
Lecture 12: Introduction to 
OpenMP (Part 1) 
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What is OpenMP 
Open specifications for Multi Processing 
Long version: Open specifications for MultiProcessing via 
collaborative work between interested parties from the hardware 
and software industry, government and academia.  
• An Application Program Interface (API) that is used to explicitly 

direct multi-threaded, shared memory parallelism.  
• API components: 

– Compiler directives 
– Runtime library routines 
– Environment variables 

• Portability 
– API is specified for C/C++ and Fortran 
– Implementations on almost all platforms including Unix/Linux and 

Windows 

• Standardization 
– Jointly defined and endorsed by major computer hardware and 

software vendors 
– Possibility to become ANSI standard 2 



Brief History of OpenMP 

• In 1991, Parallel Computing Forum (PCF) group 
invented a set of directives for specifying loop 
parallelism in Fortran programs.  

• X3H5, an ANSI subcommittee developed an ANSI 
standard based on PCF. 

•  In 1997, the first version of OpenMP  for Fortran was 
defined by OpenMP Architecture Review Board. 

• Binding for C/C++ was introduced later.  
• Version 3.1 is available since 2011. 
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Thread 

• A process is an instance of a computer program that 
is being executed. It contains the program code and 
its current activity.   

• A thread of execution is the smallest unit of 
processing that can be scheduled by an operating 
system.  

• Differences between threads and processes: 
– A thread is contained inside a process. Multiple threads 

can exist within the same process and share resources 
such as memory. The threads of a process share the 
latter’s instructions (code) and its context (values that 
its variables reference at any given moment).  

– Different processes do not share these resources.  
http://en.wikipedia.org/wiki/Process_(computing) 
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Process 

• A process contains all the information needed to execute 
the program 
– Process ID 
– Program code 
– Data on run time stack 
– Global data 
– Data on heap 
Each process has its own address space.  

• In multitasking, processes are given time slices in a 
round robin fashion.  
– If computer resources are assigned to another process, the 

status of the present process has to be saved, in order that 
the execution of the suspended process can be resumed at a 
later time.  

6 



Threads 

• Thread model is an extension of the process model.  
• Each process consists of multiple independent 

instruction streams (or threads) that are assigned 
computer resources by some scheduling procedure.  

• Threads of a process share the address space of this 
process. 
– Global variables and all dynamically allocated data objects 

are accessible by all threads of a process 

• Each thread has its own run-time stack, register, 
program counter.  

• Threads can communicate by reading/writing 
variables in the common address space. 
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OpenMP Programming Model 

• Shared memory, thread-based parallelism 
– OpenMP is based on the existence of multiple threads in 

the shared memory programming paradigm.  

– A shared memory process consists of multiple threads. 

•  Explicit Parallelism 
– Programmer has full control over parallelization. OpenMP 

is not an automatic parallel programming model.  

• Compiler directive based 
– Most OpenMP parallelism is specified through the use of 

compiler directives which are embedded in the source 
code.  
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OpenMP is not 
– Necessarily implemented identically by all vendors 

– Meant for distributed-memory parallel systems (it is designed 
for shared address spaced machines) 

– Guaranteed to make the most efficient use of shared memory 

– Required to check for data dependencies, data conflicts, race 
conditions, or deadlocks 

– Required to check for code sequences 

– Meant to cover compiler-generated automatic parallelization 
and directives to the compiler to assist such parallelization 

– Designed to guarantee that input or output to the same file is 
synchronous when executed in parallel.  
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Fork-Join Parallelism 
• OpenMP program begin as a single process: the master thread. The 

master thread executes sequentially until the first parallel region 
construct is encountered.  

• When a parallel region is encountered, master thread  
– Create a group of threads by FORK. 
– Becomes the master of this group of threads, and is assigned the thread id 0 

within the group. 

• The statement in the program that are enclosed by the parallel region 
construct are then executed in parallel among these threads. 

• JOIN: When the threads complete executing the statement in the parallel 
region construct, they synchronize and terminate, leaving only the 
master thread.   

10 Master thread is shown in red.  



I/O 
• OpenMP does not specify parallel I/O.  
• It is up to the programmer to ensure that I/O is 

conducted correctly within the context of a multi-
threaded program.  

Memory Model 
• Threads can “cache” their data and are not required 

to maintain exact consistency with real memory all 
of the time. 

• When it is critical that all threads view a shared 
variable identically, the programmer is responsible 
for insuring that the variable is updated by all 
threads as needed.  
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OpenMP Code Structure 
#include <stdlib.h> 
#include <stdio.h> 
#include "omp.h" 
 
int main() 
{ 
    #pragma omp parallel 
    { 
        int ID = omp_get_thread_num(); 
        printf("Hello (%d)\n", ID); 
        printf(" world (%d)\n", ID); 
    } 
} 
 

12 

Set # of threads for OpenMP 
In csh 
setenv OMP_NUM_THREAD 8 
 
Compile:    g++  -fopenmp  hello.c  
 
Run:   ./a.out       
 
See: http://wiki.crc.nd.edu/wiki/index.php/OpenMP 

http://wiki.crc.nd.edu/wiki/index.php/OpenMP


• “Pragma”: stands for “pragmatic information. 
A pragma is a way to communicate the 
information to the compiler.  

• The information is non-essential in the sense 
that the compiler may ignore the information 
and still produce correct object program.  
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OpenMP Core Syntax 

#include “omp.h”  
int main ()  
{  
    int var1, var2, var3;  
    // Serial code  
    . . .  
    // Beginning of parallel section.  
    // Fork a team of threads. Specify variable scoping  
    #pragma omp parallel private(var1, var2) shared(var3)  
    {  
         // Parallel section executed by all threads  
            . . .  
         // All threads join master thread and disband  
    }  
 
   // Resume serial code . . .  
} 
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OpenMP C/C++ Directive Format  

OpenMP directive forms 

– C/C++ use compiler directives 

• Prefix: #pragma omp … 

– A directive consists of a directive name followed by 
clauses 

Example: #pragma omp parallel default (shared) private (var1, 
var2) 
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OpenMP Directive Format (2) 

General Rules: 

• Case sensitive 

• Only one directive-name may be specified per 
directive 

• Each directive applies to at most one succeeding 
statement, which must be a structured block. 

