Lecture 1: Computer Organization

Why parallel computing

e Solving an n x n linear system Ax=b by using Gaussian
. 1
elimination takes = §n3 flops.

e On Corei7 975 @ 4.0 GHz, which is capable of about
60-70 Gigaflops

n flops time
1000 3.3x108 0.006 seconds
1000000 3.3x10Y/ 57.9 days

Milestones in Computer Architecture

e Analytic engine (mechanical device), 1833

— Forerunner of modern digital computer, Charles Babbage (1792-1871) at University of Cambridge
. Electronic Numerical Integrator and Computer (ENIAC), 1946

— Presper Eckert and John Mauchly at the University of Pennsylvania

— The first, completely electronic, operational, general-purpose analytical calculator. 30 tons, 72 square
meters, 200KW.

— Read in 120 cards per minute, Addition took 200us, Division took 6 ms.
* |AS machine, 1952
— Johnvon Neumann at Princeton’s Institute of Advanced Studies (lAS)

— Program could be represented in digit form in the computer memory, along with data. Arithmetic
could be implemented using binary numbers

— Most current machines use this design
Transistors was invented at Bell Labs in 1948 by J. Bardeen, W. Brattain and W. Shockley.
PDP-1, 1960, DEC
— First minicomputer (transistorized computer)
PDP-8, 1965, DEC
— Asingle bus (omnibus) connecting CPU, Memory, Terminal, Paper tape |/O and Other I/0.
7094, 1962, IBM
— Scientific computing machine in early 1960s.
8080, 1974, Intel
— First general-purpose 8-bit computer on a chip
IBM PC, 1981
— Started modern personal computer era
Remark: see also http://www.computerhistory.org/timeline/?year=1946

Moore’s law

Gordon Moore’s observation in 1965: the number of
transistors per square inch on integrated circuits had doubled
every year since the integrated circuit was invented (often
inte o reted as Computer performance doubles every two years (same cost))

Transistors
Per Die

1010
€ 1965 Actual Data 16 2G =

10° = MOS Arrays A MOS Logic 1975 Actual Data 256m 212M

8 1975 Projection 64M ltanium™
- Pentium® 4

Pentium® 111
mﬁentiumﬂ Il

107 Memory

108
10°
104
103
102
101

100
1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

(Gordon_Moore_ISSCC_021003.pdf)

A Microprocessor

Moore’s law

e Moore’s revised observation in 1975: the pace slowed down a
bit, but data density had doubled approximately every 18
months

e Moore’s law is dead

Gordon Moore quote from 2005: “in terms of size [of transistor]
..we’re approaching the size of atoms which is a fundamental

Intel Transistors Technology
CPU (x1000)

barrier...”

1971 4004 2.3

1978 8086 31 2.0 micron

1982 80286 110 HMOS

1985 80386 280 0.8 micron CMOS
1989 80486 1200

1993 Pentium 3100 0.8 micron biCMOS

1995 Pentium Pro 5500 0.6 micron—0.25

www.top500.org

TIANHE-2

Site:

Manufacturer:

Cores:

Linpack Performance (Rmax)
Theoretical Peak (Rpeak)
Nmax

Power:

Memory:

Processor:

Interconnect:

Operating System:
Compiler:

Math Library:

MPI:

National Super Computer Center in

Guangzhou
NUDT

3,120,000
33,862.7 TFlop/s
54,902.4 TFlop/s
9,960,000
17,808.00 kW
1,024,000 GB
Intel Xeon E5-2692v2 12C 2.2GHz
TH Express-2
Kylin Linux

icc

Intel MKL-11.0.0

MPICH2 with a customized GLEX
channel

http://www.top500.org/site/50365

www.top500.org
TITAN - CRAY XK7
Site:

System URL:

Manufacturer:

Cores:

Linpack Performance (Rmax)
Theoretical Peak (Rpeak)
Power:

Memory:

Processor:

Interconnect:

Operating System:

DOE/SC/Oak Ridge National
Laboratory

http://www.olcf.ornl.gov/titan/

Cray Inc.
560,640

17,590 TFlop/s
27,112.5 TFlop/s
8,209.00 kw
710,144 GB

Opteron 6274 16C 2.2GHz, NVIDIA
TESLA K20 GPU ACCELERATORS

Cray Gemini interconnect

Cray Linux Environment

http://www.top500.org/site/48553
http://www.olcf.ornl.gov/titan/

CODE

LAMMPS

CAM-SE

SCIENTIFIC
DISCIPLINE

Molecular
Science

Climate
change
science

CODE DESCRIPTION

LAMMPS is a
molecular
dynamics general
statistical
mechanics based
code applicable to
bioenergy
problems .
http://lammps.san
dia.gov/

CAM-SE. Community
Atmosphere Model -
Spectral Elements.
http://earthsystemco

g.org/projects/dcmip-
2012/cam-se

EXAMPLE PROGRAMMING
SCIENCE MODEL FOR
PROBLEM ACCELERATION
Course-grained OpenCL or
molecular CUDA
dynamics

simulation of

bulk

heterojunction
polymer blend
films used, e.g.,
within organic
photovoltaic
devices.

