described by the
Navier-Stokes (NS) equations. They are differential equa-
tions that establish a relation between pressure, velocity
and forces during a given time step. Most physically based
fluid simulations use NS equations to describe the mo-
tion of fluids. These simulations are based on three NS
equations. One equation just ensures mass conservation,
and states that variation of the velocity field equals zero
(5v = 0). The other two equations describe the evolu-
tion of velocity (Eq. 1) and density (Eq. 2) over time as

Figure 2. CUDA memory model.

follows:

∂u

∂t
= − (u · ∇)u+ v∇2u+ f (1)

∂ρ

∂t
= − (u · ∇) ρ+ k∇2ρ+ S (2)

where u represents the velocity field, v is a scalar de-
scribing the viscosity of the fluid, f is the external force
added to the velocity field, ρ is the density of the field,
k is a scalar that describes the rate at which density dif-
fuses, S is the external source added to the density field,

and ∇ =
(
∂

∂x
,
∂

∂y
,
∂

∂z

)
is the gradient.

NS-based fluid simulators usually come with some sort of
control user interface (CUI) to allow for the distinct users
to interact with the simulation (see steps 2 and 3 in Al-
gorithm 1). In order to solve the previous equations, NS-
based fluid simulators work as follows:

Algorithm 1 NS fluid simulator.
Output: Updated fluid at each time-step

1: while simulating do
2: Get forces from UI
3: Get density source from UI
4: Update velocity (Add force, Diffuse, Move)
5: Update density (Add force, Advect, Diffuse)
6: Display density
7: end while

To better understand velocity and density updates, let us
detail steps 4 and 5 in Algorithm 1.

4.1 Add force (f term in Eq. 1 and S term in Eq.
2)

In this step the influence of external forces to the field is
considered. It consists in adding a force f to the velocity
field or a source S to the density field. For each grid cell
the new velocity u is equal to its previous value u0 plus the
result of multiplying the simulation time step ∆t by the



force f to add, i.e. u = u0 + ∆t × f . The same applies
to the density, i.e. ρ = ρ0 + ∆t × S, where ρ0 is the
density previous value, ρ is the new density value, ∆t is
the simulation time step, and S is the source to add to the
density.

4.2 Advect (− (u.∇)u term in Eq. 1 and − (u.∇) ρ
term in Eq 2)

The fluid moves according to the system velocity. When
moving the fluid transports objects, densities, itself (self-
advection) and other quantities. This is referred as advec-
tion. Note that advection of the velocity also exists during
the move step.

4.3 Diffuse (v∇2u term in Eq. 1 and k∇2 term in
Eq. 2)

Viscosity describes a fluid’s internal resistance to flow.
This resistance results in diffusion of the momentum (and
therefore velocity). To diffuse, we need to solve, for the
3D case, the following equation for each grid cell.

Dn+1
i,j,k −

kdt

h3

(
Dn+1

i−1,j,k +Dn+1
i,j−1,k +Dn+1

i,j,k−1+

Dn+1
i+1,j,k +Dn+1

i,j+1,k +Dn+1
i,j,k+1 − 6Dn+1

i,j,k

)
= Dn

i,j,k

(3)

In both cases we will have to solve a sparse linear system
in the form Ax = b.

4.4 Move (− (u.∇)u term in Eq. 1) and 5v = 0

When the fluid moves, mass conservation must be ensured.
This means that the flow leaving each cell (of the grid
where the fluid is being simulated) must equal the flow
coming in. But the previous steps (Add force and dif-
fuse for velocity) violate the principle of mass conserva-
tion. Stam uses a Hodge decomposition of a vector field
(the velocity vector field specifically) to address this issue.
Hodge decomposition states that every vector field is the
sum of a mass conserving field and a gradient field. To
ensure mass conservation we simply subtract the gradient
field from the vector field. In order to do this we must find
the scalar function that defines the gradient field. Comput-
ing the gradient field is therefore a matter of solving, for
the 3D case, the following Poisson equation for each grid
cell.

