
Lecture 4: Principles of Parallel 
Algorithm Design (part 4)
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Mapping Technique for Load Balancing

Minimize execution time → Reduce overheads of execution
• Sources of overheads:

– Inter-process interaction
– Idling 
– Both interaction and idling are often a function of mapping

• Goals to achieve:
– To reduce interaction time
– To reduce total amount of time some processes being idle 

(goal of load balancing)
– Remark: these two goals often conflict

• Classes of mapping:
– Static
– Dynamic
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Two mappings of 12-task decomposition in which the last 4 tasks can be started only 
after the first 8 are finished due to task-dependency.

Remark:
1. Loading balancing is only a necessary but not sufficient condition for reducing 

idling. 
• Task-dependency graph determines which tasks can execute in parallel and 

which must wait for some others to finish at a given stage.
2. Good mapping must ensure that computations and interactions among processes 

at each stage of execution are well balanced.  
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Schemes for Static Mapping

Static Mapping:  It distributes the tasks among 
processes prior to the execution of the algorithm. 

• Mapping Based on Data Partitioning
• Task Graph Partitioning
• Hybrid Strategies
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Mapping Based on Data Partitioning

• By owner-computes rule, mapping the relevant 
data onto processes is equivalent to mapping 
tasks onto processes

• Array or Matrices
– Block distributions
– Cyclic and block cyclic distributions

• Irregular Data
– Example: data associated with unstructured mesh
– Graph partitioning

5



1D Block Distribution

Example. Distribute rows or columns of matrix to different 
processes
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Multi-D Block Distribution
Example. Distribute blocks of matrix to different processes
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Load-Balance for Block Distribution

Example. 𝑛𝑛 × 𝑛𝑛 dense matrix multiplication 𝐶𝐶 = 𝐴𝐴 × 𝐵𝐵
using 𝑝𝑝 processes

– Decomposition based on output data.
– Each entry of 𝐶𝐶 use the same amount of computation.
– Either 1D or 2D block distribution can be used:

• 1D distribution: 𝑛𝑛
𝑝𝑝

rows are assigned to a process

• 2D distribution: 𝑛𝑛/ 𝑝𝑝 × 𝑛𝑛/ 𝑝𝑝 size block is assigned to a process

– Multi-D distribution allows higher degree of concurrency.
– Multi-D distribution can also help to reduce interactions
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Suppose the size of matrix is 𝑛𝑛 × 𝑛𝑛, and 𝑝𝑝 processes are used.

(a):  A process need to access 𝑛𝑛
2

𝑝𝑝
+ 𝑛𝑛2 amount of data

(b): A process need to access 𝑂𝑂(𝑛𝑛2/ 𝑝𝑝) amount of data 9



Cyclic and Block Cyclic Distributions

• If the amount of work differs for different 
entries of a matrix, a block distribution can 
lead to load imbalances. 

• Example. Doolittle’s method of LU factorization 
of dense matrix
– The amount of computation increases from the top 

left to the bottom right of the matrix.
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Doolittle’s method of LU factorization

𝐴𝐴 =

𝑎𝑎11 𝑎𝑎12 … 𝑎𝑎1𝑛𝑛
𝑎𝑎21 𝑎𝑎22 … 𝑎𝑎2𝑛𝑛
⋮ ⋮ ⋱ ⋮
𝑎𝑎𝑛𝑛1 𝑎𝑎𝑛𝑛2 … 𝑎𝑎𝑛𝑛𝑛𝑛

= 𝐿𝐿𝐿𝐿 =

1 0 … 0
𝑙𝑙21 1 … 0
⋮ ⋮ ⋱ ⋮
𝑙𝑙𝑛𝑛1 𝑙𝑙𝑛𝑛2 … 1

𝑢𝑢11 𝑢𝑢12 … 𝑢𝑢1𝑛𝑛
0 𝑢𝑢22 … 𝑢𝑢2𝑛𝑛
⋮ ⋮ ⋱ ⋮
0 0 … 𝑢𝑢𝑛𝑛𝑛𝑛

By matrix-matrix multiplication

𝑢𝑢1𝑗𝑗 = 𝑎𝑎1𝑗𝑗 , 𝑗𝑗 = 1,2, … ,𝑛𝑛 (1𝑠𝑠𝑠𝑠 row of 𝐿𝐿)
𝑙𝑙𝑗𝑗1 = 𝑎𝑎𝑗𝑗1/𝑢𝑢11, 𝑗𝑗 = 1,2, … ,𝑛𝑛 (1𝑠𝑠𝑠𝑠 column of 𝐿𝐿)