High-resolution
atmospheric
climate
simulation using
CAMS5 physics
and the MOZART
chemistry
package.

CUDA Fortran

https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/

PERFORMANCE
INFORMATION

Speedup is 1X to 7.4X on 900
nodes, comparing XK7 to
XE6. The performance
variation is strongly
dependent upon the number
of atoms per node. This
algorithm is mixed precision
on GPU, double precision on
CPU.

POINT OF
CONTACT

Mike
Brown,
ORNL

Matt
Norman,
ORNL

www.top500.org

SEQUOIA - BLUEGENE/Q,

Site: DOE/NNSA/LLNL
Manufacturer: IBM

Cores: 1,572,864

Linpack Performance (Rmax) 17,173.2 TFlop/s
Theoretical Peak (Rpeak) 20,132.7 TFlop/s
Power: 7,890.00 kW

Memory: 1,572,864 GB
Processor: Power BQC 16C 1.6GHz
Interconnect: Custom Interconnect

Operating System: Linux

http://www.top500.org/site/49763

Performance

10 EFlop/s

1 EFlop/s

100 PFlop/s

10 PFlop/s

1 PFlop/s

100 TFlop/s

10 TFlop/s

1 TFlop/s

100 GFlop/s

10 GFlop/s

1 GFlop/s

100 MFlop/s

Performance Development

11/2014: Sum = 308.9 PFlop/s
....@
[
..... AA AaA
® A A
.. ak
.... A
® A A
.I Ak A
] A
... A Ak A
.... L‘
..' AA Ad A .l.
... l...
..I L AA a®
..l. A Al A .-l.
A AA
[] A ..l
1‘ I.
|
,.‘ Ad A4 . ..-
-..
l..
__,"'.
(L
1994 199 1998 2000 2002 2004 2006 2008 2010 2012 2014
Lists
Bsum W# Wl #500

Motherboard diagram of PC

MNorthbridge

with heat sink Southbridge

DRAM
memory slots

hard drive PeLslons

slots

power

connector x‘\‘ :

CPU heat sinks
and mounting
points for fans

CPU socket

‘\'\ connectors for peripherals (e.g. audio,
Ethernet, serial port, USB, etc.}

http://education-
portal.com/academy/lesson/what-is-
a-motherboard-definition-function-
diagram.html#lesson

CPU

) Clock W Front-side
Graphics M bus
card slot i

High-speed
graphics bus
(AGP or PCI
Express)

Memory Slots

Northbridge Memory

(memory
controller hub)

Internal
Bus

PCI
-4 Onboard
graphics
controller

Southbridge

(IfO controller
hub)

Cables and

ports leading

Audio Codec off-board

CMOS Memory

PCI Slots

Super /O

Serial Port
Parallel Port
Floppy Disk

Flash ROM

Keyboard
(BIOS) Jn'f('-!ousre

http://en.wikipedia.org/wiki/Front-side bus

http://en.wikipedia.org/wiki/Front-side_bus

Intel S2600GZ4 Server Motherboard

Meaugimum Memory Cueal intef® ¥eon® ES-S800

H Capacity with 24 LR R- ; R
Grizzly Pass G e | [Soncymisgeee oy
Intel’ Server Board S2600GZ

*A
RAID/ROC
Mol le

Enefgy Efficient
Spread core Design

Inter® TXT

L e
Fu'mr': ¥ e Fﬁl?u. |r -

g A i iilq{.'ngi A
u: JI‘J AF |r||'|r|.r |-|-|‘|I'I'-"-|--=--—-- m

=

Upto BSASISATA 2 | || L : 2 A B

Inteqrated power SATA V3 Intel RAID 1 RS - I e 3. - il B eLISHE S50ty A
distribartion for Common 600 Upgrade Key = T I T ush & SATADOM
Redundant Power Supplies || ppcasams

Target market: Entenpeise Rack r@mg;:a:-;m 3

& High Performance Computing SUPER SLOTS I
Key Benefits: (¥
1} Maximum Mmooy Capacily wema
2} Rack Optimized Per formance Imtegrated

3} Extensive 70 Flexibiity W Ouad Gbe

* CPU Type: Dual Intel Xeon E5-2600 Series
¢ Maximum Memory Supported: 768GB

¢ Intel® C600 Chipset
http://www.memoryexpress.com/

Motherboard diagram of S2600GZ4

x4 DMI2 | | x4 PCIe* uplink
(PCIe* 2.0 speed) | | for SAS: -D, -T
i = Serial Attached
14x2.0 USB 2 SCSI (SAS)
4 ports, 3Gb/s