• Long directive lines can be “continued” on 
succeeding lines by escaping the newline 
character with a backslash “\” at the end of a 
directive line.  
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OpenMP parallel Region Directive 

#pragma omp parallel [clause list] 
Typical clauses in [clause list] 
• Conditional parallelization 

– if (scalar expression) 
• Determine whether the parallel construct creates threads 

• Degree of concurrency 
– num_threads (integer expresson)  

• number of threads to create 

• Date Scoping 
– private (variable list) 

• Specifies variables local to each thread 

– firstprivate (variable list) 
• Similar to the private 
• Private variables are initialized to variable value before the parallel directive 

– shared (variable list) 
• Specifies variables that are shared among all the threads 

– default (data scoping specifier)  
• Default data scoping specifier may be shared or none 
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Example: 
#pragma omp parallel if (is_parallel == 1)  num_threads(8) shared (var_b) 
private (var_a)   firstprivate (var_c) default (none) 
{ 
/* structured block */ 
} 
 
• if (is_parallel == 1) num_threads(8) 

– If the value of the variable is_parallel is one, create 8 threads 

• shared (var_b) 
– Each thread shares a single copy of variable b 

• private (var_a)   firstprivate (var_c) 
– Each thread gets private copies of variable var_a and var_c 
– Each private copy of var_c is initialized with the value of var_c in main 

thread when the parallel directive is encountered 

• default (none) 
– Default state of a variable is specified as none (rather than shared) 
– Singals error if not all variables are specified as shared or private 
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Number of Threads 

• The number of threads in a parallel region is 
determined by the following factors, in order of 
precedence: 
1. Evaluation of the if clause 

2. Setting of the num_threads() clause 

3. Use of the omp_set_num_threads() library function 

4. Setting of the  OMP_NUM_THREAD  environment 
variable  

5. Implementation default – usually the number of cores 
on a node 

• Threads are numbered from 0 (master thread) to N-1 
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Thread Creation: Parallel Region Example 

• Create threads with the parallel construct 
 

#include <stdlib.h> 
#include <stdio.h> 
#include "omp.h" 
 
int main() 
{ 
    int nthreads, tid; 
    #pragma omp parallel num_threads(4) private(tid) 
    { 
        tid = omp_get_thread_num(); 
        printf("Hello world from (%d)\n", tid); 
        if(tid == 0) 
        { 
             nthreads = omp_get_num_threads(); 
             printf(“number of threads = %d\n”, nthreads); 
        } 
    } // all threads join master thread and terminates 
} 

 20 

Clause to request 
threads 

Each thread executes a 
copy of the code 

within the structured 
block 



Thread Creation: Parallel Region Example   
#include <stdlib.h> 

#include <stdio.h> 

#include "omp.h" 

 

int main(){ 

    int nthreads,  A[100] , tid; 

    // fork a group of threads with each thread having a private tid variable 

    omp_set_num_threads(4);  

    #pragma omp parallel private (tid) 

    { 

        tid = omp_get_thread_num(); 

        foo(tid, A);                                                           

     } // all threads join master thread and terminates 

} 
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A single copy of A[] is shared 
between all threads 



SPMD vs. Work-Sharing 

• A parallel construct by itself creates a “single 
program multiple data” program, i.e., each thread 
executes the same code.  

• Work-sharing is to split up pathways through the 
code between threads within a team. 

– Loop construct 

– Sections/section constructs 

– Single construct 

– … 
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Work-Sharing Construct 

• Within the scope of a parallel directive, work-sharing 
directives allow concurrency between iterations or 
tasks 

• Work-sharing constructs do not create new threads 

• A work-sharing construct must be enclosed 
dynamically within a parallel region in order for the 
directive to execute in parallel. 

• Work-sharing constructs must be encountered by all 
members of a team or none at all. 

• Two  directives to be studied 
– Do/for: concurrent loop iterations 

– sections: concurrent tasks  23 



Work-Sharing Do/for Directive 

Do/for 

• Shares iterations of a loop across the group 

• Represents a “data parallelism”. 

for directive partitions parallel iterations across 
threads  

Do is the analogous directive in Fortran 

Usage: 
#pragma omp for [clause list] 

    /* for loop */ 

• Implicit barrier at end of for loop 
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Example Using for 

25 

#include <stdlib.h> 
#include <stdio.h> 
#include "omp.h" 
 
int main() 
{ 
    int nthreads, tid; 
    
    omp_set_num_threads(3);  
    #pragma omp parallel private(tid) 
    { 
        int i; 
        tid = omp_get_thread_num(); 
        printf("Hello world from (%d)\n", tid); 
        #pragma omp for 
        for(i = 0; i <=4; i++) 
        { 
            printf(“Iteration %d by  %d\n”, i, tid); 
        } 
    } // all threads join master thread and terminates 
} 



Another Example Using for 
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• Sequential code to add two vectors 
for(i=0;i<N;i++) {c[i] = b[i] + a[i];} 

• OpenMP implementation 1 (not desired) 
#pragma omp parallel 
{ 
     int id, i, Nthrds, istart, iend; 
     id = omp_get_thread_num(); 
     Nthrds = omp_get_num_threads(); 
      istart = id*N/Nthrds; 
      iend = (id+1)*N/Nthrds;  
      if(id == Nthrds-1) iend = N; 
      for(I = istart; i<iend; i++) {c[i] = b[i]+a[i];} 
} 

• A worksharing for construct to add vectors 
#pragma omp parallel 
{ 
    #pragma omp for 
    { 
         for(i=0; i<N; i++) {c[i]=b[i]+a[i];} 
    } 
} 

or 
 
#pragma omp parallel for 
{ 
   for(i=0; i<N; i++) {c[i]=b[i]+a[i];} 
} 
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Execution for loop in parallel 



int main() 
{ 
    int   b[3]; 
    char  *cptr; 
    int   i; 
 
     cptr = malloc(1); 
   #pragma omp parallel for 
      for(i=0; i<3; i++) 
          b[i]=i;  
}  
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Heap                           

Stack    
b[0] b[1] b[2] cptr i 

Master thread (0)   
i 

Thread (1)   

i 

Every thread has its own execution context: an address space containing all of the variables the thread 
may access. The execution context includes static variables, dynamically allocated data structures in the 
heap, and variables on the run-time stack.  The execution context includes its own additional run-time 
stack.  A shared variable has the same address in the execution context of every thread. All threads 
have access to shared variables. A private variable has a different address in the execution context of 
every thread.  
 
