
Lecture 4: Principles of Parallel
Algorithm Design (part 4)

1

Mapping Technique for Load Balancing

Minimize execution time → Reduce overheads of execution
• Sources of overheads:

– Inter-process interaction
– Idling
– Both interaction and idling are often a function of mapping

• Goals to achieve:
– To reduce interaction time
– To reduce total amount of time some processes being idle

(goal of load balancing)
– Remark: these two goals often conflict

• Classes of mapping:
– Static
– Dynamic

2

Two mappings of 12-task decomposition in which the last 4 tasks can be started only
after the first 8 are finished due to task-dependency.

Remark:
1. Loading balancing is only a necessary but not sufficient condition for reducing

idling.
• Task-dependency graph determines which tasks can execute in parallel and

which must wait for some others to finish at a given stage.
2. Good mapping must ensure that computations and interactions among processes

at each stage of execution are well balanced.

3

Schemes for Static Mapping

Static Mapping: It distributes the tasks among
processes prior to the execution of the algorithm.

• Mapping Based on Data Partitioning
• Task Graph Partitioning
• Hybrid Strategies

4

Mapping Based on Data Partitioning

• By owner-computes rule, mapping the relevant
data onto processes is equivalent to mapping
tasks onto processes

• Array or Matrices
– Block distributions
– Cyclic and block cyclic distributions

• Irregular Data
– Example: data associated with unstructured mesh
– Graph partitioning

5

1D Block Distribution

Example. Distribute rows or columns of matrix to different
processes

6

Multi-D Block Distribution
Example. Distribute blocks of matrix to different processes

7

Load-Balance for Block Distribution

Example. 𝑛𝑛 × 𝑛𝑛 dense matrix multiplication 𝐶𝐶 = 𝐴𝐴 × 𝐵𝐵
using 𝑝𝑝 processes

– Decomposition based on output data.
– Each entry of 𝐶𝐶 use the same amount of computation.
– Either 1D or 2D block distribution can be used:

• 1D distribution: 𝑛𝑛
𝑝𝑝

rows are assigned to a process

• 2D distribution: 𝑛𝑛/ 𝑝𝑝 × 𝑛𝑛/ 𝑝𝑝 size block is assigned to a process

– Multi-D distribution allows higher degree of concurrency.
– Multi-D distribution can also help to reduce interactions

8

Suppose the size of matrix is 𝑛𝑛 × 𝑛𝑛, and 𝑝𝑝 processes are used.

(a): A process need to access 𝑛𝑛
2

𝑝𝑝
+ 𝑛𝑛2 amount of data

(b): A process need to access 𝑂𝑂(𝑛𝑛2/ 𝑝𝑝) amount of data 9

Cyclic and Block Cyclic Distributions

• If the amount of work differs for different
entries of a matrix, a block distribution can
lead to load imbalances.

• Example. Doolittle’s method of LU factorization
of dense matrix
– The amount of computation increases from the top

left to the bottom right of the matrix.

10

Doolittle’s method of LU factorization

𝐴𝐴 =

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 … 𝑎𝑎𝑛𝑛𝑛𝑛

= 𝐿𝐿𝐿𝐿 =

1 0 … 0
𝑙𝑙21 1 … 0
⋮ ⋮ ⋱ ⋮
𝑙𝑙𝑛𝑛1 𝑙𝑙𝑛𝑛2 … 1

𝑢𝑢11 𝑢𝑢12 … 𝑢𝑢1𝑛𝑛
0 𝑢𝑢22 … 𝑢𝑢2𝑛𝑛
⋮ ⋮ ⋱ ⋮
0 0 … 𝑢𝑢𝑛𝑛𝑛𝑛

By matrix-matrix multiplication

𝑢𝑢1𝑗𝑗 = 𝑎𝑎1𝑗𝑗 , 𝑗𝑗 = 1,2, … ,𝑛𝑛 (1𝑠𝑠𝑠𝑠 row of 𝐿𝐿)
𝑙𝑙𝑗𝑗1 = 𝑎𝑎𝑗𝑗1/𝑢𝑢11, 𝑗𝑗 = 1,2, … ,𝑛𝑛 (1𝑠𝑠𝑠𝑠 column of 𝐿𝐿)