4x3G/2x6G ; 8 ports on -D, -T
Serial ATA -

SM Bus 2.0

SPI FLASH

Super I/0

http://www.intel.com/content/www/us/en/chipsets/s
erver-chipsets/server-chipset-c600.html

von Neumann machine

N

Machine is divided
into a CPU and
main memory

Stored-program
concept

CPU executes a
stored program

Common machine
model for many
years

Fetch Store

Machine Language, Assembly and C

High-level language program

Compiler

Assembler

Linker

T

Assembly language program

e CPU understands machine language only
e Assembly language is easier to understand:

— Abstraction

— A unique translation (every CPU has a different set of assembly

instructions)

Remark: Nowadays we use Assembly only when:
1. Processing time is critical and we need optimize the execution

2. Low level operations, such as operating on registers etc. are needed, but not
supported by the high level language.

3 Memory is critical, and optimizing its management is required.

e Clanguage:

— The translation is not unique. It depends on Compiler and optimization.

— Itis portable.

Structured Machines

Problem-oriented language
level

l Translation (compiler)

Assembly language level

1 Translation (assembler)

Operating system machine
level

1 Partial interpretation (operating system)

Instruction set architecture
level (ISA)

l Interpretation (microprogram) or direct execution

Microarchitecture level

1 Hardware

Digital logic level

High-level language
program (in C)

Assembly language
program (for

microprocessor without lw
interlocked pipeline lw
stages (MIPS), which isan sw
instruction set SW

architecture (ISA))

Binary machine language
program (for MIPS)

Swap (int v[], int k)

{

$15,
$16,
$16,
$15,

int temp;
temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

//load word at RAM address ($2+0) into register $15

// store word in register $16 into RAM at address ($2+0)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 OOOO 1001 1100 0110
1100 0110 1010 1111 0101 1000 OOOO 1001
0101 1000 0000 1001 1100 0110 1010 1111

v

Instruction
Fetch

v

Instruction
Decode

Operand
Fetch

v

Execute

v

Result
Store

v

Next
Instruction

Execution Cycle

Obtain instruction from program storage
Determine required actions and instruction size

Locate and obtain operand data

Compute result value or status

Deposit results in storage for later use

Determine successor instruction

16-bit Intel 8086 processor

MEMORY

e —————— e e e e e
i L

| BwW I C-BUS

| < L

| T [

I 5 INSTRUCTION
| STREAM
: 4 BYTE

i k| QUEUE

1 B-BUS 2

: ES .

i cs e e e e e e e e e e e —————
i SS |

1 DS |

I P |

: : CONTROL
S N I o] SYSTEM

|

h £

| EW '} A-BUS

|

|

|

]

I AH AL

: BH BL

| CH CL ARITHMETIC

i DOH DL LOGIC UNIT

I P T

I BP | l

| : | ~

I AL OFERANDS

|

First available in 1978, total three versions:

FLAGS

8086 (5 MHz), 8086-2 (8 MHz) and 8086-1 (10 MHz).

It consists of 29,000 transistors.

8086 CPU is divided into two independent functional
units:
1. Bus Interface Unit (BIU)
2. Execution Unit (EU)

e The 8086 is internally a 16-bit CPU and externally it

has a 16-bit data bus. It has the ability to address up
to 1 Mbyte of memory via its 20-bit address bus.

Control Unit:

e Generate control/timing signals
e Controls decoding/execution of instructions

Registers (very fast memories):

e General-Purpose Registers (AX, BX, CX, DX): holds temporary results or addresses
during execution of instructions. results of ALU operations. Write results to
memory

e Instruction Pointer Counter: Holds address of instruction being executed

e Segment registers (CS, DS, SS, ES): combine with others to generate memory
address to reference 1IMb memory

» [nstruction register: holds instruction while it’s decoded/executed

Arithmetic Logic Unit (ALU):

ALU takes one or two operands A,B
Operation:
1. Addition, Subtraction (integer)
2. Multiplication, Division (integer)
3. And, Or, Not (logical operation)
4. Bitwise operation (shifts, equivalent to multiplication by power of 2)

Specialized ALUs:
e Floating Point Unit (FPU)
e Address ALU

Memory read transaction (1)

Load operation: movl A, %eax
Remark: here we use GNU Assembly language

 Load content of address A into register eax

e CPU places address A on the system bus, I/O bridge
passes it onto the memory bus

register file
/| ALU
Y%eax (A
@ main memory
I/Q bridge A 0
S N | LA N

bus interface ™~ /I I\ vd X A

Memory read transaction (2)

Load operation: movl A, %eax

* Main memory reads A from memory bus, retrieve

word x, and places x on the bus; I/O bridge passes it
along to the system bus

register file

17

bus interface

|/O bridge
N | /1

X

main memory

AN

/1
G

N

/

0

A

Memory read transaction (3)

Load operation: movl A, %eax

e CPU read word x from the bus and copies it into

register eax

register file

Yoeax

JIC

|:> ALU
—

bus interface

I/O bridge

<

main memory

>

0

A

X86 Processor Model

The BIU provides hardware functions. Including generation of the memory and
|/0 addresses for the transfer of data between itself and the outside world.