For 𝑖𝑖 = 2,3, … ,𝑛𝑛 − 1 do
𝑢𝑢𝑖𝑖𝑖𝑖 = 𝑎𝑎𝑖𝑖𝑖𝑖 − ∑𝑡𝑡=1𝑖𝑖−1 𝑙𝑙𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑖𝑖

𝑢𝑢𝑖𝑖𝑗𝑗 = 𝑎𝑎𝑖𝑖𝑗𝑗 − ∑𝑡𝑡=1𝑖𝑖−1 𝑙𝑙𝑖𝑖𝑡𝑡𝑢𝑢𝑡𝑡𝑗𝑗 for 𝑗𝑗 = 𝑖𝑖 + 1, … ,𝑛𝑛 (𝑖𝑖𝑠𝑠𝑖 row of 𝐿𝐿)

𝑙𝑙𝑗𝑗𝑖𝑖 =
𝑎𝑎𝑗𝑗𝑗𝑗−∑𝑡𝑡=1

𝑗𝑗−1 𝑙𝑙𝑗𝑗𝑡𝑡𝑢𝑢𝑡𝑡𝑗𝑗
𝑢𝑢𝑗𝑗𝑗𝑗

for 𝑗𝑗 = 𝑖𝑖 + 1, … ,𝑛𝑛 (𝑖𝑖𝑠𝑠𝑖 column of 𝐿𝐿)

End              
𝑢𝑢𝑛𝑛𝑛𝑛 = 𝑎𝑎𝑛𝑛𝑛𝑛 − ∑𝑡𝑡=1𝑛𝑛−1 𝑙𝑙𝑛𝑛𝑡𝑡𝑢𝑢𝑡𝑡𝑛𝑛
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Serial Column-Based LU

• Remark: Matrices L and U share space with A
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Work used to compute Entries of L and U
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• Block distribution of LU factorization tasks 
leads to load imbalance. 
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Block-Cyclic Distribution

• A variation of block distribution that can be 
used to alleviate the load-imbalance. 

• Steps
1. Partition an array into many more blocks than 

the number of available processes
2. Assign blocks to processes in a round-robin 

manner so that each process gets several non-
adjacent blocks. 
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(a) The rows of  the array are grouped into blocks each consisting of two rows, 
resulting in eight blocks of rows. These blocks are distributed to four processes 
in a wrap-around fashion.

(b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a 
2×2 grid of processes in a wraparound fashion. 

• Cyclic distribution: when the block size =1
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Randomized Block Distribution
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Sparse-matrix vector multiplication
Graph Partitioning

Work: nodes
Interaction/communication: edges

Partition the graph:
Assign roughly same number of nodes to each process
Minimize edge count of graph partition
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• Assign equal number of nodes (or cells) to each process
– Random partitioning may lead to high interaction overhead due to data 

sharing
• Minimize edge count of the graph partition

– Each process should get roughly the same number of elements and the 
number of edges that cross partition boundaries should be minimized as well. 

Random Partitioning Partitioning for Minimizing Edge-Count

Finite element simulation of water contaminant in a lake.
• Goal of partitioning:  balance work & minimize communication 
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Mappings Based on Task Partitioning

• Mapping based on task partitioning can be used 
when computation is naturally expressed in the 
form of a static task-dependency graph with 
known sizes.

• Finding optimal mapping minimizing idle time and 
minimizing interaction time  is NP-complete

• Heuristic solutions exist for many structured 
graphs
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Mapping a Binary Tree Task-Dependency Graph
• Finding minimum using hypercube network.