Pi−1,j,k + Pi,j−1,k + Pi,j,k−1+

+Pi+1,j,k + Pi,j+1,k + Pi,j,k+1 − 6Pi,j,k =

= (Ui+1,j,k − Ui−1,j,k + Vi,j+1,k−

−Vi,j−1,k +Wi,j,k+1 −Wi,j,k−1)h

(4)

Solving this Poisson equation, for the 3D case, for each
grid cell is the same as solving a sparse symmetrical linear

system. This system can be solved with the solver used
in the diffuse step (J, GS or CG) as described in the next
section.

5. SOLVER ALGORITHMS

As previously mentioned, the density diffusion, the veloc-
ity diffusion, and move steps require for a sparse linear
system to be solved. To best understand the kind of prob-
lem at hand let us assume we are going to simulate our
fluid in a 22 grid domain (blue cells in Fig. 3 on the left).
This means that our grid will actually be a 42 grid, where
the fluid is inside a container. So the extra cells are the ex-
ternal boundaries of the simulation (red cells in Fig. 3 on
the left). To allow a better memory usage, we represent the
grid as a 1D array, with 42 elements (as shown in Fig. 3 on
the left). For a 3D simulation eight 1D arrays are required.
Velocity requires six 1D arrays, two for each of its com-
ponents, i.e. current and previous values of velocity (vx,
vx0, vy, vy0, vz, vz0). Density will require the remaining
two 1D arrays (from the eight), for its current and previous
values (d, d0).

Figure 3. 2D Grid represented by a 1Darray
(left), and grid cell interacting with its neigh-
bours (right).

During the density diffusion, and the velocity diffusion and
move steps, each cell in the grid interacts with its direct
neighbours (see Fig. 3 on the right). In a 42 grid, there
would be a total of 42 interactions between a cell and its
neighbours. Let us consider one of the 1D array pairs,
for example for the velocity y component previous (vy0)
and current values (vy). If we took the interactions for
each fluid cell we would obtain a linear system in the form
Ax = b (see Fig. 4).

In this system A is a Laplacian matrix of size 162, and
its empty cells are zero. For diffusion and move steps a
system in this form has to be solved. To do so one can
either build and store A in memory, using a 1D array or
a data structure of some kind, or to use its values directly.
In the second option, this means that the central cell value
is multiplied by −4 in 2D or by −6 in 3D, and its direct
neighbours are multiplied by 1.



Figure 4. The sparse linear system to solve
(for a 22 fluid simulation grid).

5.1. Jacobi and Gauss-Seidel Solvers

The Jacobi and Gauss-Seidel solvers, for a given number
of iterations (line 1 in Algorithms 2 and 3) for each cell
of the grid (line 2 in Algorithms 2 and 3) will calculate
the cell value (line 3 in Algorithms 2 and 3). What dis-
tinguishes both solvers is that Gauss-Seidel uses the pre-
viously calculated values, but Jacobi does not. Therefore
Jacobi convergence rate will be slower when compared to
the Gauss-Seidel solver. Since the Jacobi solver does not
use already updated cell values it requires the storage of
the new values, in a temporary auxiliary 1D array (aux).
When all new values of cells have been determined, the
old values of cells will be replaced with the values stored
in the auxiliary 1D array (lines 5 to 7 in Algorithm 2). Af-
ter some maths (not addressed in this paper) the diffusion
and move equations to solve can be made generic where
only iter and a will differ (line 3 in Algorithms 2 and 3).

Algorithm 2 CPU based Jacobi.
Input:
x: 1D array with the grid current values.
x0: 1D array with the grid previous values.
aux: auxiliary 1D array.

a:
kdt

h3
(see Eq. 3).

iter: 1 +
kdt

h3
(see Eq. 3).

max iter: number of times to iterate.
Output:
x: 1D array with the grid new interpolated values.