The EU receives program instruction codes and data from the BIU, executes
these instructions, and stores the results in the general registers. By passing the
data back to the BIU, data can also be stored In a memory location or written to
an output device.

— The main linkage between the two functional blocks is the instruction queue, with the

BIU looking ahead of the current instruction being executed in order to keep the
qgueue filled with instructions for the EU to decode and operate on.

The Fetch and Execute Cycle

1.

2.
3.

The BIU outputs the contents of the instruction pointer register (IP) onto the
address bus, causing the selected byte or word in memory to be read into the BIU.

Register IP is incremented by one to prepare for the next instruction fetch.

Once inside the BIU, the instruction is passed to the queue: a first-in/first-out
storage register sometimes likened to a pipeline.

Assuming that the queue is initially empty, the EU immediately draws this
instruction from the queue and begins execution.

While the EU is executing this instruction, the BIU proceeds to fetch a new
instruction. Depending on the execution time of the first instruction, the BIU may
fill the queue with several new instructions before the EU is ready to draw its next
instruction.

The cycle continues, with the BIU filling the queue with instructions and the EU
fetching and executing these instructions.

FFFFFH

'FFFFH

64K

>FFFFH

64K

S0000H

04K

AOH
2FFFFH

64K

20000H |

00000H

SS

CS

DS

Memory Segmentation

SEG BASE

TOP OF Ds

BOTTOM
OF DS
(SEG BASE)

Advantages of memory segmentation

* Allow the memory capacity to be 1Mb
even though the addresses associated
with the individual instructions are only
16 bits wide.

* Facilitate the use of separate memory
areas for the program, its data and the
stack.

* Permit a program and/or its data to be
put into different areas of memory each
time the program is executed.

e Multitasking becomes easy.

Generation of 20 bit physical address
20-bit physical address is often represented
as Segment Base : Offset
For example, CS:IP

CS 3480/
+IP 123 4

35A3 4 (H)

Implicit Parallelism - Pipelining
e Parallelism can be introduced at various levels.

e |nstruction pipeline

— The basic instruction cycle is broken up into a series
called a pipeline.

— 20 stage pipeline in Pentium 4

e Example: S1 =52 4+ 53;

— Stages gone through: 1. Unpack operands; 2. Compare
exponents; 3. Align significant digits; 4. Add fractions; 5.
Normalize fraction; 6. Pack operands.

— Assembly instructions + Register numbers begin with the
letter r, like rO, r1, r2.
Ioad Rl’ @SZ * Immediate (scalar) values begin
load R2, @S3 with the hash mark #,
like #100, #200.
add Rl, R2 // (6 stages) * Memory addresses begin with the
store R]_, @Sl at sigh @, like @1000, @1004.

— 9 clock cycles to complete one operation

FP addition hardware

[E1] F1 | [E2] F2 |
| |

]
hd |
"X!}T y v v I Equal exponents

ctr

>>

v Add significands

v ’7 v
p
K_I_/—,LI 7 >> 4 Normalize result
4

— Assume that each stage takes one clock cycles. After s cycles, the pipe is filled, i.e.,
all stages are active. Then an operation is produced at each clock cycle.

. If each stage takes time t, then, operation with n numbers will take st+(n-1)t
sec.

. Instead of nst sec.
e Improving by (ns)/(n+s-1)
e Dynamic pipeline scheduling

— Deal with branch instruction, and change the order of executing instructions to fill
gaps if possible

Implicit Parallelism - Superscalar execution

e Superscalar — performing instructions in
parallel
— Performing two instructions simultaneously, which

means to fetch two instructions together, decode
them at the same time, execute, i.e..

e Example Superscalar execution

Consider a processor (or a virtual machine) with two pipelines and the ability to
simultaneously issue two instructions. These processors are sometimes also
referred to as super-pipelined processors. The ability of a processor to issue
multiple instructions in the same cycle is referred to as superscalar execution.

