Lecture 4: Principles of Parallel
Algorithm Design (part 1)



Constructing a Parallel Algorithm

identify portions of work that can be performed
concurrently

map concurrent portions of work onto multiple
processes running in parallel

distribute a program’s input, output, and
intermediate data

manage accesses to shared data: avoid conflicts

synchronize the processes at stages of the
parallel program execution



Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller
parts, which can be executed concurrently

Task: programmer-defined units of computation.

Task 3 Task 2

Task-dependency graph: o OB Q
Node represent s task.

Directed edge represents
control dependence.




Example 1: Dense Matrix-Vector Multiplication
A

12 n

Task 1
2

HEEEEEEEEEEERe)
I I O I I I I I I

e Computing y[i] only use ith row of A and b — treat
computing y[i] as a task.

e Remark:
— Task size is uniform

— No dependence between tasks
— All tasks need b



e Executing the query:

Example 2: Database Query Processing

Model =“civic” AND Year = “2001” AND (Color = “green” OR

Color = “white”)
on the following database:

ID# Model Year Color Dealer Price

4523 Civic 2002 Blue MN $18,000
3476 Corolla 1999 White IL $15,000
7623 Camry 2001 Green NY $21,000
9834 Prius 2001 Green CA $18,000
6734 Civic 2001 White OR $17,000
5342 Altima 2001 Green FL $19,000
3845 Maxima 2001 Blue NY $22,000
8354 Accord 2000 Green VT $18,000
4395 Civic 2001 Red CA $17,000
7352 Civic 2002 Red WA $18,000



e Task: create sets of elements that satisfy a (or several)
criteria.

e Edge: output of one task serves as input to the next

ID# | Year
ID# | Model ID# | Color
4523 Civic ez 2001 7623 | Green
6734 | 2001
6734 | Civic 5342 | 2001 Ll 9834 | Green
4395 | Civic 3845 2001 3475 Whike 5342 QGreen
7352 | Civic 4395 | 2001 White Green
2001 (Green)
ID# | Color
ID# | Model | Year “m"ﬁ White
732 | Civic | 2001| ( CMc AND 2001 ) [vmmonemnj e | Groen
White
Green
Green

4395 | Civie | 2001 | 6734
5342
8354

(" Civic AND 2001 AND (White OR Green)

ID# | Model | Year| Color
6734 | Civic | 2001 | White




* An alternate task-dependency graph for query

Il | Year

Modal IDE | Color
6734 | Chwa A4 S0 I SE34 | Cresn
4383 | Civie g4 | 2001 34TE | White 5343 | Geeen
7352 | Cime 43935 | 2001 6734 | White 8354 | Goeen
(cme ) (2001 )
IGE | Color
3ATE | White
(_whie OR Green | |3476 | W
9834 | Green
5734 | White
F342 | Goeen
B354 | O
([ 2001 AND (Whits or Grean) | |ID# | Color | Year
T613 | Gresn | 2001
6734 | Whis | 2001
5342 | Gresn | 2001

{  Chioc AND 2001 AND (Whits OR Gresn) |

IDé | Modal | Year| Color
6734 | Civo | 2001 | White

e Different task decomposition leads to different
parallelism



Granularity of Task Decomposition

* Fine-grained decomposition: large number of
small tasks

e Coarse-grained decomposition: small number of
large tasks

Matrix-vector multiplication example

-- coarse-grain: each task computes 3 elements of y|[]

A b y

01 . n

f

Task 1

Task 2

Task 3

Task 4

INNNNNNENENN

HNNENEEE



Degree of Concurrency

* Degree of Concurrency: # of tasks that can
execute in parallel

-- maximum degree of concurrency: largest # of
concurrent tasks at any point of the execution

-- average degree of concurrency: average # of tasks
that can be executed concurrently

 Degree of Concurrency vs. Task Granularity

— Inverse relation



Critical Path of Task Graph

e Critical path: The longest directed path between
any pair of start node (node with no incoming
edge) and finish node (node with on outgoing
edges).

* Critical path length: The sum of weights of nodes
along critical path.

— The weights of a node is the size or the amount of
work associated with the corresponding task

* Average degree of concurrency = total amount of
work / critical path length



Example: Critical Path Length

Task-dependency graphs of query processing operation

Left graph:

Critical path length =27

Average degree of concurrency = 63/27 = 2.33
Right graph:

Critical path length = 34

Average degree of concurrency = 64/34 = 1.88



Limits on Parallelization

e Facts bounds on parallel execution

— Maximum task granularity is finite
* Matrix-vector multiplication O(n?)

— Interactions between tasks

e Tasks often share input, output, or intermediate data, which may

lead to interactions not shown in task-dependency graph.

A

12 n A b

01 n

Task 1

Task 1

Task 2

Task 3

Task 4

LILITTTITTITIT] O
LITTTTTTTITT] <

LTI

Ex. For the matrix-vector multiplication problem, all tasks are
independent, and all need access to the entire input vector b.

y

LTy




e Speedup = sequential execution time/parallel
execution time

* Parallel efficiency = sequential execution
time/(parallel execution time x processors used)



	Lecture 4: Principles of Parallel Algorithm Design (part 1)
	Constructing a Parallel Algorithm
	Task Decomposition and Dependency Graphs
	Example 1: Dense Matrix-Vector Multiplication
	Example 2: Database Query Processing
	Slide Number 6
	Slide Number 7
	Granularity of Task Decomposition
	Degree of Concurrency
	Critical Path of Task Graph
	Example: Critical Path Length
	Limits on Parallelization
	Slide Number 13

