# Lecture 4: Principles of Parallel Algorithm Design (part 4)

## Mapping Technique for Load Balancing

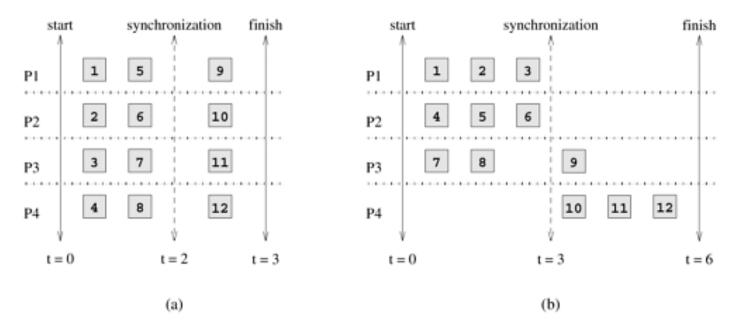
### Minimize execution time $\rightarrow$ Reduce overheads of execution

- Sources of overheads:
  - Inter-process interaction
  - Idling
  - Both interaction and idling are often a function of mapping
- Goals to achieve:
  - To reduce interaction time
  - To reduce total amount of time some processes being idle (goal of load balancing)
  - Remark: these two goals often conflict
- Classes of mapping:
  - Static
  - Dynamic

### Remark:

- 1. Loading balancing is **only** a necessary **but not** sufficient condition for reducing idling.
  - Task-dependency graph determines which tasks can execute in parallel and which must wait for some others to finish at a given stage.
- 2. Good mapping must ensure that computations and interactions among processes at each stage of execution are well balanced.

#### Figure 3.23. Two mappings of a hypothetical decomposition with a synchronization.



Two mappings of 12-task decomposition in which the last 4 tasks can be started only after the first 8 are finished due to task-dependency.

### **Schemes for Static Mapping**

*Static Mapping:* It distributes the tasks among processes prior to the execution of the algorithm.

- Mapping Based on Data Partitioning
- Task Graph Partitioning
- Hybrid Strategies

### Mapping Based on Data Partitioning

- By owner-computes rule, mapping the relevant data onto processes is equivalent to mapping tasks onto processes
- Array or Matrices
  - Block distributions
  - Cyclic and block cyclic distributions
- Irregular Data
  - Example: data associated with unstructured mesh
  - Graph partitioning

### **1D Block Distribution**

Example. Distribute rows or columns of matrix to different processes

row-wise distribution

| $P_0$ |
|-------|
| $P_1$ |
| $P_2$ |
| $P_3$ |
| $P_4$ |
| $P_5$ |
| $P_6$ |
| $P_7$ |

#### column-wise distribution

| $P_0$ $P_1$ $P_2$ $P_3$ | $P_4 P_5 P_6 P_7$ |
|-------------------------|-------------------|
|-------------------------|-------------------|

### **Multi-D Block Distribution**

Example. Distribute blocks of matrix to different processes

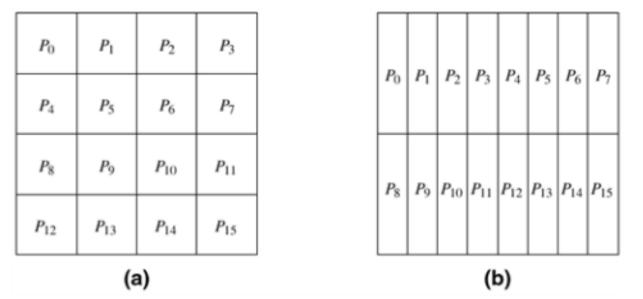
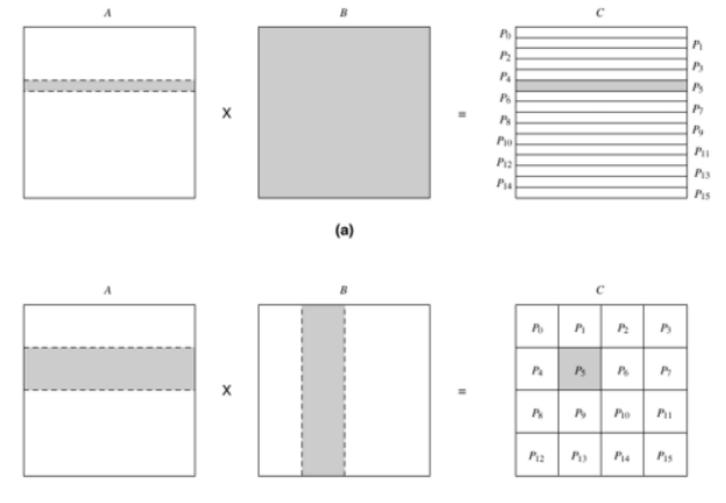