– Hypercube: node numbers that differ in 1 bit are adjacent.

• Mapping the tree graph onto 8 processes
• Mapping minimizes the interaction overhead by mapping inter-

dependent tasks onto the same process (i.e., process 0) and others on 
processes only one communication link away from each other

• Idling exists. This is inherent in the graph 21



Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3 
processes
• Arrow distribution
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• Partitioning task-interaction graph to reduce 
interaction overhead 
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Schemes for Dynamic Mapping

• When static mapping results in highly imbalanced 
distribution of work among processes or when 
task-dependency graph is dynamic, use dynamic 
mapping

• Primary goal is to balance load – dynamic load 
balancing
– Example: Dynamic load balancing for AMR

• Types
– Centralized
– Distributed
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Centralized Dynamic Mapping

• Processes
– Master: mange a group of available tasks
– Slave: depend on master to obtain work

• Idea
– When a slave process has no work, it takes a portion of available 

work from master 
– When a new task is generated, it is added to the pool of tasks in 

the master process
• Potential problem

– When many processes are used, master process may become 
bottleneck

• Solution
– Chunk scheduling: every time  a process runs out of work it gets 

a group of tasks. 
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Distributed Dynamic Mapping

• All processes are peers. Tasks are distributed 
among processes which exchange tasks at run 
time to balance work 

• Each process can send or receive work from other 
processes
– How are sending and receiving processes paired 

together
– Is the work transfer initiated by the sender or the 

receiver?
– How much work is transferred?
– When is the work transfer performed?
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Techniques to Minimize Interaction Overheads

• Maximize data locality
– Maximize the reuse of recently accessed data
– Minimize volume of data-exchange

• Use high dimensional distribution. Example: 2D block 
distribution for matrix multiplication

– Minimize frequency of interactions
• Reconstruct algorithm such that shared data are accessed 

and used in large pieces. 
• Combine messages between the same source-destination 

pair
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• Minimize contention and hot spots
– Competition occur when multi-tasks try to access the same 

resources concurrently: multiple processes sending 
message to the same process; multiple simultaneous 
accesses to the same  memory block

• Using 𝐶𝐶𝑖𝑖,𝑗𝑗 = ∑𝑘𝑘=0
𝑝𝑝−1𝐴𝐴𝑖𝑖,𝑘𝑘𝐵𝐵𝑘𝑘,𝑗𝑗 causes contention. For example, 𝐶𝐶0,0,

𝐶𝐶0,1,𝐶𝐶0, 𝑝𝑝−1 attempt to read 𝐴𝐴0,0, at the same time.  
• A contention-free manner is to use:

𝐶𝐶𝑖𝑖,𝑗𝑗 = ∑𝑘𝑘=0
𝑝𝑝−1𝐴𝐴𝑖𝑖, 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝𝐵𝐵 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝,𝑗𝑗

All tasks 𝑃𝑃∗,𝑗𝑗 that work on the same row of C access block  
𝐴𝐴𝑖𝑖, 𝑖𝑖+𝑗𝑗+𝑘𝑘 % 𝑝𝑝, which is different for each task. 
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• Overlap computations with interactions
– Use non-blocking communication

• Replicate data or computations
– Some parallel algorithm may have read-only access to 

shared data structure. If local memory is available, 
replicate a copy of shared data on each process if 
possible, so that there is only initial interaction during 
replication.

• Use collective interaction operations
• Overlap interactions with other interactions
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Parallel Algorithm Models

• Data parallel
– Each task performs similar operations on different data
– Typically statically map tasks to processes

• Task graph
– Use task dependency graph to promote locality or reduce 

interactions
• Master-slave

– One or more master processes generating tasks
– Allocate tasks to slave processes
– Allocation may be static or dynamic

• Pipeline/producer-consumer
– Pass a stream of data through a sequence of processes
– Each performs some operation on it

• Hybrid
– Apply multiple models hierarchically, or apply multiple models 

in sequence to different phases
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