
Lecture 3 Message-Passing
Programming Using MPI (Part 1)

1

What is MPI
Message-Passing Interface (MPI)
• Message-Passing is a communication model used on

distributed-memory architecture
• MPI is not a programming language (like C, Fortran 77), or even

an extension to a language. It is a library that compilers (like cc,
f77) uses.

• MPI is a standard that specifies the message-passing libraries
supporting parallel programming in C/C++ or Fortran.

• The communication network is opaque to users.
• http://www.mpi-forum.org

• 1989, first message-passing library called Parallel Virtual
Machine (PVM) was written at ORNL.

• 1993, version 3 of PVM was released.
• 1994, first version of MPI released by MPI Forum.
• 1997, MPI-2.0, 2008, MPI-2.1

• Added I/O and one-sided concepts
• 2009, MPI-2.2

• Bug fixes
• 09/21/2012, MPI-3.0 2

http://www.mpi-forum.org/

Message-passing model

This model assumes that the underlying hardware is a collection of
processors, each with its own local memory, and an interconnection
network supporting message-passing between processors. A
process runs on a processor. MPI uses objects called communicators
and groups to define which collection of processes may
communicate with each other.
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

3

MPI Features
• Distributed-memory cluster and multi-processor shared-

memory platform support
• Support for virtual process topologies
• Fixed number of available processes during execution ?
• Initial processor allocation and binding to physical

processors and interprocessor hardware communication
are left to vendor implementation

• Explicit shared-memory operation, I/O functions and task
management are not specified in the standard ?

• Designed to provide a portable parallel programming
interface for:
– End users
– Library writers
– Tool developers

4

To Learn More about MPI
• http://www.llnl.gov/computing/tutorials/mpi/
• http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
• http://www.mpich.org/documentation/guides/

Books
Using MPI, by William Gropp, Ewing Lusk, and Anthony Skjellum
MPI Annotated Reference Manual, by Marc Snir, et al

Based on MPI-1 Standards doc. and is almost identical
Designing and Building Parallel Programs, an Foster
Parallel Programming with MPI, Peter Pacheco
High Performance Computing, 2nd Ed., Dowd and Severence

MPI on Linux clusters:
–MPICH (http://www.mcs.anl.gov/project/mpich-high-performance-
portable-implementation-mpi/)
–LAM (http://www.lam-mpi.org/)

5

http://www.nersc.gov/nusers/help/tutorials/mpi/intro/
http://www.lam-mpi.org/

MPICH
MPICH is a freely available, high-performance and portable
implementation of MPI.
(http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions#Q:_What
_are_process_managers.3F)

MPICH2 is an all-new implementation of MPI, designed to support
research into high-performance implementations of MPI-1 and MPI-2
functionality. In addition to the features in MPICH, MPICH2 includes
support for one-side communication, dynamic processes,
intercommunicator collective operations, and expanded MPI-IO
functionality. Clusters consisting of both single-processor and SMP
nodes and running

• Linux
• FreeBSD
• WinNT
• Solaris

are supported. 6

http://wiki.mcs.anl.gov/mpich2/index.php/Frequently_Asked_Questions

How does a MPI program look like?

7
https://computing.llnl.gov/tutorials/mpi/#Getting_Started

Basic Needs in parallel programming

In order to do parallel programming, we need
basic functionality:
-- Start Processes
-- Send Messages
-- Receive Messages
-- Synchronize Processes
-- Terminate Processes

8

MPI Basic Functions
• MPI_Init() – Initiate a MPI computation

Its job is to create, initialize, and make available all aspects of
the message passing layer. This may even include launching
additional processes (typically peer MPI_ COMM_WORLD
processes). It also typically allocates resources such as shared
memory, local interprocess communication channels, network
communication channels.
– Most MPI implementations recommend that MPI_ Init()

be invoked as close to the beginning of main() as possible.
• MPI_Finalize() – Terminate a computation
• MPI_Comm_size() – Determine number of processes
• MPI_Comm_rank() – Determine a process’s ID number
• MPI_Send() – Send a message
• MPI_Recv() – Receive a message