1: for iteration = 0 to max iter do
2: for all grid cells do
3: auxi,j,k = (x0i,j,k + a× (xi−1,j,k + xi,j−1,k +
xi,j,k−1 + xi+1,j,k + xi,j+1,k + xi,j,k+1))/iter

4: end for
5: for all grid cells do
6: xi,j,k = auxi,j,k

7: end for
8: Enforce Boundary Conditions
9: end for

Algorithm 3 CPU based Gauss-Seidel.
Input:
x: 1D array with the grid current values.
x0: 1D array with the grid previous values.

a:
kdt

h3
(see Eq. 3).

iter: 1 +
kdt

h3
(see Eq. 3).

max iter: number of times to iterate.
Output:
x: 1D array with the grid new interpolated values.

1: for iteration = 0 to max iter do
2: for all grid cells do
3: xi,j,k = (x0i,j,k + a × (xi−1,j,k + xi,j−1,k +
xi,j,k−1 + xi+1,j,k + xi,j+1,k + xi,j,k+1))/iter;

4: end for
5: Enforce Boundary Conditions
6: end for

In the GPU, for Jacobi and the Gauss-Seidel, we will
have a call to a kernel (the kernels are Algorithms 4 and
5). A kernel will have two parameters: grid stands for
the number of blocks in X and Y axis, and threads
stands for the number of threads per block. The dimen-
sions of the block are given with BLOCK DIM X and
BLOCK DIM Y . Each block treats all grid slices in z
direction for the threads in x and y.

dim3 threads (BLOCK_DIM_X ,BLOCK_DIM_Y ) ;
dim3 grid (NX /BLOCK_DIM_Z ,NY /BLOCK_DIM_Y ) ;

/ / J a c o b i k e r n e l c a l l
_jcb<<<grid ,threads>>>(x ,x0 ,a ,iter ,max\_iter ) ;
CUT_CHECK_ERROR ("Kernel execution failed" ) ;
cudaThreadSynchronize ( ) ;

/ / o r

/ / Gauss−S e i d e l r e d b l a c k k e r n e l c a l l
_gs_rb<<<grid ,threads >>>(x ,x0 ,a ,iter ,max\_iter ) ;
CUT_CHECK_ERROR ("Kernel execution failed" ) ;
cudaThreadSynchronize ( ) ;

In the GPU implementations of Jacobi and Gauss-Seidel
red black algorithms, the values of i and j (cell coordi-
nates) will be obtained with the blocks, threads, and grid
information (lines 1 to 2 in Algorithms 4 and 5). The
Gauss-Seidel solver is a sequential algorithm since it re-
quires previous values to be calculated. The GPU-based
version of Gauss-Seidel has two interleaved passes, first it
updates the red cells (line 7 in 5) and then the black cells
(line 11 in Algorithm 5), according to the pattern shown in
Fig. 5.

Figure 5. Gauss-Seidel red black pattern for
a 2D grid.



Thus previous values are used as in the CPU-based ver-
sion. The GPU-based implementation of Gauss-Seidel al-
lows more iterations than the CPU-based implementation.
Nevertheless, it also takes two times more iterations to con-
verge to the same values as the CPU-based implementa-
tion.

The Jacobi GPU-based version requires to temporarily
store each grid cell new value in a device global memory
1D array (aux). After each iteration the values stored in x
are replaced by the new values, temporarily stored in axu
(line 8 in Algorithm 4).

The GPU-based version of all solvers (J, GS, CG) suffer
from global memory latency, which appears during suc-
cessive runs of the solvers (an issue for real time purposes).
However, only the Conjugate Gradient is affected to a level
of degrading notoriously the solver performance.

