Lecture 6: Parallel Matrix Algorithms (part 3)
A Simple Parallel Dense Matrix-Matrix Multiplication

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be $n \times n$ matrices. Compute $C = AB$

- Computational complexity of sequential algorithm: $O(n^3)$
- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ ($0 \leq i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \leq k < \sqrt{p}$.
• Algorithm:
 – Perform all-to-all broadcast of blocks of A in each row of processes
 – Perform all-to-all broadcast of blocks of B in each column of processes
 – Each process $P_{i,j}$ perform $C_{i,j} = \sum_{k=0}^{\sqrt{p}-1} A_{i,k} B_{k,j}$
Performance Analysis

- \(\sqrt{p} \) rows of all-to-all broadcasts, each is among a group of \(\sqrt{p} \) processes. A message size is \(\frac{n^2}{p} \), communication time: \(t_s \log{\sqrt{p}} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \)

- \(\sqrt{p} \) columns of all-to-all broadcasts, communication time:
 \[t_s \log{\sqrt{p}} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \]

- Computation time: \(\sqrt{p} \times (n/\sqrt{p})^3 = \frac{n^3}{p} \)

- Parallel time: \(T_p = \frac{n^3}{p} + 2 \left(t_s \log{\sqrt{p}} + t_w \frac{n^2}{p} (\sqrt{p} - 1) \right) \)
Memory Efficiency of the Simple Parallel Algorithm

• Not memory efficient

– Each process $P_{i,j}$ has $2\sqrt{p}$ blocks of $A_{i,k}$ and $B_{k,j}$
– Each process needs $\Theta(n^2/\sqrt{p})$ memory
– Total memory over all the processes is $\Theta(n^2 \times \sqrt{p})$, i.e., \sqrt{p} times the memory of the sequential algorithm.
Cannon’s Algorithm of Matrix-Matrix Multiplication

Goal: to improve the memory efficiency.

Let $A = [a_{ij}]_{n \times n}$ and $B = [b_{ij}]_{n \times n}$ be $n \times n$ matrices. Compute $C = AB$

- Partition A and B into p square blocks $A_{i,j}$ and $B_{i,j}$ ($0 \leq i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Use Cartesian topology to set up process grid. Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Remark: Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \leq k < \sqrt{p}$.
- The contention-free formula:

$$C_{i,j} = \sum_{k=0}^{\sqrt{p} - 1} A_{i,(i+j+k)\%\sqrt{p}}B_{(i+j+k)\%\sqrt{p},j}$$
Cannon’s Algorithm

// make initial alignment
for i, j := 0 to $\sqrt{p} - 1$ do
 Send block $A_{i,j}$ to process $(i, (j - i + \sqrt{p}) mod \sqrt{p})$ and block $B_{i,j}$ to process $(i - j + \sqrt{p}) mod \sqrt{p}, j$;
endfor;
Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$;

// compute-and-shift. A sequence of one-step shifts pairs up $A_{i,k}$ and $B_{k,j}$

// on process $P_{i,j}$. $C_{i,j} = C_{i,j} + A_{i,k}B_{k,j}$
for step := 1 to $\sqrt{p} - 1$ do
 Shift $A_{i,j}$ one step left (with wraparound) and $B_{i,j}$ one step up (with wraparound);
 Process $P_{i,j}$ multiply received submatrices together and add the result to $C_{i,j}$;
Endfor;

Remark: In the initial alignment, the send operation is to: shift $A_{i,j}$ to the left (with wraparound) by i steps, and shift $B_{i,j}$ to the up (with wraparound) by j steps.
Cannon’s Algorithm for 3×3 Matrices

<table>
<thead>
<tr>
<th>Initial A, B</th>
<th>A, B initial alignment</th>
<th>A, B after shift step 1</th>
<th>A, B after shift step 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(0,0)</td>
<td>A(0,1)</td>
<td>A(0,2)</td>
<td></td>
</tr>
<tr>
<td>A(1,0)</td>
<td>A(1,1)</td>
<td>A(1,2)</td>
<td></td>
</tr>
<tr>
<td>A(2,0)</td>
<td>A(2,1)</td>
<td>A(2,2)</td>
<td></td>
</tr>
<tr>
<td>B(0,0)</td>
<td>B(0,1)</td>
<td>B(0,2)</td>
<td></td>
</tr>
<tr>
<td>B(1,0)</td>
<td>B(1,1)</td>
<td>B(1,2)</td>
<td></td>
</tr>
<tr>
<td>B(2,0)</td>
<td>B(2,1)</td>
<td>B(2,2)</td>
<td></td>
</tr>
<tr>
<td>A(0,1)</td>
<td>A(1,1)</td>
<td>A(2,1)</td>
<td></td>
</tr>
<tr>
<td>A(0,2)</td>
<td>A(1,2)</td>
<td>A(2,2)</td>
<td></td>
</tr>
<tr>
<td>A(1,0)</td>
<td>A(2,0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(1,1)</td>
<td>A(2,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(1,2)</td>
<td>A(2,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(2,0)</td>
<td>A(2,1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(2,1)</td>
<td>A(2,2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A(2,2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Performance Analysis

