Lecture 4: Principles of Parallel Algorithm Design

Constructing a Parallel Algorithm

- *identify portions of work that can be performed concurrently*
- map concurrent portions of work onto multiple processes running in parallel
- distribute a program's input, output, and intermediate data
- manage accesses to shared data: avoid conflicts
- synchronize the processes at stages of the parallel program execution

Task Decomposition and Dependency Graphs

Decomposition: divide a computation into smaller parts, which can be executed concurrently

Task: programmer-defined units of computation.

Task-dependency graph: Node represent s task. Directed edge represents control dependence.

Example 1: Dense Matrix-Vector Multiplication

- Computing y[i] only use ith row of A and b treat computing y[i] as a task.
- Remark:
 - Task size is uniform
 - No dependence between tasks
 - All tasks need b

Example 2: Database Query Processing

• Executing the query:

Model ="civic" AND Year = "2001" AND (Color = "green" OR Color = "white")

on the following database:

ID#	Model	Year	Color	Dealer	Price
4523	Civic	2002	Blue	MN	\$18,000
3476	Corolla	1999	White	IL	\$15,000
7623	Camry	2001	Green	NY	\$21,000
9 834	Prius	2001	Green	CA	\$18,000
6734	Civic	2001	White	OR	\$17,000
5342	Altima	2001	Green	FL	\$19,000
3845	Maxima	2001	Blue	NY	\$22,000
8354	Accord	2000	Green	VT	\$18,000
4395	Civic	2001	Red	СА	\$17,000
7352	Civic	2002	Red	WA	\$18,000

- **Task:** create sets of elements that satisfy a (or several) criteria.
- Edge: output of one task serves as input to the next

D#	Mode	Year	Color
6734	Civic	2001	White

• An alternate task-dependency graph for query

 Different task decomposition leads to different parallelism Granularity of Task Decomposition

- Fine-grained decomposition: large number of small tasks
- Coarse-grained decomposition: small number of large tasks
- Matrix-vector multiplication example
 - -- **coarse-grain**: each task computes 3 elements of *y*[]

Degree of Concurrency

- Degree of Concurrency: # of tasks that can execute in parallel
 - -- maximum degree of concurrency: largest # of concurrent tasks at any point of the execution
 - -- average degree of concurrency: average # of tasks that can be executed concurrently
- Degree of Concurrency vs. Task Granularity
 - Inverse relation

Critical Path of Task Graph

- Critical path: The longest directed path between any pair of start node (node with no incoming edge) and finish node (node with on outgoing edges).
- **Critical path length:** The sum of weights of nodes along critical path.
 - The weights of a node is the size or the amount of work associated with the corresponding task
- Average degree of concurrency = total amount of work / critical path length

Example: Critical Path Length

Task-dependency graphs of query processing operation

Left graph:

Critical path length = 27

Average degree of concurrency = 63/27 = 2.33

Right graph:

Critical path length = 34Average degree of concurrency = 64/34 = 1.88

Limits on Parallelization

- Facts bounds on parallel execution
 - Maximum task granularity is finite
 - Matrix-vector multiplication O(n²)
 - Interactions between tasks
 - Tasks often share input, output, or intermediate data, which may lead to interactions not shown in task-dependency graph.

Ex. For the matrix-vector multiplication problem, all tasks are independent, and all need access to the entire input vector b.

- Speedup = sequential execution time/parallel execution time
- Parallel efficiency = sequential execution time/(parallel execution time × processors used)

Task Interaction Graphs

- Tasks generally share input, output or intermediate data
 - Ex. Matrix-vector multiplication: originally there is only one copy of b, tasks will have to communicate b.