Example. During parallel execution of the for loop, index “i” is a private variable, while “b”, “cptr” and 
heap data are shared.  



• Canonical shape of “for” loop 

for(index  = start; index {<, 𝑜𝑟 ≤ 𝑜𝑟 ≥ 𝑜𝑟 >} end;  

𝑖𝑛𝑑𝑒𝑥 + +
𝑖𝑛𝑑𝑒𝑥 − −

𝑖𝑛𝑑𝑒𝑥 += 𝑖𝑛𝑐
𝑖𝑛𝑑𝑒𝑥 −= 𝑖𝑛𝑐

) 

– “for” loop must not contain statements that allow the loop to be exited 
prematurely.  
• Examples include: “break” statement, “return” statement, “exit” statement and “goto” 

statement.  

– The “continue” statement is allowed.   
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C/C++ for Directive Syntax 

#pragma omp for [clause list] 

                            schedule (type [,chunk]) 
                            ordered 
                            private (variable list) 
                             firstprivate (variable list) 
                             lastprivate (variable list) 
                             shared (variable list) 
                             reduction (operator: variable list)  
                             collapse (n) 
                             nowait 
/* for_loop */ 
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Private Clause 

• Direct the compiler to make one or more variables private.  

 

 

 

 

• We need every thread to work through N values of “j” for each 
iteration of the “i” loop. 

• If we do not make “j” private, all of threads try to initialize and 
increment the same shared variable “j” – meaning the data race.  

• The private copies of variable “j” will be accessible only inside 
the for loop. The values are undefined on loop entry and exit.  
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#pragma omp parallel for private (j) 
    for(i = 0; i < M; i++) 
        for(j=0; j < N; j++) 
              a[i][j] = min(a[i][j], a[i][k]+tmp[j]);  



firstprivate Clause 

• We want each thread’s private copy of array element x[0] to inherit 
the value that the shared variable was assigned in the master 
thread.  
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x[0] = 1.0; 
#pragma omp parallel for private (j) firstprivate (x) 
for(i=0; i < n; i++){ 
     for(j=1; j<4; j++) 
        x[j]=g(i, x[j-1]); 
      answer[i]=x[1]-x[3];  
}    

x[0] = 1.0; 
for(i=0; i < n; i++){ 
     for(j=1; j<4; j++) 
        x[j]=g(i, x[j-1]); 
      answer[i]=x[1]-x[3];  
}    



lastprivate Clause 
• Sequentially last iteration: the iteration that occurs last when the loop is executed 

sequentially.  
• The lastprivate clause directs the compiler to generate code at the end of the parallel for 

loop that copies back to the master thread’s copy of a variable the private copy of the 
variable from the thread that executed the sequentially last iteration of the loop.  
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for(i=0; i < n; i++){ 
     x[0] = 1.0; 
     for(j=1; j<4; j++) 
        x[j]= x[j-1]*(i+1); 
      answer[i]=x[0]+x[1]+x[2]+x[3];  
}    
n_cubed = x[3]; 

• In the sequentially last iteration of the loop, x[3] gets assigned the value 𝑛3. 
• To have this value accessible outside the parallel for loop, we declare x to be a lastprivate 

variable.  #pragma omp parallel for private(j) lastprivate(x) 
for(i=0; i < n; i++){ 
     x[0] = 1.0; 
     for(j=1; j<4; j++) 
        x[j]= x[j-1]*(i+1); 
      answer[i]=x[0]+x[1]+x[2]+x[3];  
}    
n_cubed = x[3]; 



Reduction 

• How to combine values into a single accumulation 
variable (avg)? 
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• Serial code 
{ 
     double avg = 0.0, a[MAX]; 
     int i; 
      … 
     for(i =0; i<MAX; i++) {avg += a[i];} 
      avg /= MAX; 
} 



Reduction Clause 

• Reduction (operator: variable list):  specifies how 
to combine local copies of a variable in different 
threads into a single copy at the master when 
threads exit. Variables in variable list are 
implicitly private to threads.  
– Operators:  +, *, -, &, |, ^, &&, and || 

– Usage 
#pragma omp parallel reduction(+: sums) num_threads(4) 

{ 

    /* compute local sums in each thread 

} 

 /* sums here contains sum of all local instances of sum */ 
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Reduction in OpenMP for 

• Inside a parallel or a work-sharing construct: 
– A local copy of each list variable is made and initialized 

depending on operator  (e.g. 0 for “+”) 
– Compiler finds standard reduction expressions containing 

operator  and uses it to update the local copy.  
– Local copies are reduced into a single value and combined 

with the original global value when returns to the master 
thread.  
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{ 
     double avg = 0.0, a[MAX]; 
     int i; 
      … 
     #pragma omp parallel for reduction (+:avg) 
     for(i =0; i<MAX; i++) {avg += a[i];} 
      avg /= MAX; 
} 



Reduction Operators/Initial-Values 

Operator Initial Value 

+ 0 

* 1 

- 0 

& ~0 

| 0 

^ 0 

&& 1 

|| 0 
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C/C++: 



Monte Carlo to estimate PI 

38 

#include <stdlib.h> 

#include <stdio.h> 

#include "omp.h" 

 

int main(int argc, char *argv[]) 

{ 

    long int    i, count;                // count points inside unit circle 

    long int   samples;     // number of samples 

    double pi; 

    unsigned short xi[3] = {1, 5, 177};     // random number seed 

    double x, y; 

   samples = atoi(argv[1]); 

    count = 0; 

    for(i = 0; i < samples; i++) 

