
Lecture 4: Principles of Parallel
Algorithm Design (part 1)

1

Constructing a Parallel Algorithm

• identify portions of work that can be performed
concurrently

• map concurrent portions of work onto multiple
processes running in parallel

• distribute a program’s input, output, and
intermediate data

• manage accesses to shared data: avoid conflicts
• synchronize the processes at stages of the

parallel program execution

2

Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller
parts, which can be executed concurrently
Task: programmer-defined units of computation.

Task-dependency graph:
Node represent s task.
Directed edge represents
control dependence.

3

Example 1: Dense Matrix-Vector Multiplication

• Computing y[i] only use ith row of A and b – treat
computing y[i] as a task.

• Remark:
– Task size is uniform
– No dependence between tasks
– All tasks need b

4

Example 2: Database Query Processing
• Executing the query:
Model =“civic” AND Year = “2001” AND (Color = “green” OR
Color = “white”)
on the following database:

5

• Task: create sets of elements that satisfy a (or several)
criteria.

• Edge: output of one task serves as input to the next

6

• An alternate task-dependency graph for query

• Different task decomposition leads to different
parallelism

7

Granularity of Task Decomposition

• Fine-grained decomposition: large number of
small tasks

• Coarse-grained decomposition: small number of
large tasks

Matrix-vector multiplication example
-- coarse-grain: each task computes 3 elements of y[]

8

Degree of Concurrency

• Degree of Concurrency: # of tasks that can
execute in parallel
-- maximum degree of concurrency: largest # of
concurrent tasks at any point of the execution
-- average degree of concurrency: average # of tasks
that can be executed concurrently

• Degree of Concurrency vs. Task Granularity
– Inverse relation

9

Critical Path of Task Graph

• Critical path: The longest directed path between
any pair of start node (node with no incoming
edge) and finish node (node with on outgoing
edges).

• Critical path length: The sum of weights of nodes
along critical path.
– The weights of a node is the size or the amount of

work associated with the corresponding task
• Average degree of concurrency = total amount of

work / critical path length

10

Example: Critical Path Length

Task-dependency graphs of query processing operation

Left graph:
Critical path length = 27
Average degree of concurrency = 63/27 = 2.33

Right graph:
Critical path length = 34

Average degree of concurrency = 64/34 = 1.88
11

Limits on Parallelization
• Facts bounds on parallel execution

– Maximum task granularity is finite
• Matrix-vector multiplication O(n2)

– Interactions between tasks
• Tasks often share input, output, or intermediate data, which may

lead to interactions not shown in task-dependency graph.

Ex. For the matrix-vector multiplication problem, all tasks are
independent, and all need access to the entire input vector b.

12

• Speedup = sequential execution time/parallel
execution time

• Parallel efficiency = sequential execution
time/(parallel execution time × processors used)

13

	Lecture 4: Principles of Parallel Algorithm Design (part 1)
	Constructing a Parallel Algorithm
	Task Decomposition and Dependency Graphs
	Example 1: Dense Matrix-Vector Multiplication
	Example 2: Database Query Processing
	Slide Number 6
	Slide Number 7
	Granularity of Task Decomposition
	Degree of Concurrency
	Critical Path of Task Graph
	Example: Critical Path Length
	Limits on Parallelization
	Slide Number 13