Task-interaction graph

- To capture interactions among tasks
- Node = task
- Edge(undirected/directed) = interaction or data exchange
- Task-dependency graph vs. task-interaction graph
 - Task-dependency graph represents control dependency
 - Task-interaction graph represents data dependency
 - The edge-set of a task-interaction graph is usually a superset of the edge-set of the task-dependency graph

Example: Task-Interaction Graph

Sparse matrix-vector multiplication

- **Tasks**: each task computes an entry of y[]
- Assign *i*th row of A to Task *i*. <u>Also assign b[i] to</u> <u>Task *i*.</u>

Processes and Mapping

- **Mapping**: the mechanism by which tasks are assigned to processes for execution.
- **Process**: a logic computing agent that performs tasks, which is an abstract entity that uses the code and data corresponding to a task to produce the output of that task.
- Why use processes rather than processors?
 - We rely on OS to map processes to physical processors.
 - We can aggregate tasks into a process

Criteria of Mapping

- 1. Maximize the use of concurrency by mapping independent tasks onto different processes
- 2. Minimize the total completion time by making sure that processes are available to execute the tasks on critical path as soon as such tasks become executable
- 3. Minimize interaction among processes by mapping tasks with a high degree of mutual interaction onto the same process.

Basis for Choosing Mapping

Task-dependency graph

Makes sure the max. concurrency

Task-interaction graph

Minimum communication.

Example: Mapping Database Query to Processes

- 4 processes can be used in total since the max. concurrency is 4.
- Assign all tasks within a level to different processes.

Decomposition Techniques

How to decompose a computation into a set of tasks?

- ✓ Recursive decomposition
- ✓ Data decomposition
- Exploratory decomposition
- Speculative decomposition

Recursive Decomposition

- Ideal for problems to be solved by divide-andconquer method.
- Steps
 - 1. Decompose a problem into a set of independent sub-problems
 - 2. Recursively decompose each sub-problem
 - Stop decomposition when minimum desired granularity is achieved or (partial) result is obtained

Quicksort Example

Sort a sequence A of *n* elements in the increasing order.

- Select a pivot
- Partition the sequence around the pivot
- Recursively sort each sub-sequence

Task: the work of partitioning a given sub-sequence

Recursive Decomposition for Finding Min

Find the minimum in an array of numbers A of length n

```
procedure Serial_Min(A,n)
begin
    min = A[0]
    for i:= 1 to n-1 do
        if(A[i] < min) min := A[i]
        endfor;
        return min;
end Serial Min</pre>
```

```
procedure Recursive MIN(A,n)
begin
   if (n == 1) then
       min := A[0];
   else
       lmin := Recursive MIN(A,n/2);
       rmin := Recursive_MIN(&[A/2],n-n/2);
       if( lmin < rmin) then
           min := lmin;
       else
            min := rmin;
        endelse;
   endelse;
   return min;
end Recursive MIN
```

Data Decomposition

- Ideal for problems that operate on large data structures
- Steps
 - 1. The data on which the computations are performed are partitioned
 - 2. Data partition is used to induce a partitioning of the computations into tasks.
- Data Partitioning
 - Partition output data
 - Partition input data
 - Partition input + output data
 - Partition intermediate data

Data Decomposition Based on Partitioning Output Data

- If each element of the output can be computed independently of others as a function of the input.
- Partitioning computations into tasks is natural. Each task is assigned with the work of computing a portion of the output.
- **Example**. Dense matrix-vector multiplication.

Example: Output Data Decomposition

Matrix-matrix multiplication: $C = A \times B$

- Partition matrix C into 2×2 submatrices
- Computation of C then can be partitioned into four tasks.

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \to \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Task 1: $C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$ Task 2: $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$ Task 3: $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$ Task 4: $C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$

Remark: data-decomposition is different from task decomposition. Same data decomposition can have different task decompositions.

Decomposition I	Decomposition II
Task 1: $C_{1,1} = A_{1,1}B_{1,1}$ Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$ Task 3: $C_{1,2} = A_{1,1}B_{1,2}$ Task 4: $C_{1,2} = C_{1,2} + A_{1,2}B_{2,2}$ Task 5: $C_{2,1} = A_{2,1}B_{1,1}$ Task 6: $C_{2,1} = C_{2,1} + A_{2,2}B_{2,1}$ Task 7: $C_{2,2} = A_{2,1}B_{1,2}$ Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$	Task 1: $C_{1,1} = A_{1,1}B_{1,1}$ Task 2: $C_{1,1} = C_{1,1} + A_{1,2}B_{2,1}$ Task 3: $C_{1,2} = A_{1,2}B_{2,2}$ Task 4: $C_{1,2} = C_{1,2} + A_{1,1}B_{1,2}$ Task 5: $C_{2,1} = A_{2,2}B_{2,1}$ Task 6: $C_{2,1} = C_{2,1} + A_{2,1}B_{1,1}$ Task 7: $C_{2,2} = A_{2,1}B_{1,2}$ Task 8: $C_{2,2} = C_{2,2} + A_{2,2}B_{2,2}$