Algorithm 4 Jacobi GPU kernel.
Input:
x: 1D device global memory array with the grid current
values.
x0: 1D device global memory array with the grid previous
values.
aux: auxiliary 1D device global memory array.

a:
kdt

h3
for diffusion (see Eq. 3), 1 for move (see Eq. 4).

iter: 1 +
kdt

h3
(see Eq. 3), 6 for Move (see Eq. 4).

max iter: number of times to iterate.
Output:
x: new interpolated values of x.

1: i = threadIdx.x+ blockIdx.x× blockDim.x
2: j = threadIdx.y + blockIdx.y × blockDim.y
3: for iteration = 0 to max iter do
4: for k = 0 to NZ do
5: if (i! = 0) && (i! = NX − 1) && (j! = 0) &&

(j! = NY − 1)&&(k! = 0)&&(k! = NZ − 1) then
6: auxi,j,k = (x0i,j,k +a×(xi−1,j,k +xi+1,j,k +
xi,j−1,k + xi,j+1,k + xi,j,k−1 + xi,j,k+1))/iter

7: syncthreads
8: xi,j,k = auxi,j,k

9: end if
10: Enforce Boundary Conditions
11: end for
12: end for

5.2. Conjugate Gradient Solver

The Conjugate Gradient algorithm (see Algorithm 6) con-
sists in a series of calls to functions, in the CPU-based ver-
sion, or to a kernel call, in the GPU-based implementation.

_cg<<<1,NX>>>(r ,p ,q ,x ,b ,alpha ,beta ,rho ,rho0 ,rho_old ,a←↩
,iter ,max_iter ) ;

CUT_CHECK_ERROR ("Kernel execution failed" ) ;

Before iterating, it is first required (lines 1 to 4 of Algo-
rithm 6) to set the initial values of r and p, and of ρ0 and
ρ. After the initial values are set up we are ready to iterate.

Algorithm 5 Gauss-Seidel red black GPU kernel.
Input:
x: 1D device global memory array with the grid current
values.
x0: 1D device global memory array with the grid previous
values.
a:
kdt

h3
for diffusion (see Eq. 3), 1 for move (see Eq. 4).

iter: 1 +
kdt

h3
(see Eq. 3), 6 for Move (see Eq. 4).

max iter: number of times to iterate.
Output:
x: new interpolated values of x.

1: i = threadIdx.x+ blockIdx.x× blockDim.x
2: j = threadIdx.y + blockIdx.y × blockDim.y
3: for iteration = 0 to max iter do
4: for k = 0 to NZ do
5: if (i! = 0) && (i! = NX − 1) && (j! = 0) &&

(j! = NY − 1)&&(k! = 0)&&(k! = NZ − 1) then
6: if (i+ j)%2 == 0 then
7: xi,j,k = (x0i,j,k +a×(xi−1,j,k +xi+1,j,k +
xi,j−1,k + xi,j+1,k + xi,j,k−1 + xi,j,k+1))/iter

8: end if
9: syncthreads

10: if (i+ j)%2! = 0 then
11: xi,j,k = (x0i,j,k +a×(xi−1,j,k +xi+1,j,k +

xi,j−1,k + xi,j+1,k + xi,j,k−1 + xi,j,k+1))/iter
12: end if
13: end if
14: Enforce Boundary Conditions
15: end for
16: end for

We will iterate until all iterations are done or the stop cri-
terion is achieved (lines 5 and 6 of Algorithm 6). For each
iteration, the first step (line 7 of Algorithm 6) is to update
q. After updating q, the next step (lines 8 to 12 of Algo-
rithm 6) is to determine the new distance to travel along
p, α. During the update of α, the dot product of p by q
must be determined. After updating α, we need to deter-
mine the iterated values of x, and the new r residues (lines
9 and 10 of Algorithm 6. Before updating each grid cell
previous optimal search vector (gradient), that is orthogo-
nal (conjugate) to all the previous search vectors, p (line
13 of Algorithm 6), ρold, ρ and β must be updated (lines
11 to 13 of Algorithm 6). After updating β the new search
directions (p values) must be set.