Figure 3.25. Examples of two-dimensional distributions of an array, (a) on a 4 × 4 process grid, and (b) on a 2 × 8 process grid.

### Load-Balance for Block Distribution

Example.  $n \times n$  dense matrix multiplication  $C = A \times B$  using p processes

- Decomposition based on output data.
- Each entry of C use the same amount of computation.
- Either 1D or 2D block distribution can be used:
  - 1D distribution:  $\frac{n}{p}$  rows are assigned to a process
  - 2D distribution:  $n/\sqrt{p} \times n/\sqrt{p}$  size block is assigned to a process
- Multi-D distribution allows higher degree of concurrency.
- Multi-D distribution can also help to reduce interactions



(b)

Figure 3.26. Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-dimensional partitioning of the output matrix. Shaded portions of the input matrices A and B are required by the process that computes the shaded portion of the output matrix C.

Suppose the size of matrix is  $n \times n$ , and p processes are used.

(a): A process need to access 
$$\frac{n^2}{n} + n^2$$
 amount of data

(b): A process need to access  $O(n^2/\sqrt{p})$  amount of data

Cyclic and Block Cyclic Distributions

- If the amount of work differs for different entries of a matrix, a block distribution can lead to load imbalances.
- Example. Doolittle's method of LU factorization of dense matrix
  - The amount of computation increases from the top left to the bottom right of the matrix.

#### Doolittle's method of LU factorization

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = LU = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

By matrix-matrix multiplication

$$u_{1j} = a_{1j}, \qquad j = 1, 2, ..., n \text{ (1st row of U)}$$
  

$$l_{j1} = a_{j1}/u_{11}, \qquad j = 1, 2, ..., n \text{ (1st column of L)}$$
  
For  $i = 2, 3, ..., n - 1$  do  

$$u_{ii} = a_{ii} - \sum_{t=1}^{i-1} l_{it} u_{ti}$$
  

$$u_{ij} = a_{ij} - \sum_{t=1}^{i-1} l_{it} u_{tj} \qquad \text{for } j = i + 1, ..., n \text{ (ith row of U)}$$
  

$$l_{ji} = \frac{a_{ji} - \sum_{t=1}^{i-1} l_{jt} u_{ti}}{u_{ii}} \qquad \text{for } j = i + 1, ..., n \text{ (ith column of L)}$$