Figure 3.11. Two examples of decomposition of matrix multiplication into eight tasks.

Data Decomposition Based on Partitioning Input Data

- Ideal if output is a single unknown value or the individual elements of the output can not be efficiently determined in isolation.
 - Example. Finding the minimum, maximum, or sum of a set of numbers.
 - Example. Sorting a set.
- Partitioning the input data and associating a task with each partition of the input data.

Data Decomposition Based on Partitioning Intermediate Data

- Applicable for problems which can be solved by multi-stage computations such that the output of one stage is the input to the subsequent stage.
- Partitioning can be based on input or output of an intermediate stage.

Example: Intermediate Data Decomposition

Dense matrix-matrix multiplication

• Original output data decomposition yields a maximum degree of concurrency of 4.

$$\begin{pmatrix} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{pmatrix} \cdot \begin{pmatrix} B_{1,1} & B_{1,2} \\ B_{2,1} & B_{2,2} \end{pmatrix} \to \begin{pmatrix} C_{1,1} & C_{1,2} \\ C_{2,1} & C_{2,2} \end{pmatrix}$$

Task 1:
$$C_{1,1} = A_{1,1}B_{1,1} + A_{1,2}B_{2,1}$$
Task 2: $C_{1,2} = A_{1,1}B_{1,2} + A_{1,2}B_{2,2}$ Task 3: $C_{2,1} = A_{2,1}B_{1,1} + A_{2,2}B_{2,1}$ Task 4: $C_{2,2} = A_{2,1}B_{1,2} + A_{2,2}B_{2,2}$

Stage 1: $D_{k,i,j} = A_{i,k}B_{k,j}$ D_{1,1,1} D_{1,1,2} B_{1,1} B_{1,2} **A**_{1,1} **A**_{2,1} D_{1,2,1} D_{1,2,2} ≻ D_{2,1,1} D_{2,1,2} A_{1,2} A_{2,2} B_{2,2} **B**_{2,1} D_{2,2,1} D_{2,2,2}

Stage 2:

$$C_{i,j} = D_{1,i,j} + D_{2,i,j}$$

$$\begin{array}{c|c} D_{1,1,1} & D_{1,1,2} \\ D_{1,2,1} & D_{1,2,2} \end{array} & + \begin{array}{c} D_{2,1,1} & D_{2,1,2} \\ D_{2,2,1} & D_{2,2,2} \end{array} & \begin{array}{c} C_{1,1} & C_{1,2} \\ D_{2,2,1} & D_{2,2,2} \end{array} & \begin{array}{c} C_{2,1} & C_{2,2} \\ C_{2,1} & C_{2,2} \end{array} & \begin{array}{c} C_{2,2} \end{array} & \begin{array}{c} C_{2,2} & C_{2,2} \end{array} & \begin{array}{c} C_{2,2} \end{array} & \end{array} & \begin{array}{c} C_{2,2} & C_{2,2} \end{array} & \begin{array}{c} C_{2,2$$

Let $D_{k,i,j} = A_{i,k} \cdot B_{k,j}$

Task 01:
$$D_{1,1,1} = A_{1,1} B_{1,1}$$

 Task 03: $D_{1,1,2} = A_{1,1} B_{1,2}$

 Task 05: $D_{1,2,1} = A_{2,1} B_{1,1}$

 Task 07: $D_{1,2,2} = A_{2,1} B_{1,2}$

 Task 09: $C_{1,1} = D_{1,1,1} + D_{2,1,1}$

 Task 11: $C_{2,1} = D_{1,2,1} + D_{2,2,1}$

Task 02: D_{2.1.1}= A_{1.2} B_{2,1} Task 04: D_{2.1.2}= A_{1,2} B_{2,2} Task 06: D2.2.1 = A2.2 B2.1 Task 08: D_{2,2,2}= A_{2,2} B_{2,2} **Task 10:** $C_{1,2} = D_{1,1,2} + D_{2,1,2}$ **Task 12**: $C_{2,2} = D_{1,2,2} + D_{2,2,2}$