    { 

        x = erand48(xi); 

        y = erand48(xi); 

        if(x*x + y*y <= 1.0) count++; 

    } 

 

    pi = 4.0*count/samples; 

    printf("Estimate of pi: %7.5f\n", pi); 

} 



OpenMP version of Monte Carlo to Estimate PI 
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#include <stdio.h> 

#include <stdlib.h> 

#include “omp.h” 

 

main(int argc, char *argv[]) 

{ 

    int         i, count;      /* points inside the unit quarter circle */ 

    unsigned short  xi[3];      /* random number seed */ 

    int          samples;        /* samples Number of points to generate */ 

    double      x,y;        /* Coordinates of points */ 

    double      pi;     /* Estimate of pi */ 

 

    samples = atoi(argv[1]); 

 

    #pragma omp parallel 

    { 

        xi[0] = 1;      /* These statements set up the random seed */ 

        xi[1] = 1; 

        xi[2] = omp_get_thread_num(); 

        count = 0; 

        printf("I am thread %d\n", xi[2]); 

        #pragma omp for firstprivate(xi) private(x,y) reduction(+:count) 

        for (i = 0; i < samples; i++) 

        { 

            x = erand48(xi); 

            y = erand48(xi); 

            if (x*x + y*y <= 1.0) count++; 

        } 

    } 

    pi = 4.0 * (double)count / (double)samples; 

    printf("Count = %d, Samples = %d, Estimate of pi: %7.5f\n", count, samples, pi); 

} 

• A local copy of “count” 
for each thread 

• All local copies of “count” 
added together and 
stored in master thread 

• Each thread needs 
different random number 
seeds.  

 



Matrix-Vector Multiplication 
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#pragma omp parallel default (none) \  
shared (a, b, c, m,n) private (i,j,sum) 
num_threads(4)  
for(i=0; i < m; i++){ 
    sum = 0.0; 
    for(j=0; j < n; j++) 
          sum += b[i][j]*c[j];   
     a[i] =sum; 
} 

Thread 0,                                      Thread 1,                    …etc…     



schedule clause 
• Describe how iterations of the loop are divided among the threads in the 

group. The default schedule is implementation dependent. 
•  Usage: schedule (scheduling_class[, parameter]).  

–  static  
Loop iterations are divided into pieces of size chunk and then statically assigned to threads. 
If chunk is not specified, the iteration are evenly (if possible) divided contiguously among 
the threads.  

– dynamic 
Loop iterations are divided into pieces of size chunk and then dynamically assigned to 
threads. When a thread finishes one chunk, it is dynamically assigned another. The default 
chunk size is 1. 

– guided 
For a chunk size of 1, the size of each chunk is proportional to the number of unassigned 
iterations divided by the number of threads, decreasing to 1. For a chunk size with value 
𝑘(𝑘 > 1), the size of each chunk is determined in the same way with the restriction that 
the chunks do not contain fewer than 𝑘 iterations (except for the last chunk to be assigned, 
which may have fewer than 𝑘 iterations). The default chunk size is 1. 

– runtime 
The scheduling decision is deferred until runtime by the environment variable 
OMP_SCHEDULE. It is illegal to specify a chunk size for this clause 

– auto 
The scheduling decision is made by the compiler and/or runtime system. 
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• Static scheduling 

• 16 iterations, 4 threads: 
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Static Scheduling 

// static scheduling of matrix multiplication loops 
#pragma omp parallel default (private) \  
shared (a, b, c, dim) num_threads(4) 
#pragma omp for schedule(static) 
for(i=0; i < dim; i++) 
{ 
    for(j=0; j < dim; j++) 
    { 
         c[i][j] =  0.0; 
          for(k=0; j < dim; k++) 
              c[i][j] += a[i][k]*b[k][j];   
     } 
} 
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Static schedule maps iterations to threads 
at compile time 



Dynamic Scheduling 
• The time needed to execute different loop iterations may vary considerably.   
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for(i=0; i<n; i++) 
{ 
    for(j=i; j < n; j++) 
         a[i][j] = rand(); 
}  

• The first iteration of the outermost loop (i=0) requires n times more work 
than the last iteration (i=n-1). Inverting the two loops will not remedy the 
imbalance.    #pragma omp parallel default (private) \  

shared (a, n) private(j) num_threads(4) 
#pragma omp for schedule(dynamic) 
for(i=0; i<n; i++) 
{ 
    for(j=i; j < n; j++) 
         a[i][j] = rand(); 
}  



Environment Variables 

• OMP_SCHEDULE “schedule[, chunk_size]” 
– Control how “omp for schedule (RUNTIME)” loop 

iterations are scheduled.  

• OMP_NUM_THREADS integer 
– Set the default number of threads to use 

• OMP_DYNAMIC TRUE|FALSE 
– Can the program use a different number of threads in 

each parallel region? 

• OMP_NESTED TRUE |FALSE 
– Will nested parallel regions create new teams of 

threads, or will they be serialized?  
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By default, worksharing for loops end with an implicit 
barrier 

• nowait: If specified, threads do not synchronize at the 
end of the parallel loop 

• ordered: specifies that the iteration of the loop must 
be executed as they would be in serial program.  

• collapse: specifies how many loops in a nested loop 
should be collapsed into one large iteration space and 
divided according to the schedule clause. The 
sequential execution of the iteration in all associated 
loops determines the order of the iterations in the 
collapsed iteration space. 

46 



Avoiding Synchronization with nowait 

#pragma omp parallel shared(A,B,C) private(id) 
{ 
    id = omp_get_thread_num(); 
    A[id] = big_calc1(id); 
    #pragma omp barrier  
    #pragma omp for 
    for(i = 0; i < N; i++) { C[i] = big_calc3(i,A); }  
    #pragma omp for nowait    
    for(i = 0; i < N; i++) {B[i] = big_calc2(C,i); }   
    A[id] = big_calc4(id);  
}   
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Barrier: each threads waits till all threads arrive. 