9

Parallel hello.c

10

See: ~zxu2/Public/ACMS40212/MPI_basics/

Compiling and Running Code on CRC

Step 1: set up environment in CRC
• module load mpich/3.1.2-intel /* to load proper libraries and set up

environment in CRC */
Step 2: Compile code
• mpicc –o hello hello.c /*compile c code*/
• mpicxx –o hello hello_1.cc /*compile c++ code*/

Step 3: Run code
• mpiexec -np 4 ./hello /*running with 4 processes*/

11

Note: Using “mpiexec” at command line to run a parallel program is not
recommended. I do this only for the purpose of saving demonstration
time. In general, a script should be used to launch a parallel program.

Running with Job Scripts
#!/bin/csh
#$ -M zxu2@nd.edu # send mail when program begins (b), ends (e), or aborts (a)
#$ -m bea # Send mail when job begins, ends and aborts
job name
#$ -N Hello

Specify the parallel environment depending on which mpi code utilized.
#$ -pe smp 8

setenv WORK_DIR `pwd`
cd $WORK_DIR

This tells the queue to set the directory on the compute node to your current working directory

####Your commands, may include module loads or environment variable settings

module load mpich/3.1.2-intel

mpiexec -np $NSLOTS $WORK_DIR/a.out

unsetenv $WORK_DIR

12

See: ~zxu2/Public/ACMS40212/MPI_basics/paral_HPCC.sh
http://wiki.crc.nd.edu/wiki/index.php/CRC_Quick_Start_Guide

mailto:zxu2@nd.edu

Commands to Monitor Jobs

• qsub jobscript
Submit the job script to the batch submission system.

• qstat –u username
See status of jobs submitted by a user

• qstat –j job_id
See status of job with id: job_id

• qdel –j job_id
Delete a job

13

http://wiki.crc.nd.edu/wiki/index.php/CRC_Quick_Start_Guide

Execution
• mpiexec -np 4 ./hello
Parallel Programming Environment:
• Job launcher: decides what resources a parallel job consisting of multiple

processes will run on. ”mpiexec” is used to initialize a parallel job from
within a portable batch system (PBS) or other interactive environment.
“mpiexec” uses the task manager library of PBS to spawn copies of the
executable on the nodes in a PBS allocation.

• Other process manager ((MPI process manager daemon)mpd (till the 1.2.x
release series), hydra (default process manager for MPICH2 (Starting the
1.3.x series) with user interface mpiexec or mpiexec.hydra), smpd): starts
and terminates processes and provide them with a number of services
– http://wiki.mpich.org/mpich/index.php/Hydra_Process_Management_Framework

• Parallel library: MPI
• Integration of MPICH and SGE (Sun Grid Engine)

– http://gridscheduler.sourceforge.net/howto/mpich2-integration/mpich2-
integration.html

14

http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://wiki.mpich.org/mpich/index.php/Hydra_Process_Management_Framework

MPI2 Model
• The MPI2 software model consists in first establishing a virtual machine, the

communication ring, within a subset of the physical nodes of the parallel computer and
then in running the parallel jobs via the help of communication handles within that
virtual computer. Contrary to the MPI standard, the MPI2 standard establishes a
distinction between the administrative tasks of establishing and maintaining the
communication ring from the administration of the parallel jobs.

• In practice, communication is done via the establishment of computer daemons on each
node which are themselves linked within the MPI2 umbrella by point-to-point
communication protocol. The users' tasks in any node talk to the local MPI2 daemons,
which themselves talk to each other and therefore can establish communication links
from any sub-tasks to any other sub-tasks.

• In MPICH2, the multi-purpose daemon (MPD) (for mpd manger) allows the
establishment of the communication ring or the virtual machine. Once the
communication ring is established specific MPI commands allow the users to load in the
sub-tasks, monitor them, signal them and possibly kill them.

15

See also mpich2-
user-guide.