Task-dependency graph

.1

Owner-Computes Rule

- Decomposition based on partitioning input/output data is referred to as the **owner**computes rule.
 - Each partition performs all the computations involving data that it owns.
- Input data decomposition
 - A task performs all the computations that can be done using these input data.
- Output data decomposition
 - A task computes all the results in the partition assigned to it.

Characteristics of Tasks

Key characteristics of tasks influencing choice of mapping and performance of parallel algorithm:

- 1. Task generation
 - Static or dynamic generation
 - Static: all tasks are known before the algorithm starts execution. Data or recursive decomposition often leads to static task generation.
 Ex. Matrix-multiplication. Recursive decomposition in finding min. of a set of
 - numbers. Dynamic: the actual tasks and t
 - Dynamic: the actual tasks and the task-dependency graph are not explicitly available a priori. Recursive, exploratory decomposition can generate tasks dynamically.

Ex. Recursive decomposition in Quicksort, in which tasks are generated dynamically.

- 2. Task sizes
 - Amount of time required to compute it: *uniform, non-uniform*
- 3. Knowledge of task sizes
- 4. Size of data associated with tasks
 - Data associated with the task must be available to the process performing the task. The size and location of data may determine the data-movement overheads.

Characteristics of Task Interactions

- 1) Static versus dynamic
 - Static: interactions are known prior to execution.
- 2) Regular versus irregular
 - Regular: interaction pattern can be exploited for efficient implementation.
- 3) Read-only versus read-write
- 4) One-way versus two-way

Static vs. Dynamic Interactions

- Static interaction
 - Tasks and associated interactions are predetermined: task-interaction graph and times that interactions occur are known: matrix multiplication
 - Easy to program
- Dynamic interaction
 - Timing of interaction or sets of tasks to interact with can not be determined prior to the execution.
 - Difficult to program using massage-passing; Sharedmemory space programming may be simple

Regular vs. Irregular Interactions

- Regular interactions
 - Interaction has a spatial structure that can be exploited for efficient implementation: ring, mesh Example: Explicit finite difference for solving PDEs.
- Irregular Interactions
 - Interactions has no well-defined structure
 Example: Sparse matrix-vector multiplication

Mapping Technique for Load Balancing

Minimize execution time \rightarrow Reduce overheads of execution

- Sources of overheads:
 - Inter-process interaction
 - Idling
 - Both interaction and idling are often a function of mapping
- Goals to achieve:
 - To reduce interaction time
 - To reduce total amount of time some processes being idle (goal of load balancing)
 - Remark: these two goals often conflict
- Classes of mapping:
 - Static
 - Dynamic

Remark:

- 1. Loading balancing is **only** a necessary **but not** sufficient condition for reducing idling.
 - Task-dependency graph determines which tasks can execute in parallel and which must wait for some others to finish at a given stage.
- 2. Good mapping must ensure that computations and interactions among processes at each stage of execution are well balanced.

Figure 3.23. Two mappings of a hypothetical decomposition with a synchronization.

Two mappings of 12-task decomposition in which the last 4 tasks can be started only after the first 8 are finished due to task-dependency.

Schemes for Static Mapping

Static Mapping: It distributes the tasks among processes prior to the execution of the algorithm.