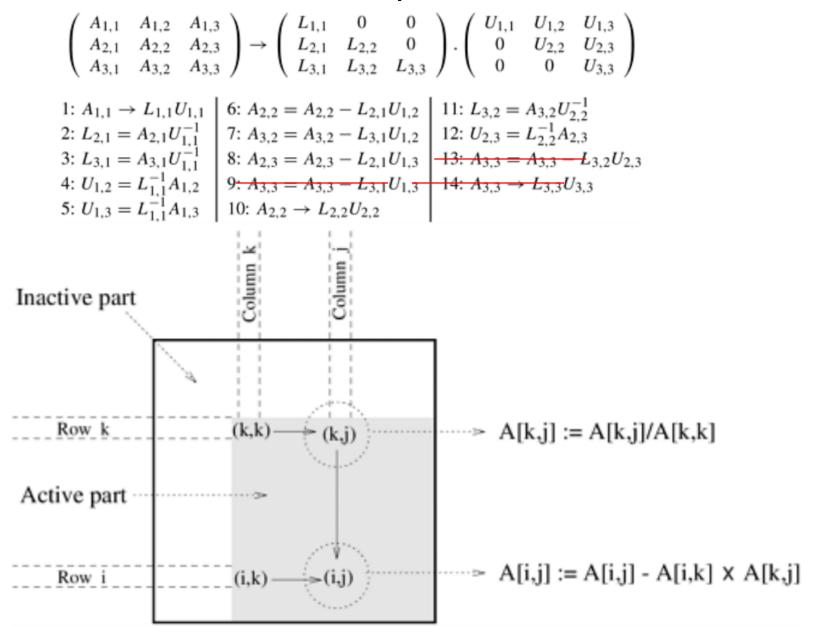
End  $u_{nn} = a_{nn} - \sum_{t=1}^{n-1} l_{nt} u_{tn}$ 

### Serial Column-Based LU

```
procedure COL LU (A)
1.
2.
     begin
3.
        for k := 1 to n do
4.
            for j := k to n do
5.
                A[j, k] := A[j, k]/A[k, k];
6.
            endfor;
7.
            for j := k + 1 to n do
                 for i := k + 1 to n do
8.
9.
                    A[i, j] := A[i, j] - A[i, k] \times A[k, j];
10.
                endfor;
            endfor;
11.
   /*
After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row A[k, k : n] is logically the kth row of U.
   */
12.
       endfor;
13. end COL_LU
```

• Remark: Matrices L and U share space with A

### Work used to compute Entries of L and U



3.28. A typical computation in Gaussian elimination and the active part of the coefficient matrix during the kth itera<u>ti</u>on of the outer loop.

• Block distribution of LU factorization tasks leads to load imbalance.

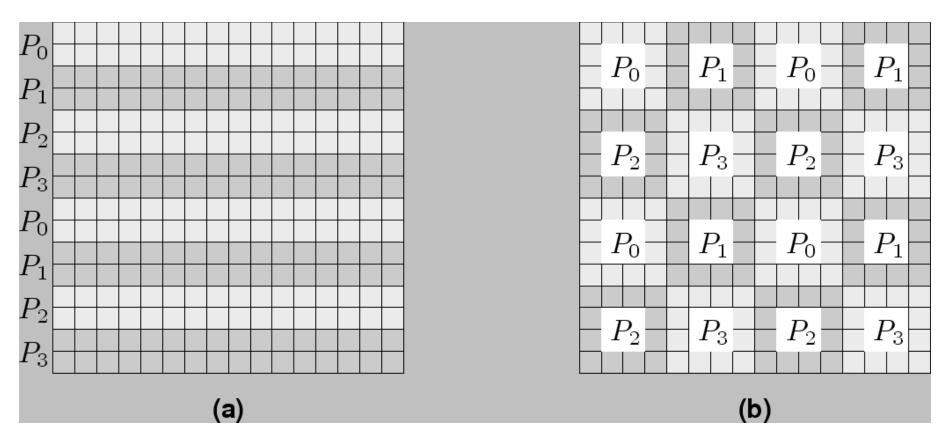
| P <sub>0</sub> | Р <sub>3</sub>                 | Р <sub>6</sub>                                 |
|----------------|--------------------------------|------------------------------------------------|
| T <sub>1</sub> | T <sub>4</sub>                 | T <sub>5</sub>                                 |
| P <sub>1</sub> | Ρ <sub>4</sub>                 | Р <sub>7</sub>                                 |
| T <sub>2</sub> | T <sub>6</sub> T <sub>10</sub> | T <sub>8</sub> T <sub>12</sub>                 |
| P <sub>2</sub> | P <sub>5</sub>                 | P <sub>8</sub>                                 |
| T <sub>3</sub> | T <sub>7</sub> T <sub>11</sub> | T <sub>9</sub> T <sub>13</sub> T <sub>14</sub> |

## **Block-Cyclic Distribution**

• A variation of block distribution that can be used to alleviate the load-imbalance.