• In the initial alignment step, the maximum distance over which block shifts is $\sqrt{p} - 1$
 – The circular shift operations in row and column directions take time: $t_{\text{comm}} = 2(t_s + \frac{t_w n^2}{p})$

• Each of the \sqrt{p} single-step shifts in the compute-and-shift phase takes time: $t_s + \frac{t_w n^2}{p}$.

• Multiplying \sqrt{p} submatrices of size $\left(\frac{n}{\sqrt{p}}\right) \times \left(\frac{n}{\sqrt{p}}\right)$ takes time: n^3 / p.

• Parallel time: $T_p = \frac{n^3}{p} + 2\sqrt{p} \left(t_s + \frac{t_w n^2}{p}\right) + 2(t_s + \frac{t_w n^2}{p})$
int MPI_Sendrecv_replace(void *buf, int count, MPI_Datatype datatype, int dest, int sendtag, int source, int recvtag, MPI_Comm comm, MPI_Status *status);

• Execute a blocking send and receive. The same buffer is used both for the send and for the receive, so that the message sent is replaced by the message received.

• buf[in/out]: initial address of send and receive buffer
#include "mpi.h"
#include <stdio.h>

int main(int argc, char *argv[])
{
 int myid, numprocs, left, right;
 int buffer[10];
 MPI_Request request;
 MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &numprocs);
 MPI_Comm_rank(MPI_COMM_WORLD, &myid);

 right = (myid + 1) % numprocs;
 left = myid - 1;
 if (left < 0)
 left = numprocs - 1;

 MPI_Sendrecv_replace(buffer, 10, MPI_INT, left, 123, right, 123, MPI_COMM_WORLD, &status);

 MPI_Finalize();
 return 0;
}
DNS Algorithm

• The algorithm is named after Dekel, Nassimi and Aahni
• It is based on partitioning intermediate data
• It performs matrix multiplication in time $O(\log n)$ by using $O(n^3 / \log n)$ processes

The sequential algorithm for $C = A \times B$

\[
C_{ij} = 0 \\
\text{for}(i = 0; i < n; i++) \\
\text{for}(j = 0; j < n; j++) \\
\text{for}(k = 0; k < n; k++) \\
C_{ij} = C_{ij} + A_{ik} \times B_{kj}
\]

Remark: The algorithm performs n^3 scalar multiplications
• Assume that n^3 processes are available for multiplying two $n \times n$ matrices.

• Then each of the n^3 processes is assigned a single scalar multiplication.

• The additions for all C_{ij} can be carried out simultaneously in $\log n$ steps each.

• Arrange n^3 processes in a three-dimensional $n \times n \times n$ logical array.
 – The processes are labeled according to their location in the array, and the multiplication $A_{ik}B_{kj}$ is assigned to process $P[i,j,k]$ ($0 \leq i, j, k < n$).
 – After each process performs a single multiplication, the contents of $P[i,j,0], P[i,j,1], ..., P[i,j,n-1]$ are added to obtain C_{ij}.
<table>
<thead>
<tr>
<th>K=3</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K=2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K=1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K=0</td>
<td>[0,3]</td>
<td>[1,3]</td>
<td>[2,3]</td>
<td>[3,3]</td>
<td></td>
</tr>
<tr>
<td>[0,2]</td>
<td>[1,2]</td>
<td>[2,2]</td>
<td>[3,2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0,1]</td>
<td>[1,1]</td>
<td>[2,1]</td>
<td>[3,1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[0,0]</td>
<td>[1,0]</td>
<td>[2,0]</td>
<td>[3,0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) Initial distribution of A and B
(b) After moving $A[i,j]$ from $P[i,j,0]$ to $P[i,j,j]$

(b) After moving $B[i,j]$ from $P[i,j,0]$ to $P[i,j,i]$
• The vertical column of processes $P[i,j,*]$ computes the dot product of row $A_{i,*}$ and column $B_{*,j}$.
• The DNS algorithm has three main communication steps:
 1. moving the rows of A and the columns of B to their respective places,
 2. performing one-to-all broadcast along the j axis for A and along the i axis for B
 3. all-to-one reduction along the k axis