- Mapping Based on Data Partitioning
- Task Graph Partitioning
- Hybrid Strategies

Mapping Based on Data Partitioning

- By owner-computes rule, mapping the relevant data onto processes is equivalent to mapping tasks onto processes
- Array or Matrices
 - Block distributions
 - Cyclic and block cyclic distributions
- Irregular Data
 - Example: data associated with unstructured mesh
 - Graph partitioning

1D Block Distribution

Example. Distribute rows or columns of matrix to different processes

row-wise distribution

P_0
P_1
P_2
P_3
P_4
P_5
P_6
P_7

column-wise distribution

Multi-D Block Distribution

Example. Distribute blocks of matrix to different processes

Figure 3.25. Examples of two-dimensional distributions of an array, (a) on a 4 × 4 process grid, and (b) on a 2 × 8 process grid.

Load-Balance for Block Distribution

Example. $n \times n$ dense matrix multiplication $C = A \times B$ using p processes

- Decomposition based on output data.
- Each entry of C use the same amount of computation.
- Either 1D or 2D block distribution can be used:
 - 1D distribution: $\frac{n}{p}$ rows are assigned to a process
 - 2D distribution: $n/\sqrt{p} \times n/\sqrt{p}$ size block is assigned to a process
- Multi-D distribution allows higher degree of concurrency.
- Multi-D distribution can also help to reduce interactions

(b)

Figure 3.26. Data sharing needed for matrix multiplication with (a) one-dimensional and (b) two-dimensional partitioning of the output matrix. Shaded portions of the input matrices A and B are required by the process that computes the shaded portion of the output matrix C.

Suppose the size of matrix is $n \times n$, and p processes are used.

(a): A process need to access
$$\frac{n^2}{n} + n^2$$
 amount of data

(b): A process need to access $O(n^2/\sqrt{p})$ amount of data

Cyclic and Block Cyclic Distributions

- If the amount of work differs for different entries of a matrix, a block distribution can lead to load imbalances.
- Example. Doolittle's method of LU factorization of dense matrix
 - The amount of computation increases from the top left to the bottom right of the matrix.

Doolittle's method of LU factorization

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} = LU = \begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1n} \\ 0 & u_{22} & \dots & u_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & u_{nn} \end{bmatrix}$$

By matrix-matrix multiplication

$$u_{1j} = a_{1j}, \qquad j = 1, 2, ..., n \text{ (1st row of U)}$$

$$l_{j1} = a_{j1}/u_{11}, \qquad j = 1, 2, ..., n \text{ (1st column of L)}$$

For $i = 2, 3, ..., n - 1$ do

$$u_{ii} = a_{ii} - \sum_{t=1}^{i-1} l_{it} u_{ti}$$

$$u_{ij} = a_{ij} - \sum_{t=1}^{i-1} l_{it} u_{tj} \qquad \text{for } j = i + 1, ..., n \text{ (ith row of U)}$$

$$l_{ji} = \frac{a_{ji} - \sum_{t=1}^{i-1} l_{jt} u_{ti}}{u_{ii}} \qquad \text{for } j = i + 1, ..., n \text{ (ith column of L)}$$

End $u_{nn} = a_{nn} - \sum_{t=1}^{n-1} l_{nt} u_{tn}$

Serial Column-Based LU

```
procedure COL LU (A)
1.
2.
     begin
3.
        for k := 1 to n do
4.
            for j := k to n do
5.
                A[j, k] := A[j, k]/A[k, k];
6.
            endfor;
7.
            for j := k + 1 to n do
                for i := k + 1 to n do
8.
9.
                    A[i, j] := A[i, j] - A[i, k] \times A[k, j];
10.
                endfor;
            endfor;
11.
   /*
After this iteration, column A[k + 1 : n, k] is logically the kth
column of L and row A[k, k : n] is logically the kth row of U.
   */
12.
       endfor;
13. end COL_LU
```

• Remark: Matrices L and U share space with A

Work used to compute Entries of L and U

3.28. A typical computation in Gaussian elimination and the active part of the coefficient matrix during the kth iteration of the outer loop.

• Block distribution of LU factorization tasks leads to load imbalance.

P ₀	Ρ ₃	P ₆
T ₁	T ₄	T ₅
P ₁	Ρ ₄	P ₇
T ₂	T ₆ T ₁₀	$T_8 T_{12}$
P ₂	P ₅	P ₈
T ₃	T ₇ T ₁₁	T ₉ T ₁₃ T ₁₄

Block-Cyclic Distribution

• A variation of block distribution that can be used to alleviate the load-imbalance.