### • Steps

- 1. Partition an array into many more blocks than the number of available processes
- 2. Assign blocks to processes in a *round-robin manner* so that each process gets several nonadjacent blocks.



- (a) The rows of the array are grouped into blocks each consisting of two rows, resulting in eight blocks of rows. These blocks are distributed to four processes in a *wrap-around* fashion.
- (b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a 2×2 grid of processes in a wraparound fashion.
- **Cyclic distribution:** when the block size =1

### **Randomized Block Distribution**

 $P_3$ 

 $P_7$ 

 $P_3$ 

 $P_7$ 

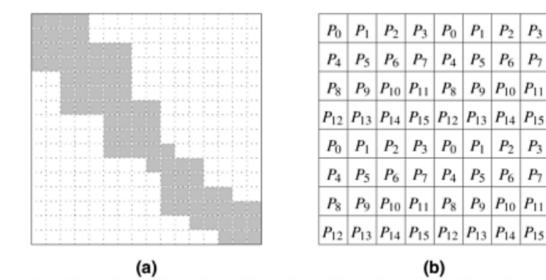


Figure 3.31. Using the block-cyclic distribution shown in (b) to distribute the computations performed in array (a) will lead to load imbalances.

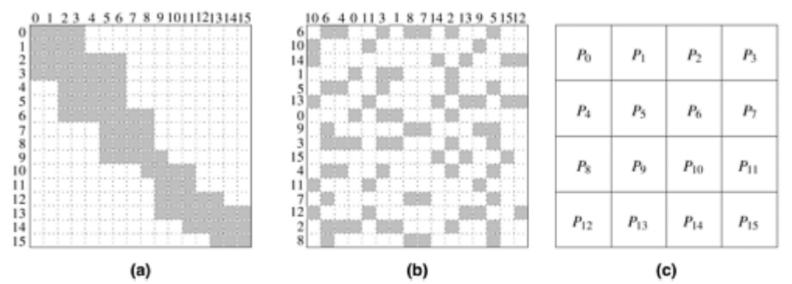
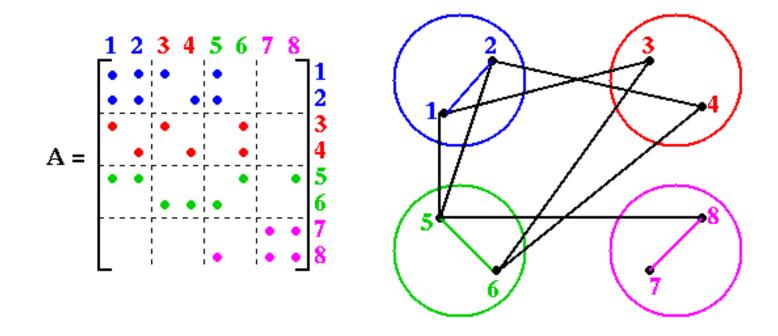


Figure 3.33. Using a two-dimensional random block distribution shown in (b) to distribute the computations performed in array (a), as shown in (c).

### **Graph Partitioning**

Sparse-matrix vector multiplication

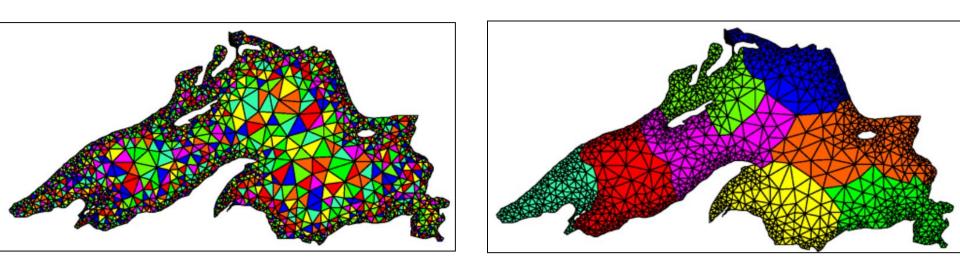


Work: nodes Interaction/communication: edges

Partition the graph:

Assign roughly same number of nodes to each process Minimize edge count of graph partition Finite element simulation of water contaminant in a lake.