Communicator: communication domain

Running MPI Parallel Programs within CRC SGE
batch system

• http://wiki.crc.nd.edu/wiki/index.php/Main_Page
• See the other notes.

16

http://wiki.crc.nd.edu/wiki/index.php/Main_Page

Program Details

#include “mpi.h”
• Function declarations for all MPI functions

int MPI_Init(int* argc_ptr, char** argv_ptr[])
• Allows the system to do any setup needed to handle further

calls to MPI library
• It must be called before any other MPI function
• It requires to pass along the command line arguments.
• Most MPI implementations recommend that MPI_ Init() be

invoked as close to the beginning of main() as possible.

17

int MPI_Finalize(void)
• MPI_Finalize() is the companion to MPI_init().
• MPI_Finalize() allows the system to free up resources

that have been allocated to MPI.
• It must be the last MPI function call.

18

MPI_Comm_rank(MPI_Comm comm /* in */,
int* result /* out */)

• Argument “comm” is called a communicator.
• When MPI has been initialized, every active process become a

member of a communicator called MPI_COMM_WORLD. A
communicator is an opaque object that provides the
environment for message passing among processes.
MPI_COMM_WORLD is the default communicator.

• MPI_COMM_WORLD is predefined within MPI and consists of
all the processes initiated when we run this program.

• Processes within a communicator are ordered. The rank of a
process is its position in the overall order.

• In a communicator with p processes, each process has a unique
rank (ID number) between 0 and p-1.

How does a process know its position in a set of processes

19

MPI_Comm_size(MPI_Comm comm /* in */,
int* size /* out*/)

• It gives total number of processes that have been
allocated.

20

C Language Bindings

• Function arguments are marked as
– in: the call uses but does not update the argument
– out: the call may update the argument
– inout: the call both uses and updates the argument

• All MPI names have an MPI_ prefix

• Defined constants are in all capital letters

• Defined types and functions have one capital letter
after the prefix; the remaining letters are lowercase

21

Summary of Running Parallel Program

1. User issues a directive to the operating system that
has the effect of placing a copy of the executable
program on each processor.

2. Each processor begins execution of its copy of the
executable. Thus all processes use the same
compiled binary.

3. Different processes can execute different
statements by branching within the program based
on their process ranks.

4. Processes communicate with each other to
accomplish the task.

22

• Results from execution
[zxu2@newcell ~/ACMS40212]$ mpiexec -np 4 ./hello
Hello from node 2
Hello from node 0
Hello from node 3
Hello from node 1
[zxu2@newcell ~/ACMS40212]$

Issues ? :
1. The output might seems out of order. Keep in mind that the code was started

on all nodes practically simultaneously. There was no reason to expect one
node to finish before another. It’s important for us not to assume that there is
any particular order to events unless we do something explicitly.

2. “how does the output know where to go?” Most IO is file-based and will
depend upon a distributed file system.

23

Point-to-Point communications

• Transfer message from one process to another
process
-- It involves an explicit “send” and “receive”, which is called “two-
sided” communication.
-- Message: data + (source + destination + communicator + tag)
-- Almost all of the MPI commands are built around point-to-point
operations.

24

A:

Send Receive

B:

Process 1Process 0
Things need to be considered:
• To whom is data sent?
• Where is the data to be sent?
• What type of data is sent?
• How much of data is sent?
• How does the receiver identify it?
• Where is the received data to be

stored?

Message Organization

• Message is divided into data and envelope
• data

– buffer
– count
– datatype

• envelope
– process identifier (source/destination rank)
– message tag
– communicator

25

Sending and Receiving Routines

• int MPI_Send(void* message /* in */,
int count /* in */,
MPI_Datatype datatype /* in */,
int dest /* in */,
int tag /* in */,
MPI_Comm comm /* in */)

• int MPI_Recv(void* message /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
int source /* in */,
int tag /* in */,
MPI_Comm comm /* in */,
MPI_Status* status /* out */)

26

Message Bodies
• “void* message”: the starting location in memory where the data is to be

found
• “int count “: number of items to be sent.
• “MPI_Datatype datatype ”: the type of data to be sent.