1. load R1, ®1000 1. load R1, @1000 1. load R1, 21000 * Register numbers begin
2. load R2, @L00B 2. add R1, @1004 2. add R1, @l004 with the letter r,
3. add R1, ®@1004 3. add R1, @1008 1. load R2, ©1008 like r0, r1, r2.
4. add R2, @100C 4. add R1, @l00C 4. add Rz, @100C * Immediate (scalar)
5. add R1, R2 5. store R1, ®2000 5. add R1, R2 values begin with the
6. store R1, @2000 6. store R1, @2000 hash mark #,
like #100, #200.
(1) (1} (iii) * Memory addresses
begin with the at sign @,

(a) Three different code fragments for adding a list of four numbers. like @1000, @1004.
Instruction cycles
(2 4 i) 8

- - | OF losd R1, @1000 IF: |[I.‘-ill'l.ll.;li-l.2'|1 Fetch
' 1D: Instruction Decode
IF D ' o | load RZ, @1008 OF: Operand Fetch
g _ E: Instruction Exccute
IF 5 1D OF E add R1, @1004 WB: Write—back
IE D OF E add R2, @l00cC NA: No Action
IF 1D NA E add rR1, R2
IF D | MA | Wh | store R1, ®2000

(b)) Execution schedule for code fragment (1) above.

;N e W kB

load R1, @1000 1. leoad R1, @1000 1. load R1, 21000
load R2, ®100B 2. add R1, @1004 2. add R1, @l1l004
add R1, @1004 3. add R1, @1008 i. load R2, 21008
add R2, @1l00C 4, add R1, @l100C 4. add R2, @100C

. add R1, RZ2 5. store R1, @2000 5. add R1, R2

. Store R1, @2000 &. store R1, @2000

(1) (i) (iii)
{a) Three different code fragments for adding a list of four numbers.

Data dependency: the result of an instruction is required for subsequent
instructions.
— Code fragment (ii): 1. load R1, @1000
2. add R1, @1004
Resource dependency: Two instructions need same resources.

— Ex. Co-scheduling of two floating point operations on a dual issue machine with a single
floating point unit.

Dynamic instruction issue: issue instructions out-of-order
— Code fragment (iii): issue 1. load R1, @1000; and 3. load R2, @1004 together

Current microprocessors typically support up to four-issue superscalar execution.

int sum1(int k, int sum2(int k, int sum2(int k,

int a[]) int *a) int *a)
{ ! 0 | 0
L A int i, tmp =0; int i, tmp =0;
Int i, tmp =0; for(i=0;i<k;i+=4) for(i=0;i<k:i+=4)
for(i=0;i<k;i++) tmp += tmp +=
tmp +=ali]; | a[i]+a[i+1]+a[i+2]+a[i+3]; || *a+*(a+1)+*(a+2)+*(a+3);
return tmp; return tmp; return tmp;

}))

Effect of memory latency on performance (1)

von Neumann Bottleneck: the transfer of data and instructions
between memory and the CPU is inherently sequential.

133MHz
CPUCIKKE) eoscsecsoss=-=-
I: ¥ : : X i 166MHz x 2
| ‘. : [Me=aey Closk w Deuble DaLs Raze)
In : :1 I:l l w 2 m :l 1 l-- --------- 1
(o [s Ratlo) | . | i
1 | " ! | X !
2.G65GHz : S33I3MHZ F5D : : 8 Bytes :
[CARMCoeSpend) — - - - T 777 | (54 s [8) 1
‘o ' '
i B Bytes : I = :
1 (G4 bz J 8) | | l
1 I
1 | !.._. _________ ..!
1 |
1 i
1 |

A2EAMAB f c=c

DDR — double data rate

e Latency of the memory: the time that a CPU
takes to get a block of data from the memory
system.

e Bandwidth of the memory: the rate at which
data can be pumped from the memory to the
Processor.

Effect of memory latency on performance (2)

Example. Assume a CPU operates at 1GHz (1 ns clock) and
is connected to a DRAM with a latency of 100 ns. Assume
the CPU has 2 multiply-add units and is capable of
executing 4 instructions in each cycle of 1 ns. The peak CPU
rating is 4GFLOPS (floating-point operations per second).

Since the memory latency is 100 cycles, CPU must wait 100
cycles before it can process data. Therefore, the peak
speed of computation is 10MFLOPS.

Remark: 10MFLOPS/4GFLOPS = 1/400.

Source of slowness: CPU and memory speed

1 00,000 e __
10,000
1000
Performance

100

10

1 1 1 | 1 1 1]

O DNV oD o> 0N DD O N DO RO L D>

Year

From Hennessy and Patterson,"Computer Architecture:
A Quantitative Approach,” 3rd Edition, 2003, Morgan Kaufman Publishers.

© 2003 Elsevier Science (USA). All rights reserved.

Improving effective memory latency using cache
memories (1)

Put a look-up table of recently used data onto the CPU chip.

Cache memories are small, fast SRAM-based memories
(low memory latency) managed automatically in hardware.

