

1

Project 3, due on 04/04.
Project for undergraduate students: Parallel Monte Carlo for 𝝅𝝅
The base code is ~ zxu2/Public/Proj3_undergrad/ proj3_undergrad.cpp
 Method consisting of following steps could be used to approximate 𝜋𝜋.

1. Inscribe a disk of radius 𝑟𝑟 in a square of side length 2𝑟𝑟. Randomly generate points in the
square.

2. Determine the number of points in the square that are also in the disk. Let 𝑠𝑠 be ratio of
the number of points in the disk and the number of points in the square.

3. The area of the square is 4𝑟𝑟2, and the area of the disk is 𝜋𝜋𝑟𝑟2. So 𝑠𝑠 = 𝜋𝜋𝑟𝑟2

4𝑟𝑟2
. Therefore,

𝜋𝜋 = 4𝑠𝑠.

1. Complete all missing MPI functions.

2. Use 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 0.001, 0.0001 𝑎𝑎𝑎𝑎𝑎𝑎 0.00001 to do the calculation respectively. For each
computation, use 4 and 8 processors respectively. Modify the script “paral_HPCC.sh” to submit
your runs. The script is under directory: zxu2/Public/ACMS40212/MPI_basics. Find the overall
the wall clock times spent by the program respectively. Make a table to list the results.

2

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and
a description of your implementation on point-to-point communication. Email the source code.
Use the following title for your email: acms40212S16-Proj3-your-ND-ID.

Project for graduate students: Parallel subdomain decomposition
The base code is at ~ zxu2/Public/Proj3_grad/
The code consists of following files: comput_2d.h int.h, comput_2d.cpp
mesh.cpp proj3_main.cpp.
The mesh data files are: ~ zxu2/Public/Proj3_grad/Mesh/rect_mesh.*
1. Defines subdomains.

RECT_GRID is used to save this information. This information is initialized in constructor of
class Compute_2d.

2. The workload assigned to each process is estimated in function
Compute_2d::estimate_workload(). The sub-region [𝑥𝑥𝑖𝑖,𝑙𝑙, 𝑥𝑥𝑖𝑖,𝑢𝑢] on ith process is saved in L[0] and
U[0] of variable rect_grid of RECT_GRID type.

3. Each process reads the mesh data. Use a linked list to save triangles defining the mesh(Use
code of project 2 for this purpose). Then according to the subdomain size defined by (VL[0],
VU[0]) by (VL[1], VU[1]), delete triangles outside this region.

4. Implement parallel_communication () function.

3

Let [l[0],u[0]] be a subdomain assigned to a process. For convenience of computation, a virtual
domain is defined to hold the ghost points for updating solutions defined on grid points within
[l[0],u[0]]. This virtual domain is defined as [vl[0],vu[0]]. Here vl[0]=l[0]-N*∆x, and
vu[0]=u[0]+N*∆x. N is the number of ghost points.

Inside pp_send_interior_fields() function, find triangles inside the region marked by “SEND” in
the above figure, send ids of these triangles to the adjacent subdomain whose buffer zone is
marked by “RECEIVE” and overlaps with this marked by “SEND” region.

Inside pp_receive_interior_fields() function, receive ids of triangles sent by the
pp_send_interior_fields() function.

5. Use 4 and 8 processors respectively to test the code. Modify the script “paral_HPCC.sh” to
submit your runs. The script is under directory: zxu2/Public/ACMS40212/MPI_basics. Find the
overall the wall clock times spent by the communication part of the program and the part of the
program for creating list of triangles inside the subdomain, respectively. Make a table to list the
results.

4

void parallel_communication (double *soln)
{
 int myid, side;
 int me[3];

 MPI_Comm_rank(MPI_COMM,&myid);

 for (side = 0; side < 2; ++side)
 {
 MPI_Barrier(MPI_COMM);
 pp_send_interior_fields(myid, side,soln);
 pp_receive_interior_fields(myid ,(side+1)%2,soln);
 }
}

void pp_send_interior_fields(
 int *me,
 int side,
 double *soln)
{
 int myid, dst_id, ntasks;

 MPI_Comm_rank(MPI_COMM,&myid);
 MPI_Comm_size(MPI_COMM_WORLD, & ntasks);
 dst_id = (myid + 2*side - 1);
 if(dst_id < 0)
 dst_id = ntasks-1;
 if(dst_id>= ntasks)
 dst_id = 0;
 /* Next collect soln points to be sent and call MPI_bsend() to send the data
 to the process with rank dst_id */
}

void pp_receive_interior_fields(
 int *me,
 int side,
 double *soln)
{
 int myid, src_id, ntasks;
 MPI_Comm_size(MPI_COMM_WORLD, & ntasks);
 MPI_Comm_rank(MPI_COMM,&myid);
 src_id = (myid + 2*side - 1);
 if(src_id < 0)
 src_id = ntasks-1;
 if(src_id>= ntasks)
 src_id = 0;

 /* Next call MPI_Recv() to receive the data
 from the process with rank src_id */
}

5

Hand-In. Turn in the hardcopy of all your source code, and the report which contains results and
algorithmic notes on both computation and communication. Email the source code. Use the
following title for your email: acms40212S16-Proj3-your-ND-ID.