• Goal of partitioning: balance work & minimize communication



**Random Partitioning** 

Partitioning for Minimizing Edge-Count

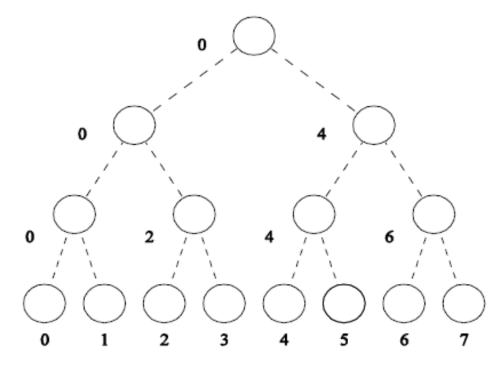
- Assign equal number of nodes (or cells) to each process
  - Random partitioning may lead to high interaction overhead due to data sharing
- Minimize edge count of the graph partition
  - Each process should get roughly the same number of elements and the number of edges that cross partition boundaries should be minimized as well.

### Mappings Based on Task Partitioning

- Mapping based on task partitioning can be used when computation is naturally expressed in the form of a *static task-dependency graph* with known sizes.
- Finding optimal mapping minimizing idle time and minimizing interaction time is NP-complete
- Heuristic solutions exist for many structured graphs

## Mapping a Binary Tree Task-Dependency Graph

- Finding minimum using hypercube network.
  - Hypercube: node numbers that differ in 1 bit are adjacent.

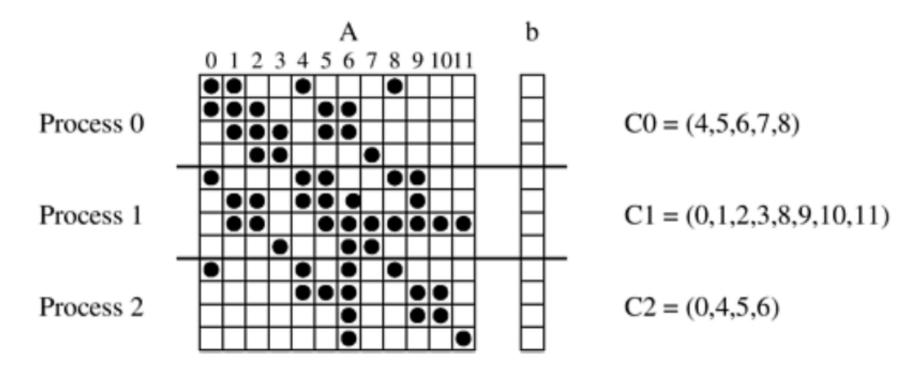


- Mapping the tree graph onto 8 processes
- Mapping minimizes the interaction overhead by mapping interdependent tasks onto the same process (i.e., process 0) and others on processes only one communication link away from each other
- Idling exists. This is inherent in the graph

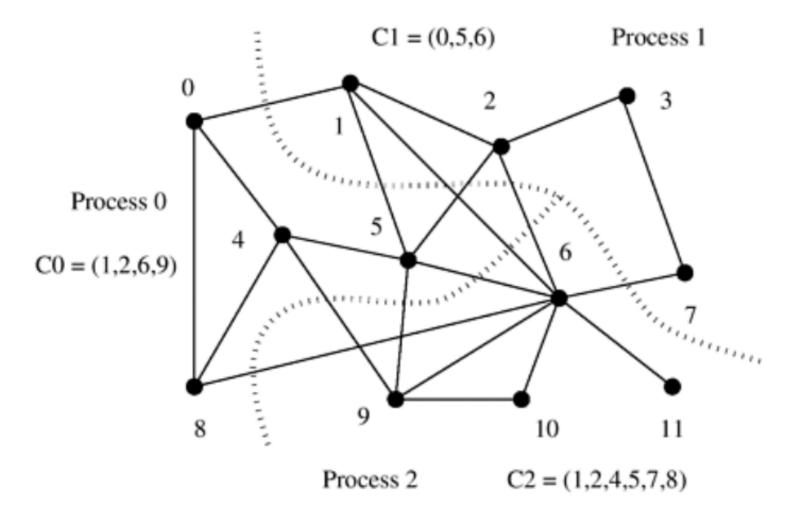
## Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3 processes