CPU look first for data in L1, then in L2,..., then in main
memory

CPU chip

reglster fI|E

L1 I_>ALU

cache <:|
cache\bus ﬁ : . system bus memt:Iry bus
) bus: o L) main
L2 cache bus interface bridge memory

Hierarchy of increasingly bigger, slower memories

Registers 1 kB, 1 cycle
L1 (E:Ht:he 10 kB, 10 cycles
L2 (E:Ht:he 1 MB, 100 cycles
DRAM 1 GB, 1000 cycles
Virtual Memory
(R re) 1 TB, 1 M cycles

In 1998
SRAM 2 -25ns $100 to $250 per Mbyte. Cache
DRAM 60-120ns $5 to $10 per Mbyte. Memory

Disk 10 to 20 millionns $0.10 to $0.20 per Mbyte. Disk

Organization of a cache memory

Each memory 1 valid bit 1tag bits B = 2b bytes
f Y ™ ' e i
Cache i)
wpfliind (valid [tag | [0 [1] --+ [B1
0 X E lines
. set 0. e per set
Each set ccntlams Valid tag 01 1] eee [B=1
one or more lines (E))
Each line hG|dE.a valid tag 0 1 ess |B-1
block of data (size B)
)) set 1: e
S = 2° setsy valid | tag 0 | 1| += [BA
Cache size: valid tag 0 | 1 o+ |B-1
C=SxExB . .o
data bytes set S-1:
, valid tag 0 | 1 e+ | B-1
\

Core i7 cache hierarchies

L1 Data
§‘ 4 cycles
& J2KB
e 11 cycles J0-A0 CYCles | e Main
L1 Instruction 256KB gMB Memory
S-way assoc 16-way assoc
4 cycles
J2KB
8-way assoc
Core
| Core3
Iarg er, Processor chip
slower,
—
cheaper
Size: 32KB 256KB 8MB
E: 8-way 8-way 16-way

Access: 4 cycles 11 cycles 30-40 cycles

Improving effective memory latency using cache
memories (2)

Example. Consider to use a 1GHz CPU with a latency of 100
ns DRAM, and a cache of size 32KB with a latency of 1 ns to
multiply two matrices A and B of dimensions 32 x 32.

Fetching A and B into cache corresponds to fetching 2K

words, taking 200 us. Multiplying A and B takes 2n3
operations = 64K operations, which can be performed in 16K

cycles (or 16 ps) at 4 instructions per cycle.
The total time for computing = 200 + 16 ps.
Peak computing rate = 64K/216 s = 303 MFLOPS.

Notice:
There is repeated reference to the same data item.
Temporal locality of reference: repeated reference to a data item in

a small time window.

Cache performance measurements (1)

Miss rate

-- Fraction of memory references not found in cache
Hit ratio

— Fraction of data references found in the cache
Hit time

-- Time to deliver a line in the cache to the processor,

including time to determine whether the line is in the
cache

Missing penalty
-- Additional time required because of a miss

Cache performance measurements (2)

* Big difference between a hit and a miss

Example. Assume that cache hit time is 1 cycle, and

miss penalty is 100 cycles. A 99% hit rate is twice as
good as 97% rate.

-- Average access time
1. 97% hit rate: 0.97* 1 + 0.03*(1+100) = 4 cycles
2. 99% hit rate: 0.99*1 + 0.01*(1+100) = 2 cycles

Remark: The effective computation rate of many applications is

bounded not by the processing rate of the CPU, but by the rate at
which data can be pumped into the CPU.

Impact of Memory Bandwidth

* Improving the bandwidth: increase the size of memory blocks per fetch, e.g.,
instead of returning one word per fetch, four words (cache line) are returned.

Example. Consider to use a 1GHz CPU with a latency of 100 ns DRAM, and a cache line of
1 word with a latency of 1 ns to do dot-product of two vectors. For each pair of words, the
dot-product performs one multiply-adds, i.e., two FLOPS. The algorithm performs one
FLOP every 100 cycles for a peak speed of 10 MFLOPS (assuming the length of a
component of the vector is a word).

Now assume that the processor can fetch a four-word cache line every 100 cycles and the
vectors are laid out linearly in memory. Eight FLOPS (4 multiply-adds) can be performed in
200 cycles. This corresponds to a peak speed of 40 MFLOPS.

Cache hit ratio: With 4-word cache line, there are two DRAM accesses for every 8 data
accesses required by dot-product. This corresponds to 6/8(75%) hit ratio. Thus the
average memory access time is 25%X100ns + 75%X1ns.

Remark: This increased in bandwidth of memory system increases the performance
bounds.