27

MPI Datatypes
• MPI defines its own data type that

correspond to typical datatypes in C or
Fortran

• This allows to code to be portable
between systems

• Users are allowed to build their own
datatypes in MPI

MPI Datatype C Datatype

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG Signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_FLOAT Float

MPI_DOUBLE Double

MPI_LONG_DOUBLE Long double

…

Message Envelope
What else is needed for A to send a message to B in a communicator?
Example. Process A can send both floats to be printed and floats to be
stored. How is process B to distinguish between the two different
types?

• We now know where to deliver and where to get message, number of elements
in the message and their type, and destination and source IDs.

• Additionally, we also use a message identifier “tag”.
-- It allows program to label classes of messages (e.g. one for printing data,
another for storing data, etc.)
-- A tag is an int specified by the programmer that the system adds to the
message envelope.
-- MPI guarantees that the integers 0 – 32767 can be used as tags.

28

C Code

/** ~zxu2/Public/ACMS40212/MPI_basics/send_recv.c **/

#include <stdio.h>

#include "mpi.h"

main(int argc, char** argv)

{

int my_rank, numbertoreceive, numbertosend;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank==0){

MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 10, MPI_COMM_WORLD,
&status);

printf("Number received is: %d\n", numbertoreceive);

}

else if(my_rank == 1)

{

numbertosend = 77;

MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD);

}

MPI_Finalize();

}

Goal: Process 1 sends a number 77 to process 0.

29

MPI_Send(&numbertosend, 1, MPI_INT, 0, 10, MPI_COMM_WORLD)

&numbertosend a pointer to whatever we wish to send. In this case it is simply an integer. It could be anything from
a character string to a column of an array or a structure. It is even possible to pack several different
data types in one message.

1 the number of items we wish to send. If we were sending a vector of 10 int's, we would
point to the first one in the above parameter and set this to the size of the array.

MPI_INT
the type of object we are sending. Possible values are: MPI_CHAR, MPI_SHORT,
MPI_INT, MPI_LONG, MPI_UNSIGNED_CHAR, MPI_UNSIGNED_SHORT,
MPI_UNSIGNED, MPI_UNSIGNED_LING, MPI_FLOAT, MPI_DOUBLE,
MPI_LONG_DOUBLE, MPI_BYTE, MPI_PACKED

0 Destination of the message (the rank of the receiving process). In this case process 0.

10 Message tag. All messages have a tag attached to them that can be useful for sorting
messages. We just picked 10 at random.

MPI_COMM_WORLD We don't really care about any subsets of PEs here. So, we just chose this "default".
30

MPI_Recv(&numbertoreceive, 1, MPI_INT, MPI_ANY_SOURCE,MPI_ANY_TAG,MPI_COMM_WORLD,
&status)

&numbertoreceive A pointer to the variable that will receive the item. In our case it is simply an integer
that has has some undefined value until now.

1 Number of items to receive. Just 1 here.

MPI_INT Datatype. Must be an int to match with what we send.

MPI_ANY_SOURCE The node to receive from. We could use 1 here since the message is coming from there, but
the "wild card" – MPI_ANY_SOURCE allows to receive a message from anywhere.

MPI_ANY_TAG We could use a value of 10 here to filter out any other messages (there aren't any)
but, “wild card” MPI_ANY_TAG allows to receive any tag.

MPI_COMM_WORLD Just using default set of all Processes.

&status A structure that receive the status data which includes the source and tag of the
message.

31

• MPI_ANY_SOURCE: there is no wildcard for specifying
destination.

• MPI_ANY_TAG: this wildcard can not be used by sender.
Namely, process 1 must use a tag and process 0 can receive with
either an identical tag or MPI_ANY_TAG

• Status of receive: MPI_Status type. It returns information on the
data that was actually received. MPI_Status structure contains at
least three members:

---- status.MPI_SOURCE
----status.MPI_TAG
----status.MPI_ERROR
• MPI_Send() and MPI_Recv() have integer return values.