No implicit 
barrier due to 
nowait. Any 

thread can begin 
big_calc4() 

immediately 
without waiting 

for other threads 
to finish the loop 

Implicit barrier 
at the end of the 

parallel region 



• By default: worksharing for loops end with an 
implicit barrier 

• nowait clause:  

– Modifies a for directive 

– Avoids implicit barrier at end of for 
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Loop Collapse 

• Allows parallelization of perfectly nested loops without 
using nested parallelism 

• Compiler forms a single loop and then parallelizes this 
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{ 
    … 
            #pragma omp parallel for collapse (2) 
            for(i=0;i< N; i++) 
            { 
                     for(j=0;j< M; j++) 
                    { 
                         foo(A,i,j); 
                    } 
             } 
} 



For Directive Restrictions 

For the “for loop” that follows the for directive: 

• It must not have a break statement 

• The loop control variable must be an integer 

• The initialization expression of the “for loop” must 
be an integer assignment.  

• The logical expression must be one of <, ≤, >, ≥  

• The increment expression must have integer 
increments or decrements only.  

50 



Lecture 12: Introduction to 
OpenMP (Part 2) 
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Performance Issues I 

• C/C++ stores matrices in row-major fashion. 
• Loop interchanges may increase cache locality 
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{ 
    … 
            #pragma omp parallel for 
            for(i=0;i< N; i++) 
            { 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 

• Parallelize outer-most loop 



Performance Issues II 
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{ 
    … 
            for(i=0;i< N; i++) 
            { 
                     #pragma omp parallel for 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 

• Move synchronization points outwards. The inner loop is 
parallelized.  

• In each iteration step of the outer loop, a parallel region is 
created. This causes parallelization overhead. 



Performance Issues III 
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{ 
    … 
                
     #pragma omp parallel for if(M > 800) 
      for(j=0;j< M; j++) 
       { 
             aa[j] =alpha*bb[j] + cc[j]; 
       } 
} 

• Avoid parallel overhead at low iteration counts 



C++: Random Access Iterators Loops 

• Parallelization of random access iterator loops is supported 
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void iterator_example(){ 
    std::vector vec(23); 
    std::vector::iterator  it;   
     
    #pragma omp parallel for default(none) shared(vec) 
    for(it=vec.begin();  it< vec.end(); it++) 
    { 
           // do work with it // 
     } 
} 



Conditional Compilation 

• Keep sequential and parallel programs as a single source 
code 
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#if def _OPENMP 
#include “omp.h” 
#endif  
 
Main() 
{ 
 #ifdef _OPENMP 
    omp_set_num_threads(3);  
#endif    
            for(i=0;i< N; i++) 
            { 
                     #pragma omp parallel for 
                     for(j=0;j< M; j++) 
                    { 
                         A[i][j] =B[i][j] + C[i][j]; 
                    } 
             } 
} 



Be Careful with Data Dependences 

• Whenever a statement in a program reads or writes a memory 
location and another statement reads or writes the same 
memory location, and at least one of the two statements 
writes the location, then there is a data dependence on that 
memory location between the two statements. The loop may 
not be executed in parallel.  
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for(i=1;i< N; i++) 
{ 
    a[i] = a[i] + a[i-1]; 
}             

a[i] is written in loop iteration i and read in loop iteration i+1. 
This loop can not be executed in parallel. The results may not 
be correct.  



Classification of Data Dependences 

• A data dependence is called loop-carried if the two 
statements involved in the dependence occur in 
different iterations of the loop. 

• Let the statement executed earlier in the sequential 
execution be loop S1 and let the later statement be 
S2.  
– Flow dependence: the memory location is written in S1 

and read in S2. S1 executes before S2 to produce the value 
that is consumed in S2. 

– Anti-dependence: The memory location is read in S1 and 
written in S2.  

– Output dependence: The memory location is written in 
both statements S1 and S2.  
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• Anti-dependence 
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for(i=0;i< N-1; i++) 
{ 
    x = b[i] + c[i]; 
    a[i] = a[i+1] + x; 
}             

• Parallel version with dependence removed 
#pragma omp parallel for shared (a, a2) 
for(i=0; i < N-1; i++) 
     a2[i] = a[i+1]; 
#pragma omp parallel for shared (a, a2) lastprivate(x) 
for(i=0;i< N-1; i++) 
{ 
    x = b[i] + c[i]; 
    a[i] = a2[i] + x; 
}             



Poor performance, it requires 
m-1 fork/join steps.  
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for(i=1;i< m; i++) 
     for(j=0;j<n;j++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

for(i=1;i< m; i++) 
 #pragma omp parallel for 
     for(j=0;j<n;j++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

#pragma omp parallel for private (i) 
for(j=0;j< n; j++) 
   for(i=1;i<m;i++) 
{ 
     a[i][j] = 2.0*a[i-1][j]; 
}             

• Invert loop to yield better 
performance(?). 

•  With this inverting, only a single 
fork/join step is needed. The data 
dependences have not changed. 

• However, this change affect the 
cache hit rate.  



• Flow dependence is in general difficult to be 
removed.  
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X = 0.0; 
for(i=0;i< N; i++) 
{ 
    X = X + a[i]; 
}             

X = 0.0; 
#pragma omp parallel for  reduction(+:x) 
for(i=0;i< N; i++) 
{ 
    x = x + a[i]; 
}             



• Elimination of induction variables.  
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idx = N/2+1; isum = 0; pow2 = 1; 
for(i=0;i< N/2; i++) 
{ 
    a[i] = a[i] + a[idx]; 
    b[i] = isum; 
    c[i] = pow2; 
    idx++; isum += i; pow2 *=2; 
}             

#pragma omp parallel for shared (a,b) 
for(i=0;i< N/2; i++) 
{ 
    a[i] = a[i] + a[i+N/2]; 
    b[i] = i*(i-1)/2; 
    c[i] = pow(2,i); 
}             