Spatial locality of memory access: Consecutive data words in memory are used by
successive instructions

Writing cache-friendly code (1)

* Principle of locality:

-- programs tend to reuse/use data items recently used or
nearby those recently used

-- Temporal locality: Recently referenced items are likely to be
referenced in the near future

-- Spatial locality: ltems with nearby addresses tend to be
referenced close together in time

sum = 0;

for (i = 0; i < n; i++)
sum += af[i];

return sum;

Data
-- Reference array elements in
succession: spatial locality
-- Reference “sum” in each iteration:
temporal locality

Instructions
-- Reference instructions in
sequence: Spatial locality
-- Cycle through loop repeatedly:
Temporal locality

How caches take advantage of temporal locality

e The first time the CPU reads from an address in
main memory, a copy of that data is also stored
in the cache.

-- The next time that same address is read, the
copy of the data in the cache is used instead of
accessing the slower DRAM

e Commonly accessed data is stored in the faster
cache memory

How caches take advantage of spatial locality

* When the CPU reads location i from main
memory, a copy of that data is placed in the

cache.

e |nstead of just copying the contents of location
i, we can copy several values into the cache at
once, such as the four words from locations i

through j+3.

— |f the CPU does need to read from locations
i+1, i+2 or j+3, it can access that data from

the cache.

Writing cache-friendly code (2)

In C/C++ language, array is stored in row-major order

In memory

int sumarrayrows (int a[M] [N])

{

int 1, j, sum = 0;
for (i = 0; i < M; i++)
for (3 = 0; 3 < N;

sum += af[i] []]:
return sum

J++)

int sumarraycols(int a[M] [N])

{

int 1, j, sum = 0;
for (j = 0; j < N; j++)
for (1 = 0; 1 < M;

sum += a[il[3j];
return sum

}

Assume that there is a 4-words cache with 4-words

cache lines.

Left code has miss rate =% = 25%

Right code has miss rate = 100%
Remark: programming with better spatial locality

i++)

e Example: Compute column sums of a matrix
1. for(i=0;i<1024; i++){
2. c_suml[i]=0.0;
3. for(j = 0; j<1024; j++)
4. c_sumli] += b[j][i];
5. }
e Problems associated with this code:

— Poor cache utilization (frequent cache misses). The j loop
accesses entries in b[][]. This corresponds to accessing every
1024-th entry in the 1D array of b[0][0],
b[0][1],...,b[0][1023], b[1][O],....

— No spatial locality. It’s likely that one word per cache line
fetched from memory will be used.

 Swapping loop order:
1. for(i =0;i<1024; i++) // this can be replaced by memset()
c_sumli]= 0.0;
for(j=0;j < 1024; j++){
for(i = 0; i<1024; i++)
c_suml[i] += b[jli];

o Uk W

Rearranging loops to improve locality

Miss rate analysis for matrix-matrix multiplication

e Assume a single matrix row does not fit in L1, each cache block
holds 4 elements, and compiler stores local variables in

registers.

for(k=0; k< n; k++)
sum +=al[i] [k]*b[k][];
clilli] = sum;

|
|
|
|
|
|
|
: sum = 0.0;
|
|
|
|
|
|
|
|

Per iteration

(L")

)

m (i)

Loads Stores

A misses

B misses

C misses

Total misses

2 0

0.25

1.00

0.00

1.25

| |

| |

| |

| (%)

L for(i=0; i< n; i++) ;

b :

| sum = 0.0; ! (L,%) | (ij)
: for(k=0; k < n; k++) I

: sum += ali][k]*b[K][j]; :

i } c[il[j] = sum; i . c
L :

| |

|

Per iteration
Loads Stores A misses B misses C misses Total misses
2 0 0.25 1.00 0.00 1.25

| |
" for(j=0;j<n;j++ '
Vfor (j=0; j < n;j+) : (* k) N
: { | (*.)
I for(k=0; k< n; k++) I
|
Do .
3. I
: r = blk][jl; ! (k,j)
! for(i=0; i < n; i++) !
i i1} += alillk] * |
|
o | A B C
| } |
. o o o o o o e e e e e e € M D M- _ |
Per iteration
Loads Stores A misses B misses C misses Total misses
2 1 1.00 0.00 1.00 2.00

e Scan A and C with stride of n
e 1 more memory operation

| |
| |
I ' *k
I for(j=0;j<n;j++) I
|
v .
| r=blKI; | (k,j)
: for(i =0; i< n;i++) !
' clilljl|+= alillk] * r; |
|
: } : A B C
| } |
. o o o o o o e o e e e e e - _ |
Per iteration
loads Stores A misses B misses C misses Total misses
2 1 1.00 0.00 1.00 2.00

| |
| |
| |
[{ :
|
1 for(i=0;i<n;i+t) |
v ! -,
| r = a[i][k]; : (i,k) (i,*)
! for(j =0;j < n;j++) | .)
! clilfi]+= r = bIK][j]; !
|
o . A B C
|t |
. o o o e o e e e e e e e e MM _ |
Per iteration
Loads Stores A misses B misses C misses Total misses
2 1 0.00 0.25 0.25 0.50