These return values are error codes.
32

Blocking vs. Non-Blocking Communication

Blocking: blocking send or receive routines does not return until
operation is complete.

– blocking sends ensure that it is safe to overwrite the sent data
– MPI_Send(): will not return until the message data and envelope is safely stored

away.
• The message data might be delivered to the matching receive buffer, or copied to

some temporary system buffer.
• After MPI_Send returns, user can safely access or overwrite the send buffer.

– blocking receives make sure that the data has arrived and is
ready for use

– MPI_Recv(): returns only after the receive buffer has the received message
• After it returns, the data is here and ready for use.

Non-blocking: Non-blocking send or receive routines returns
immediately, with no information about completion.

-- User should test for success or failure of communication.
-- In between, the process is free to handle other tasks.
-- It is less likely to form deadlocking code
-- It is used with MPI_Wait() or MPI_Test()

33

Buffering
• Send and matching receive operations usually are not

synchronized in reality because of the work loads. MPI
implementation must decide what happens when send/recv
are not sync.

• Why buffering:
– Send occurs 5 seconds before receive is ready; where is the message

when receive is being posted?
– Multiple sends arrive at the same receiving task which can receive

one send at a time – what happens to the messages that are backing
up?

• MPI implementation (not the MPI standard) typically uses a
system buffer to hold data in transit.

34

• System buffer:
– Invisible to users and managed by MPI

library
– Finite resource that can be easily exhausted
– May exist on sending or receiving side, or

both
– May improve performance.

• Users can allocate memory for MPI
message buffering.

35

Type of Communication MPI Function
blocking send (Standard mode) MPI_Send

System decides whether the outgoing
message will be buffered or not
Usually, small messages  buffering mode;
large messages, no buffering, synchronous
mode.

non-blocking send MPI_Isend

blocking receive MPI_Recv

non-blocking receive MPI_Irecv

• To get size of the message received, we call
int MPI_Get_count(

MPI_Status* status /* in */,
MPI_Datatype datatype /* in */,
int* count_ptr /* out */)

36

#include <stdio.h>
#include "mpi.h“

int main(int argc, char** argv)
{ /** send_recv_count.c **/

int my_rank, numbertoreceive[10], numbertosend[3]={73, 2, -16};
int recv_count, i;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank==0){
MPI_Recv(numbertoreceive, 3, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD,

&status);
printf("status.MPI_SOURCE = %d\n", status.MPI_SOURCE);
printf("status.MPI_TAG = %d\n", status.MPI_TAG);
printf("status.MPI_ERROR = %d\n", status.MPI_ERROR);

MPI_Get_count(&status, MPI_INT, &recv_count);
printf("Receive %d data\n", recv_count);
for(i = 0; i < recv_count; i++)

printf("recv[%d] = %d\n", i, numbertoreceive[i]);
}
else MPI_Send(numbertosend, 3, MPI_INT, 0, 10, MPI_COMM_WORLD);

MPI_Finalize();
return 0;

} 37

Parallel Summation Example
#include<iostream.h>
#include<mpi.h>
/**** chapter2c11P.cpp, add numbers from 1 to 1000 *****/
int main(int argc, char ** argv){

int mynode, totalnodes;
int sum,startval,endval,accum;
MPI_Status status;

MPI_Init(&argc,&argv);
MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);
MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

sum = 0;
startval = 1000*mynode/totalnodes+1;
endval = 1000*(mynode+1)/totalnodes;

for(int i=startval;i<=endval;i=i+1)
sum = sum + i;

if(mynode!=0)
MPI_Send(&sum,1,MPI_INT,0,1,MPI_COMM_WORLD);

else
for(int j=1;j<totalnodes;j=j+1){

MPI_Recv(&accum,1,MPI_INT,j,1,MPI_COMM_WORLD, &status);
sum = sum + accum;

}

if(mynode == 0)
cout << "The sum from 1 to 1000 is: " << sum << endl;

MPI_Finalize();
} // code at: ~zxu2/Public/ACMS40212/Code-Parallel-Sci-Comput/Chapter2

38

1 2 n

0

More to Think About

• Suppose process 1 calls MPI_Send, but process 0 fails to
call MPI_Recv to receive from process 1. What happens
to the program?