• Parallel version  



• Remove flow dependence using loop skewing 
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for(i=1;i< N; i++) 
{ 
    b[i] = b[i] + a[i-1]; 
    a[i] = a[i]+c[i]; 
}             

• Parallel version 
b[1]=b[1]+a[0]; 
#pragma omp parallel for shared (a,b,c) 
for(i=1;i< N-1; i++) 
{ 
    a[i] = a[i] + c[i]; 
    b[i+1] = b[i+1]+a[i]; 
}        
a[N-1] = a[N-1]+c[N-1];      



• A flow dependence that can in general not be 
remedied is a recurrence: 
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for(i=1;i< N; i++) 
{ 
    z[i] = z[i] + l[i]*z[i-1]; 
} 



Recurrence: LU Factorization of Tridiagonal Matrix 
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• Tx=LUx=Lz=b,  z=Ux. 
• Proceed as follows: 
• Lz=b,  Ux=z 
• Lz=b is solved by: 
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z[0] = b[0];  
for(i=1;i< n; i++) 
{ 
    z[i] = b[i] - l[i]*z[i-1]; 
} 

• Cyclic reduction probably is the best method to solve tridiagonal systems 
• Z. Liu, B. Chapman, Y. Wen and L. Huang.  Analyses for the Translation of OpenMP 

Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel 
programming: International Workshop on OpenMP 

• C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the 
Development of Parallel BLAS and LAPACK libraries. J. Sci. Programming – 
OpenMP, 11(2), 2003. 

• S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI 



V=alpha(); 
W=beta(); 
X=gamma(v,w); 
Y=delta(); 
printf(“%g\n”, epsilon(x,y)); 
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alpha beta 

gamma 

epsilon 

delta 

Data dependence diagram 

Functions alpha, beta, delta may be executed 
in parallel  



Worksharing sections Directive 

sections directive enables specification of task parallelism 
– Sections construct gives a different structured block to each thread. 

#pragma omp sections [clause list]  
                                          private (list)  
                                          firstprivate (list) 
                                          lastprivate (list) 
                                          reduction (operator: list) 
                                          nowait 
{ 
#pragma omp section  
      structured_block 
#pragma omp section 
      structured_block 
}  
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#include “omp.h” 
#define N 1000 
int main(){ 
    int i; 
    double a[N], b[N], c[N], d[N]; 
    for(i=0; i<N; i++){ 
        a[i] = i*2.0; 
        b[i] = i + a[i]*22.5; 
    } 
    #pragma omp parallel  shared(a,b,c,d) private(i) 
    { 
        #pragma omp sections nowait 
        { 
            #pragma omp section 
                for(i=0; i<N;i++) c[i] = a[i]+b[i]; 
            #pragma omp section 
                for(i=0; i<N;i++) d[i] = a[i]*b[i]; 
         } 
    }  
} 
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Two tasks  are 
computed  

concurrently 

By default, there is a barrier at the end of  the 
sections. Use the “nowait” clause to turn of 

the barrier.  
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#include “omp.h” 
 
#pragma omp parallel  
{ 
#pragma omp sections  
        { 
            #pragma omp section 
                v=alpha(); 
            #pragma omp section 
                w=beta(); 
         } 
#pragma omp sections  
        { 
            #pragma omp section 
                x=gamma(v,w); 
            #pragma omp section 
                y=delta(); 
         } 
         printf(“%g\n”, epsilon(x,y)); 
} 



Synchronization I 

• Threads communicate through shared variables. 
Uncoordinated access of these variables can lead  to 
undesired effects.  
– E.g. two threads update (write) a shared variable in the 

same step of execution, the result is dependent on the 
way this variable is accessed. This is called a race 
condition.  

• To prevent race condition, the access to shared 
variables must be synchronized.  

• Synchronization can be time consuming. 
• The barrier directive is set to synchronize all threads. 

All threads wait at the barrier until all of them have 
arrived. 
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Synchronization II 

• Synchronization imposes order constraints and is 
used to protect access to shared data 

• High level synchronization: 

– critical 

– atomic 

– barrier 

– ordered 

• Low level synchronization 

– flush 

– locks (both simple and nested) 
72 



Synchronization: critical 

• Mutual exclusion: only one thread at a time can enter a critical region. 
{ 
    double res; 
     #pragma omp parallel 
     { 
          double B;  
           int  i, id, nthrds; 
           id = omp_get_thread_num(); 
           nthrds = omp_get_num_threads(); 
            for(i=id; i<niters; i+=nthrds){ 
                B = some_work(i);  
                 #pragma omp critical 
                 consume(B,res); 
            } 
     } 
} 
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Threads wait here: only one thread 
at a time calls consume(). So this is 
a piece of sequential code inside 

the for loop. 
 



Code Fragment for Manager/Worker Model 
int main(int argc, char argv[]) 
{ 
    struct job_struct  job_ptr; 
    struct task_struct  *task_ptr; 
    … 
    task_ptr = get_next_task(&job_ptr);  
    while(task_ptr != NULL){ 
          complete_task(task_ptr); 
          task_ptr = get_next_task(&job_ptr); 
     } 
     … 
} 
 
struct task_struct  *get_next_task(struct job_struct  *job_ptr) 
{ 
     struct task_struct  *answer; 
     if(job_ptr == NULL) answer = NULL; 
     else 
      { 
           answer = job_ptr->task; 
           job_ptr = job_ptr->next; 
      } 
      return answer;  
} 
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task next task next task next 

Job_ptr 



• Two threads complete the work 
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task next task next task next 

Job_ptr Shared variables 

task_ptr 

Master thread 

task_ptr 

 Thread 1 
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int main(int argc, char argv[]) 
{ 
    struct job_struct  job_ptr; 
    struct task_struct  *task_ptr; 
    … 
#pragma omp parallel private (task_ptr) 
    { 
        task_ptr = get_next_task(&job_ptr);  
        while(task_ptr != NULL){ 
              complete_task(task_ptr); 
              task_ptr = get_next_task(&job_ptr); 
        } 
    } 
     … 
} 
 
struct task_struct  *get_next_task(struct job_struct  *job_ptr) 
{ 
     struct task_struct  *answer; 
#pragma omp critical  
     { 
         if(job_ptr == NULL) answer = NULL; 
         else 
          { 
               answer = job_ptr->task; 
               job_ptr = job_ptr->next; 
          } 
      } 
      return answer;  
} 

The execution of the 
code block after the 
parallel program is 
replicated among the 
threads  

Ensure function 
get_next_task() 
executes atomically.  
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{ 
    … 
     #pragma omp parallel 
     { 
            #pragma omp for nowait shared(best_cost) 
            for(i=0; i<N; i++){ 
                int   my_cost;  
                my_cost = estimate(i); 
                #pragma omp critical 
                { 
                     if(best_cost < my_cost) 
                         best_cost = my_cost; 
                } 
           } 
     } 
} 
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Only one thread at a time 
executes if() statement. This 

ensures mutual exclusion when 
accessing shared data.  