• Steps

- 1. Partition an array into many more blocks than the number of available processes
- 2. Assign blocks to processes in a *round-robin manner* so that each process gets several nonadjacent blocks.

- (a) The rows of the array are grouped into blocks each consisting of two rows, resulting in eight blocks of rows. These blocks are distributed to four processes in a *wrap-around* fashion.
- (b) The matrix is blocked into 16 blocks each of size 4×4, and it is mapped onto a 2×2 grid of processes in a wraparound fashion.
- **Cyclic distribution:** when the block size =1

Randomized Block Distribution

 P_3

 P_7

 P_3

 P_7

Figure 3.31. Using the block-cyclic distribution shown in (b) to distribute the computations performed in array (a) will lead to load imbalances.

Figure 3.33. Using a two-dimensional random block distribution shown in (b) to distribute the computations performed in array (a), as shown in (c).

Graph Partitioning

Sparse-matrix vector multiplication

Work: nodes Interaction/communication: edges

Partition the graph:

Assign roughly same number of nodes to each process Minimize edge count of graph partition Finite element simulation of water contaminant in a lake.

• Goal of partitioning: balance work & minimize communication

Random Partitioning

Partitioning for Minimizing Edge-Count

- Assign equal number of nodes (or cells) to each process
 - Random partitioning may lead to high interaction overhead due to data sharing
- Minimize edge count of the graph partition
 - Each process should get roughly the same number of elements and the number of edges that cross partition boundaries should be minimized as well.

Mappings Based on Task Partitioning

- Mapping based on task partitioning can be used when computation is naturally expressed in the form of a *static task-dependency graph* with known sizes.
- Finding optimal mapping minimizing idle time and minimizing interaction time is NP-complete
- Heuristic solutions exist for many structured graphs

Mapping a Sparse Graph

Example. Sparse matrix-vector multiplication using 3 processes

Arrow distribution

 Partitioning task-interaction graph to reduce interaction overhead

Techniques to Minimize Interaction Overheads

- Maximize data locality
 - Maximize the reuse of recently accessed data
 - Minimize volume of data-exchange
 - Use high dimensional distribution. Example: 2D block distribution for matrix multiplication
 - Minimize frequency of interactions
 - Reconstruct algorithm such that shared data are accessed and used in large pieces.
 - Combine messages between the same source-destination pair

- Minimize contention and hot spots
 - Competition occur when multi-tasks try to access the same resources concurrently: multiple processes sending message to the same process; multiple simultaneous accesses to the same memory block

- Using $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$ causes contention. For example, $C_{0,0}$, $C_{0,1}, C_{0,\sqrt{p}-1}$ attempt to read $A_{0,0}$, at the same time.
- A contention-free manner is to use:

 $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,(i+j+k)\%\sqrt{p}} B_{(i+j+k)\%\sqrt{p},j}$ All tasks $P_{*,j}$ that work on the same row of C access block $A_{i,(i+j+k)\%\sqrt{p}}$, which is different for each task.

- Overlap computations with interactions
 Use non-blocking communication
- Replicate data or computations
 - Some parallel algorithm may have read-only access to shared data structure. If local memory is available, replicate a copy of shared data on each process if possible, so that there is only initial interaction during replication.
- Use collective interaction operations
- Overlap interactions with other interactions

Parallel Algorithm Models

- Data parallel
 - Each task performs similar operations on different data
 - Typically statically map tasks to processes
- Task graph
 - Use task dependency graph to promote locality or reduce interactions
- Master-slave
 - One or more master processes generating tasks
 - Allocate tasks to slave processes
 - Allocation may be static or dynamic
- Pipeline/producer-consumer
 - Pass a stream of data through a sequence of processes
 - Each performs some operation on it
- Hybrid
 - Apply multiple models hierarchically, or apply multiple models in sequence to different phases

• Reference

 A. Grama, et al. Introduction to Parallel Computing. Chapter 3.