For 𝑖𝑖 = 2,3, … ,𝑛𝑛 − 1 do
𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 − ∑𝑡𝑡=1𝑖𝑖−1 𝑙𝑙𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑖𝑖

𝑢𝑢𝑖𝑖𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗 − ∑𝑡𝑡=1𝑖𝑖−1 𝑙𝑙𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑗𝑗 for 𝑗𝑗 = 𝑖𝑖 + 1, … ,𝑛𝑛 (𝑖𝑖𝑠𝑠𝑖 row of 𝐿𝐿)

𝑙𝑙𝑗𝑗𝑖𝑖 =
𝑎𝑎𝑗𝑗𝑗𝑗−∑𝑡𝑡=1

𝑗𝑗−1 𝑙𝑙𝑗𝑗𝑡𝑡𝑢𝑢𝑡𝑡𝑗𝑗
𝑢𝑢𝑗𝑗𝑗𝑗

for 𝑗𝑗 = 𝑖𝑖 + 1, … ,𝑛𝑛 (𝑖𝑖𝑠𝑠𝑖 column of 𝐿𝐿)

End
𝑢𝑢𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑛𝑛 − ∑𝑡𝑡=1𝑛𝑛−1 𝑙𝑙𝑛𝑛𝑡𝑡𝑢𝑢𝑡𝑡𝑛𝑛

11

Serial Column-Based LU

• Remark: Matrices L and U share space with A
12

Work used to compute Entries of L and U

13

• Block distribution of LU factorization tasks
leads to load imbalance.

14

Block-Cyclic Distribution

• A variation of block distribution that can be
used to alleviate the load-imbalance.

• Steps
1. Partition an array into many more blocks than

the number of available processes
2. Assign blocks to processes in a round-robin

manner so that each process gets several non-
adjacent blocks.

15

(a) The rows of the array are grouped into blocks each consisting of two rows,
resulting in eight blocks of rows. These blocks are distributed to four processes
in a wrap-around fashion.

(b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a
2×2 grid of processes in a wraparound fashion.

• Cyclic distribution: when the block size =1
16

Randomized Block Distribution

17

Sparse-matrix vector multiplication
Graph Partitioning

Work: nodes
Interaction/communication: edges

Partition the graph:
Assign roughly same number of nodes to each process
Minimize edge count of graph partition

18

• Assign equal number of nodes (or cells) to each process
– Random partitioning may lead to high interaction overhead due to data

sharing
• Minimize edge count of the graph partition

– Each process should get roughly the same number of elements and the
number of edges that cross partition boundaries should be minimized as well.

Random Partitioning Partitioning for Minimizing Edge-Count

Finite element simulation of water contaminant in a lake.
• Goal of partitioning: balance work & minimize communication

19

Mappings Based on Task Partitioning

• Mapping based on task partitioning can be used
when computation is naturally expressed in the
form of a static task-dependency graph with
known sizes.

• Finding optimal mapping minimizing idle time and
minimizing interaction time is NP-complete

• Heuristic solutions exist for many structured
graphs

20

Mapping a Binary Tree Task-Dependency Graph
• Finding minimum using hypercube network.

– Hypercube: node numbers that differ in 1 bit are adjacent.

• Mapping the tree graph onto 8 processes
• Mapping minimizes the interaction overhead by mapping inter-

dependent tasks onto the same process (i.e., process 0) and others on
processes only one communication link away from each other

• Idling exists. This is inherent in the graph 21

Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3
processes
• Arrow distribution

22

• Partitioning task-interaction graph to reduce
interaction overhead

23

Schemes for Dynamic Mapping

• When static mapping results in highly imbalanced
distribution of work among processes or when
task-dependency graph is dynamic, use dynamic
mapping

• Primary goal is to balance load – dynamic load
balancing
– Example: Dynamic load balancing for AMR

• Types
– Centralized
– Distributed

24

Centralized Dynamic Mapping

• Processes
– Master: mange a group of available tasks
– Slave: depend on master to obtain work

• Idea
– When a slave process has no work, it takes a portion of available

work from master
– When a new task is generated, it is added to the pool of tasks in

the master process
• Potential problem

– When many processes are used, master process may become
bottleneck

• Solution
– Chunk scheduling: every time a process runs out of work it gets

a group of tasks.