Without critical, this will set up 
a race condition,  in which the 

computation exhibits 
nondeterministic behavior 

when performed by multiple 
threads accessing a shared 

variable  
 



Synchronization: atomic 

• atomic provides mutual exclusion but only applies to the 
load/update of a memory location. 

• This is a lightweight, special form of a critical section. 
• It is applied only to the (single) assignment statement that 

immediately follows it. 
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{ 
    … 
     #pragma omp parallel 
     { 
               double tmp, B; 
               …. 
                #pragma omp atomic 
                { 
                     X+=tmp; 
                } 
     } 
} 

Atomic only protects the update of X.  



“ic” is a counter. The atomic construct ensures that no updates 
are lost when multiple threads are updating a counter value.   
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• Atomic construct may only be used together with an expression 
statement with one of operations: +, *, -, /, &, ^, |, <<, >>.  
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• The atomic construct does not prevent multiple threads 
from executing the function bigfunc() at the same time.  

 



Synchronization: barrier 

Suppose each of the following two loops are run in parallel 
over i, this may give a wrong answer. 
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for(i= 0; i<N; i++) 
    a[i] = b[i] + c[i]; 
for(i= 0; i<N; i++) 
    d[i] = a[i] + b[i]; 

There could be a data race in a[]. 
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for(i= 0; i<N; i++) 

    a[i] = b[i] + c[i]; 

for(i= 0; i<N; i++) 

    d[i] = a[i] + b[i]; 

wait 

barrier 

To avoid race condition: 
• NEED: All threads wait at the barrier point and only continue 

when all threads have reached the barrier point.  
Barrier syntax: 
• #pragma omp barrier 



Synchronization: barrier 

barrier: each threads waits until all threads arrive 
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#pragma omp parallel shared (A,B,C) private (id) 
{ 
     id=omp_get_thread_num(); 
     A[id] = big_calc1(id); 
     #pragma omp barrier 
     #pragma omp for 
           for(i=0; i<N;i++){C[i]=big_calc3(i,A);} 
     #pragma omp for nowait 
            for(i=0;i<N;i++) {B[i]=big_calc2(i,C);} 
      A[id]=big_calc4(id); 
} 

Implicit barrier at 
the end of for 

construct 

No implicit barrier 
due to nowait 

Implicit barrier at the end of 
a parallel region 



When to Use Barriers 

• If data is updated asynchronously and data 
integrity is at risk 

• Examples: 

– Between parts in the code that read and write the 
same section of memory 

– After one timestep/iteration in a numerical solver 

• Barriers are expensive and also may not scale to a 
large number of processors 
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“master” Construct 

• The “master” construct defines a structured block that is only executed 
by the master thread. 

• The other threads skip the “master” construct. No synchronization is 
implied. 

• It does not have an implied barrier on entry or exit.  
• The lack of a barrier may lead to problems. 
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#pragma omp parallel  
{ 
     … 
     #pragma omp master 
     { 
          exchange_information(); 
     } 
     #pragma omp barrier 
     … 
} 



• Master construct to initialize the data 
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“single” Construct 

• The “single” construct builds a block of code that is 
executed by only one thread (not necessarily the master 
thread). 

• A barrier is implicitly set at the end of the single block (the 
barrier can be removed by the nowait clause) 
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#pragma omp parallel  
{ 
     … 
     #pragma omp single 
     { 
          exchange_information(); 
     } 
     do_other_things(); 
     … 
} 



• Single construct to initialize a shared variable 
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Synchronization: ordered 

• The “ordered” region executes in the sequential 
order 
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#pragma omp parallel private (tmp) 
{ 
     … 
     #pragma omp for ordered reduction(+:res) 
     for(i=0;i<N;i++) 
     { 
          tmp = compute(i); 
      #pragma ordered 
          res += consum(tmp);     
     } 
     do_other_things(); 
     … 
} 



Synchronization: Lock routines 

• A lock implies a memory fence of all thread visible variables. 
• These routines are used to guarantee that only one thread 

accesses a variable at a time to avoid race conditions.  
• C/C++ lock variables must have type “omp_lock_t” or 

“omp_nest_lock_t”. 
• All lock functions require an argument that has a pointer to 

omp_lock_t or omp_nest_lock_t. 
• Simple Lock routines: 

– omp_init_lock(omp_lock_t*); omp_set_lock(omp_lock_t*);  
omp_unset_lock(omp_lock_t*); 
omp_test_lock(omp_lock_t*); omp_destroy_lock(omp_lock_t*); 
 
http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top 
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http://gcc.gnu.org/onlinedocs/libgomp/index.html


General Procedure to Use Locks 

1. Define the lock variables 

2. Initialize the lock via a call to omp_init_lock 

3. Set the lock using omp_set_lock or omp_test_lock. 
The latter checks whether the lock is actually 
available before attempting to set it. It is useful to 
achieve asynchronous thread execution. 