The most intuitive way to migrate the Conjugate Gradient
from a sequential to a parallel algorithm, is to perform its
steps (i.e. dot products, update of grid positions, etc) by
kernels, or using the CUDA BLAS library kernels. How-
ever, most of these kernels must be called for a certain
number of iterations. Therefore, the successive invoca-
tion of kernels will result in timeouts in the simulation.
The best solution found was to build up a massive ker-
nel. However, this results in losing much of the CUDA
performance gains. The reason is related with the parallel
version of dot product, which forces the use of one block,



Algorithm 6 Conjugate Gradient method.
Input:
x: 1D array with the grid current values.
x0: 1D array with the grid previous values.
r, p, q: auxiliary 1D arrays.

a:
kdt

h3
(see Eq. 3).

iter: 1 +
kdt

h3
(see Eq. 3).

max iter: number of times to iterate.
tol: tolerance after which is safe to state that the values of
x converged optimally Output:
x 1D array with the grid new interpolated values.

1: r = b−Ax
2: p = r
3: ρ = rT · r
4: ρ0 = ρ
5: for iteration = 0 to max iter do
6: if (ρ! = 0) and ρ > tol2 × ρ0 then
7: q = Ap
8: α = ρ/(pT · q)
9: x+ = α× p

10: r− = α× q
11: ρ old = ρ
12: ρ = rT · r
13: β = ρ/ρ old
14: p = r + β × p
15: Enforce Boundary Conditions
16: end if
17: end for

with NX threads in x. Much of the steps of the Conjugate
Gradient performance degrades with this restriction. Even
worse this version has worst performance than the CPU-
based version.

6. SOLVERS PERFORMANCE ANALYSIS

After implementing the solvers, tests of their overall
performance were made (see Tables 1 and 2). The
solvers, both for GPU and CPU, were tested on a In-
tel(R) Core(TM)2 Quad CPU Q6600@2.40GHz with
4096MBytes of DDR2 RAM and an NVIDIA GeForce
8800 GT graphics card. The CPU-based version is purely
sequential, i.e. it runs in a single core and it is not multi-
threaded. The following tables show the total time (‘CPU
time’ and ‘GPU time’) that each solver takes, for a certain
number of iterations (‘#Iterations’), and a specific grid size
(‘Grid Size’). Each solver is invoked a number of times in
a single step of the stable fluids method (5 for 2D and 6
for 3D). For 2D, we tested each solver using 10 iterations,
for all grid sizes. In 3D, we used 4 iterations instead for
each solver. In 2D 10 iterations suffice, while we need
a minimum number of 4 iterations in 3D, to ensure some
convergence of the results. More accurate converging val-
ues result in better visual quality. A total time superior to
33ms does not guarantee real-time performance, i.e. no
frame rate greater than 30 frames per second is achieved.
The time values were obtained from the average time of 10

tests for each solver implementation, independently of the
grid size.

Grid # CPU Time GPU Time
Size Iterations (ms) (ms)

J 10 0, 0 0, 290219
GS 322 10 0, 0 0, 290032
CG 10 0, 0 0, 567346

J 10 2, 0 0, 290900
GS 642 10 3, 0 0, 295285
CG 10 3, 0 0, 571604

J 10 8, 0 0, 293459
GS 1282 10 15, 0 0, 289818
CG 10 13, 0 0, 573089

J 10 35, 0 0, 296003
GS 2562 10 60, 0 0, 289882
CG 10 56, 0 0, 579169

J 10 298, 0 0, 306887
GS 5122 10 245, 0 0, 308024
CG 10 350, 0 0, 580205

Table 1. Performance of 2D solvers for CPU
and GPU, for distinct grid sizes.