• Blocking send/receive restrictions
-- source, tag, and comm must match those of a pending
message for the message to be received.
-- Wildcards can only be used for source and tag, but not
communicator.
-- An error will be returned if the message buffer exceeds
that allowed for by the receive.
-- User must make sure that the send/receive datatypes
agree. If they do not, the results are not defined.

39

Message Buffering

• Definition of “completion” for MPI_Recv() is trivial – the data
can now be used.

• Definition of “completion” for MPI_Send() is trickier.
Completion implies that the data has been stored away such
that the program is free to overwrite the send “message”
buffer.
-- Non-local: the data can be sent directly to the receive
buffer.
-- Local (buffering): the data can be stored in a local buffer
(system provided or user provided), in which case the send
could return before the receive is initiated.

40

Write Safe Code

• A safe MPI program should not rely on system buffering
for success.

• Any system will eventually run out of buffer space as
message sizes are increased.

• User should design proper send/receive orders to avoid
deadlock

41

Safe Code

42

#include <stdio.h>
#include "mpi.h“

/* process 0 send a number to and receive a number from process 1.
process 1 receive a number from and send a number to process 0

*/
int main(int argc, char** argv)
{ /*** sample_safe1.c ****/

int my_rank, numbertoreceive, numbertosend = -16;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank==0){
MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);

}
else if(my_rank == 1)
{

MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);

}
MPI_Finalize();
return 0;

}

Deadlock Code

43

#include <stdio.h>
#include "mpi.h“
/* process 0 receive a number from and send a number from process 1.

process 1 receive a number from and send a number to process 0
*/
int main(int argc, char** argv)
{ /**** sample_deadlock.c *****/

int my_rank, numbertoreceive, numbertosend = -16;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank==0){
MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);
MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);

}
else if(my_rank == 1)
{

MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);
MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);

}
MPI_Finalize();
return 0;

}

Buffering dependent Code

44

#include <stdio.h>
#include "mpi.h“

/* process 0 receive a number from and send a number from process 1.
process 1 receive a number from and send a number to process 0

*/
int main(int argc, char** argv)
{

int my_rank, numbertoreceive, numbertosend = -16;
MPI_Status status;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);

if (my_rank==0){
MPI_Send(&numbertosend, 1, MPI_INT, 1, 10, MPI_COMM_WORLD);
MPI_Recv(&numbertoreceive, 1, MPI_INT, 1, 20, MPI_COMM_WORLD, &status);

}
else if(my_rank == 1)
{

MPI_Send(&numbertosend, 1, MPI_INT, 0, 20, MPI_COMM_WORLD);
MPI_Recv(&numbertoreceive, 1, MPI_INT, 0, 10, MPI_COMM_WORLD, &status);

}
MPI_Finalize();
return 0;

}

Success of this code is
dependent on buffering. One
of the send must buffer and
return. Otherwise, deadlock
occurs.

	Lecture 3 Message-Passing Programming Using MPI (Part 1)
	What is MPI
	Message-passing model
	MPI Features
	To Learn More about MPI
	Slide Number 6
	How does a MPI program look like?
	Basic Needs in parallel programming
	MPI Basic Functions
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Execution
	MPI2 Model
	Running MPI Parallel Programs within CRC SGE batch system
	Program Details
	Slide Number 18
	Slide Number 19
	Slide Number 20
	C Language Bindings
	Summary of Running Parallel Program
	Slide Number 23
	Point-to-Point communications
	Message Organization
	Sending and Receiving Routines
	Message Bodies
	Message Envelope
	C Code
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Blocking vs. Non-Blocking Communication
	Buffering
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Parallel Summation Example
	More to Think About
	Message Buffering
	Write Safe Code
	Safe Code
	Deadlock Code
	Buffering dependent Code