25

Distributed Dynamic Mapping

• All processes are peers. Tasks are distributed
among processes which exchange tasks at run
time to balance work

• Each process can send or receive work from other
processes
– How are sending and receiving processes paired

together
– Is the work transfer initiated by the sender or the

receiver?
– How much work is transferred?
– When is the work transfer performed?

26

Techniques to Minimize Interaction Overheads

• Maximize data locality
– Maximize the reuse of recently accessed data
– Minimize volume of data-exchange

• Use high dimensional distribution. Example: 2D block
distribution for matrix multiplication

– Minimize frequency of interactions
• Reconstruct algorithm such that shared data are accessed

and used in large pieces.
• Combine messages between the same source-destination

pair

27

• Minimize contention and hot spots
– Competition occur when multi-tasks try to access the same

resources concurrently: multiple processes sending
message to the same process; multiple simultaneous
accesses to the same memory block

• Using 𝐶𝐶𝑖𝑖,𝑗𝑗 = ∑𝑘𝑘=0
𝑝𝑝−1𝐴𝐴𝑖𝑖,𝑘𝑘𝐵𝐵𝑘𝑘,𝑗𝑗 causes contention. For example, 𝐶𝐶0,0,

𝐶𝐶0,1,𝐶𝐶0, 𝑝𝑝−1 attempt to read 𝐴𝐴0,0, at the same time.
• A contention-free manner is to use:

𝐶𝐶𝑖𝑖,𝑗𝑗 = ∑𝑘𝑘=0
𝑝𝑝−1𝐴𝐴𝑖𝑖, 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝𝐵𝐵 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝,𝑗𝑗

All tasks 𝑃𝑃∗,𝑗𝑗 that work on the same row of C access block
𝐴𝐴𝑖𝑖, 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝, which is different for each task.

28

• Overlap computations with interactions
– Use non-blocking communication

• Replicate data or computations
– Some parallel algorithm may have read-only access to

shared data structure. If local memory is available,
replicate a copy of shared data on each process if
possible, so that there is only initial interaction during
replication.

• Use collective interaction operations
• Overlap interactions with other interactions

29

Parallel Algorithm Models

• Data parallel
– Each task performs similar operations on different data
– Typically statically map tasks to processes

• Task graph
– Use task dependency graph to promote locality or reduce

interactions
• Master-slave

– One or more master processes generating tasks
– Allocate tasks to slave processes
– Allocation may be static or dynamic

• Pipeline/producer-consumer
– Pass a stream of data through a sequence of processes
– Each performs some operation on it

• Hybrid
– Apply multiple models hierarchically, or apply multiple models

in sequence to different phases
30

	Lecture 4: Principles of Parallel Algorithm Design (part 4)
	Mapping Technique for Load Balancing
	Slide Number 3
	Schemes for Static Mapping
	Mapping Based on Data Partitioning
	1D Block Distribution
	Multi-D Block Distribution
	Load-Balance for Block Distribution
	Slide Number 9
	Cyclic and Block Cyclic Distributions
	Slide Number 11
	Serial Column-Based LU
	Work used to compute Entries of L and U
	Slide Number 14
	Block-Cyclic Distribution
	Slide Number 16
	Randomized Block Distribution
	Slide Number 18
	Slide Number 19
	Mappings Based on Task Partitioning
	Mapping a Binary Tree Task-Dependency Graph
	Mapping a Sparse Graph
	Slide Number 23
	Schemes for Dynamic Mapping
	Centralized Dynamic Mapping
	Distributed Dynamic Mapping
	Techniques to Minimize Interaction Overheads
	Minimize contention and hot spots
	Slide Number 29
	Parallel Algorithm Models