Grid # CPU Time GPU Time
Size Iterations (ms) (ms)

J 4 10, 0 0, 408663
GS 323 4 15, 0 0, 343595
CG 4 15, 0 0, 665508

J 4 170, 0 0, 416022
GS 643 4 141, 0 0, 348235
CG 4 239, 0 0, 673512

J 4 1482, 0 0, 424283
GS 1283 4 1208, 0 0, 360813
CG 4 2017, 0 0, 68272

Table 2. Performance of 3D solvers for CPU
and GPU, for distinct grid sizes.

From the previous tables we can draw some conclusions.
When comparing the columns ‘CPU time’ and ‘GPU time’
it is clear that in the 2D and 3D versions the GPU-based
implementation surpasses the CPU-based implementation.
However, the previous tables only present the processing
times, not including timeouts. When running the simula-
tion, timeouts appear from device global memory latency
in the GPU-based version. These timeouts are hidden (i.e.
they exist but they do not significantly degrade the solver
overall performance) in the Jacobi and Gauss-Seidel GPU
implementations. Unfortunately, the Conjugate Gradient
timeouts are so severe that the losses overcome the gains
in time.

The Conjugate Gradient method converges faster than Ja-
cobi and Gauss-Seidel in spite of involving more computa-



tions during each iteration, but this is not visible for a small
number of iterations. Therefore, CPU-based implementa-
tion of stable fluids using the Conjugate Gradient solver
is inadequate for real-time purposes when the grid size is
over 1282.

Except for the 322 grid, the GS and J solvers have sig-
nificant gains on GPU. Comparing ‘CPU time’ and ‘GPU
time’ for J and GS solvers it becomes clear that the GPU-
based versions are faster. Besides, we can fit more solver
iterations per second, using the GPU-based implementa-
tion. Unlike the CPU-based version, the GPU-based ver-
sions of J and GS solvers enable the usage of a 1283 grid
in real-time. Thus, the observation of the ‘#Iterations’ and
‘GPU time’ columns leads us to conclude that GS is the
best choice for 2D and 3D grid sizes. In the CPU-based
versions, the best choice in 2D is the J solver, except for
the 5122 grid where GS is the best choice. In 3D, the
CPU-based version of GS is a better choice for grid sizes
superior to 323.

Another important consideration has to do with the time
complexity of both CPU- and GPU-based implementations
of stable fluids. Looking at Tables 1 and 2, we easily ob-
serve that the GPU-based solvers have constant complex-
ity approximately. On the other hand, CPU-based solvers
have quadratic complexity for small grids, but tend to cubic
complexity (i.e. the worst case) for larger grids. However,
computing the time complexity more accurately would re-
quire more exhaustive experiments, as well as a theoretical
analysis.

Figs. 6 to 8 show a 1282 fluid simulation with internal
and moving boundaries (red dots). Rendering was done
using OpenGL Vertex Buffer Objects. The CPU version is
the one here shown. The frame rate includes the rendering
time.

7. CONCLUSIONS AND FUTURE WORK

This paper has described CUDA-based implementations of
Jacobi, Gauss-Seidel, and Conjugate Gradient solvers for
3D stable fluids on GPU. These solvers have been then
compared to each other, including their CPU-based imple-
mentations. The most important result from this compar-
ative study is that the GPU-based implementations have
constant time complexity, which allows to have a more ac-
curate control in real-time applications.

The 3D stable fluids method has significant memory re-
quirements and time restrictions to solve the Navier-Stokes
equations at each time step. It remains to prove that other
alternatives (not addressed in this paper) to 3D fluid sim-
ulations such as Shallow Water Equations [Miklós 09],
the Lattice Boltzmann Method [TJ08], the Smoothed Par-
ticle Hydrodynamics [Schlatter 99], or procedural meth-
ods [Jeschke 03] are better choices. We hope to explore
other emerging solvers for sparse linear systems in a near
future. In particular, we need a solver with a better conver-
gence rate than relaxation techniques (J and GS), and with
no significant extra computational effort such as the CG.

Figure 6. A CPU version of [Stam 03] fluid
simulator with internal and moving bound-
aries (red dots), using the J solver.
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