Arrow distribution



 Partitioning task-interaction graph to reduce interaction overhead



### Schemes for Dynamic Mapping

- When static mapping results in highly imbalanced distribution of work among processes or when task-dependency graph is dynamic, use dynamic mapping
- Primary goal is to balance load dynamic load balancing
  - Example: Dynamic load balancing for AMR
- Types
  - Centralized
  - Distributed

## **Centralized Dynamic Mapping**

- Processes
  - Master: mange a group of available tasks
  - Slave: depend on master to obtain work
- Idea
  - When a slave process has no work, it takes a portion of available work from master
  - When a new task is generated, it is added to the pool of tasks in the master process
- Potential problem
  - When many processes are used, master process may become bottleneck
- Solution
  - Chunk scheduling: every time a process runs out of work it gets a group of tasks.

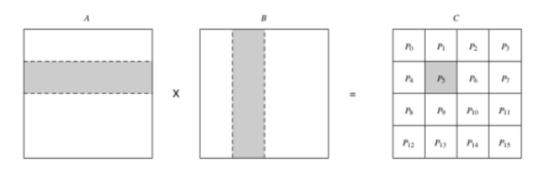
### **Distributed Dynamic Mapping**

- All processes are peers. Tasks are distributed among processes which exchange tasks at run time to balance work
- Each process can send or receive work from other processes
  - How are sending and receiving processes paired together
  - Is the work transfer initiated by the sender or the receiver?
  - How much work is transferred?
  - When is the work transfer performed?

Techniques to Minimize Interaction Overheads

- Maximize data locality
  - Maximize the reuse of recently accessed data
  - Minimize volume of data-exchange
    - Use high dimensional distribution. Example: 2D block distribution for matrix multiplication
  - Minimize frequency of interactions
    - Reconstruct algorithm such that shared data are accessed and used in large pieces.
    - Combine messages between the same source-destination pair

- Minimize contention and hot spots
  - Competition occur when multi-tasks try to access the same resources concurrently: multiple processes sending message to the same process; multiple simultaneous accesses to the same memory block



- Using  $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$  causes contention. For example,  $C_{0,0}$ ,  $C_{0,1}, C_{0,\sqrt{p}-1}$  attempt to read  $A_{0,0}$ , at the same time.
- A contention-free manner is to use:

 $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} B_{(i+j+k)\%\sqrt{p},j}$ All tasks  $P_{*,j}$  that work on the same row of C access block  $A_{i,(i+j+k)\%\sqrt{p}}$ , which is different for each task.

- Overlap computations with interactions
   Use non-blocking communication
- Replicate data or computations
  - Some parallel algorithm may have read-only access to shared data structure. If local memory is available, replicate a copy of shared data on each process if possible, so that there is only initial interaction during replication.
- Use collective interaction operations
- Overlap interactions with other interactions

## Parallel Algorithm Models

- Data parallel
  - Each task performs similar operations on different data
  - Typically statically map tasks to processes
- Task graph
  - Use task dependency graph to promote locality or reduce interactions
- Master-slave
  - One or more master processes generating tasks
  - Allocate tasks to slave processes
  - Allocation may be static or dynamic
- Pipeline/producer-consumer
  - Pass a stream of data through a sequence of processes
  - Each performs some operation on it
- Hybrid
  - Apply multiple models hierarchically, or apply multiple models in sequence to different phases