Trade-off: one memory operation — fewer misses

for (i=0;i<n;i++)

e

| |
| |
| |
1 :
: for(k =0; k < n; k++) |
|

D :

. |
: r = ali][k]; . (i.k)
: for(j=0;j <n;j++) : I k,*
! clillil{+=r * b[k][I; |
|
o : A B C
| } |
|

Per iteration
Loads Stores A misses B misses C misses Total misses
2 1 0.00 0.25 0.25 0.50

Core i7 Matrix-matrix multiplication performance

- e ST

60

X

a0 —
/ﬂ Jki & kji (AC)

I% —— ki
—5-kji

——ijk

—=—ik

Fu
=

a3
=

—— kij

//@—@ —a ik

P2
=2

Cycles per inner loop iteration

—
=

"&M@q‘

S —

e)
FALY iy

D T T T I I I I T T T T T I T
20 100 150 200 250 300 350 400 450 500 550 o600 o650 700 730
Array size (n)

From EECS213 Northwestern University

Sequential Operation

Double x[100], y[100], z[100];
for (i = 0; i < 100; i++)
z[i] = x[i] + yli];

Fetch Normalize | Storein
operands results memory

Fetch Normalize | Storein
operands results memory

Solution: Pipelining

Divide a computation into stages that can support concurrency.
Double x[100], y[100], z[100];
for (i=0;i<100; i++)

z[i] = x[i] + y[il;

Fetch Normalize | Storein

operands results memory
Fetch Normalize | Storein
operands results memory

Fetch Normalize | Storein

operands results memory
Fetch Normalize | Storein
operands results memory

time

Another improvement: Vector processor pipeline.
Example: Cray 90

Loop Unrolling

Loop unrolling:
for (i=0;i<100; i++)
do_a(i);

Example:
for (i=0; i< 1000; i++)

{
ali] = bli] + c[il;

)

for (i=0;i<100; i+=2)
{

do_a(i);

do_a(i+1);
}

Remark: Loop unrolling can
reduce the number of loop
maintenance instruction
executions by the loop unrolling
factor

for (i = 0; i < 1000; i+=2)
{
ali] = bli] + c[i];
ali+1] = b[i+1] + c[i+1];

Software Pipelining
Software pipeline the C loop:
for (i=1000;i>=1;i--)
X[i]=x[i]+s;

Load x[i]

Incr x[i] Load x[i-1] time
Store x[i] Incrx[i-1] Load x[i-2]
Store x[i-1] Incr x[i-2] Load x[i-3]

t=x[1000];

g=t+s;

t=x[999];

for (i=1000;i>=2;i--)

{
x[i]=g; // i store
g=t+s; //i-1 add
t=x[i-2]; // i-2 load

Use Pointer to Improve Efficiency

int sum1(int k, int

al])

{
int i, tmp =0;
for(i=0;i<k;i++)

tmp += ali];
return tmp;

J

int sum2(int k, int *a)

{
int i, tmp =0;
for(i=0;i<k;i++)

tmp += *a++;
return tmp;

	Lecture 1: Computer Organization
	Why parallel computing
	Milestones in Computer Architecture
	Moore’s law
	Moore’s law
	www.top500.org
	www.top500.org
	Slide Number 8
	www.top500.org
	Slide Number 10
	Motherboard diagram of PC
	Intel S2600GZ4 Server Motherboard
	Motherboard diagram of S2600GZ4
	von Neumann machine
	Machine Language, Assembly and C
	Structured Machines
	Slide Number 17
	Execution Cycle
	16-bit Intel 8086 processor
	Slide Number 20
	Slide Number 21
	Memory read transaction (1)
	Memory read transaction (2)
	Memory read transaction (3)
	x86 Processor Model
	Memory Segmentation
	Implicit Parallelism - Pipelining
	Slide Number 28
	Implicit Parallelism - Superscalar execution
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Effect of memory latency on performance (1)
	Slide Number 34
	Effect of memory latency on performance (2)
	Source of slowness: CPU and memory speed
	Improving effective memory latency using cache memories (1)
	Slide Number 38
	Organization of a cache memory
	Core i7 cache hierarchies
	Improving effective memory latency using cache memories (2)
	Cache performance measurements (1)
	Cache performance measurements (2)
	Impact of Memory Bandwidth
	Writing cache-friendly code (1)
	How caches take advantage of temporal locality
	How caches take advantage of spatial locality
	Writing cache-friendly code (2)
	Slide Number 49
	Slide Number 50
	Rearranging loops to improve locality
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Core i7 Matrix-matrix multiplication performance
	Sequential Operation
	Solution: Pipelining
	Slide Number 60
	Software Pipelining
	Use Pointer to Improve Efficiency