4. Unset a lock after the work is done via a call to 
omp_unset_lock. 

5. Remove the lock association via a call to 
omp_destroy_lock. 
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Locking Example 

• The protected region 
contains the update 
of a shared variable 

• One thread acquires 
the lock and 
performs the update 

• Meanwhile, other 
threads perform 
some other work 

• When the lock is 
released again, the 
other threads 
perform the update 
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omp_lock_t lck; 
omp_init_lock(&lck); 
#pragma omp parallel shared(lck) private (tmp, id) 
{ 
     id = omp_get_thread_num(); 
     tmp = do_some_work(id); 
     omp_set_lock(&lck); 
         printf(“%d %d\n”, id, tmp); 
     omp_unset_lock(&lck); 
} 
omp_destroy_lock(&lck);  

Thread waits here 
for its turn. 

Release the lock so 
that the next thread 

gets a turn 

Dissociate the given lock 
variable from any locks. 

Initialize a lock 
associated with lock 

variables “lck” for 
use in subsequent 

calls. 



Runtime Library Routines 

• Routines for modifying/checking number of threads 
– omp_set_num_threads(int n);  
– int omp_get_num_threads(void);  
– int omp_get_thread_num(void);  
– int omp_get_max_threads(void);  

• Test whether in active parallel region 
– int omp_in_parallel(void);  

• Allow system to dynamically vary the number of threads from one 
parallel construct to another 
– omp_set_dynamic(int set)  

• set = true: enables dynamic adjustment of team sizes 
• set = false: disable dynamic adjustment 

– int omp_get_dynamic(void) 

• Get number of processors in the system 
– int omp_num_procs(void); returns the number of processors online 

 
http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top 
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Default Data Storage Attributes 

• A shared variable has a single storage location in memory for the 
whole duration of the parallel construct. All threads that 
reference such a variable accesses the same memory. Thus, 
reading/writing a shared variable provides an easy mechanism for 
communicating between threads. 
– In C/C++, by default, all program variables except the loop index 

become shared variables in a parallel region.  
– Global variables are shared among threads 
– C: File scope variables, static variables, dynamically allocated 

memory (by malloc(), or by new). 

• A private variable has multiple storage locations, one within the 
execution context of each thread.  
– Not shared variables 

• Stack variables in functions called from parallel regions are private. 
• Automatic variables within a statement block are private.  

– This holds for pointer as well. Therefore, do not assign a private 
pointer the address of a private variable of another thread. The 
result is not defined. 
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/** main file **/ 
#include <stdio.h> 
#include <stdlib.h> 
 
double  A[100]; 
int main(){ 
     int index[50]; 
     #pragma omp parallel 
         work(index); 
     printf(“%d\n”, index[0]); 
} 

/** file 1 **/ 
#include <stdio.h> 
#include <stdlib.h> 
 
extern double  A[100]; 
void work(int *index){ 
     double temp[50]; 
     static int count; 
} 

• Variables “A”, “index” and “count” are shared by all threads. 
• Variable “temp” is local (or private) to each thread. 



Changing Data Storage Attributes 

• Clauses for changing storage attributes 
– “shared”, “private”, “firstprivate” 

• The final value of a private inside a parallel “for” loop can 
be transmitted to the shared variable outside the loop 
with: 
– “lastprivate” 

• The default attributes can be overridden with: 
– Default(private|shared|none) 

• All data clauses listed here apply to the parallel construct 
region and worksharing construct region except “shared”, 
which only applies to parallel constructs.  
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Private Clause 

• “private (variable list)” clause creates a new local copy of variables for 
each thread.  
– Values of these variables are not initialized on entry of the parallel region.  
– Values of the data specified in the private clause can no longer be accessed 

after the corresponding region terminates (values are not defined on exit of 
the parallel region).  
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/*** wrong implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for private(tmp) 
     for (int j=0; j<1000;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

“tmp” is not initialized 

“tmp” is 0  in version 3.0; unspecified in 
version 2.5. 



Firstprivate Clause 

• firstprivate initializes each private copy with the 
corresponding value from the master thread. 
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/*** still wrong implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for firstprivate(tmp) 
     for (int j=0; j<1000;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

Each thread get its own 
“tmp” with an initial 

value of 0. 

“tmp” is 0  in version 3.0; unspecified in 
version 2.5. 



Lastprivate Clause 

• Lastprivate clause passes the value of a private variable from the last 
iteration to a global variable.  
– It is supported on the work-sharing loop and sections constructs. 
– It ensures that the last value of a data object listed is accessible after the 

corresponding construct has completed execution. 
– In case use with a work-shared loop, the object has the value from the 

iteration of the loop that would be last in a “sequential” execution. 
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/*** useless implementation ***/ 
int main(){ 
     int  tmp = 0; 
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp) 
     for (int j=0; j<5;j++) 
          tmp += j;  
     printf(“%d\n”, tmp); 
} 

“tmp” is defined as its value at the “last 
sequential” iteration, i.e, j = 5. 



Correct Usage of Lastprivate 
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/*** correct usage of lastprivate ***/ 
int main(){ 
     int  a, j; 
#pragma omp parallel for private(j) lastprivate(a) 
     for (j=0; j<5;j++) 
     { 
          a = j + 2; 
          printf(“Thread %d has a value of a = %d for j =  %d\n”,  
                    omp_get_thread_num(), a, j); 
      }  
      printf(“value of a after parallel = %d\n”, a); 
} 

Tread 0 has a value of a = 2 for j =  0 
Tread 2 has a value of a = 4 for j =  2 
Tread 1 has a value of a = 3 for j =  1 
Tread 3 has a value of a = 5 for j =  3 
Tread 4 has a value of a = 6 for j =  4 
value of a after parallel = 6 
 



Default Clause 

• C/C++ only has default(shared) or default(none) 

• Only Fortran supports default(private) 

• Default data attribute is default(shared) 
– Exception: #pragma omp task 

• Default(none): no default attribute for variables 
in static extent. Must list storage attribute for 
each variable in static extent. Good programming 
practice.  
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Lexical (static) and Dynamic Extent I 

• Parallel regions enclose an arbitrary block of code, 
sometimes including calls to another function. 

• The lexical or static extent of a parallel region is the 
block of code to which the parallel directive applies. 

• The dynamic extent of a parallel region extends the 
lexical extent by the code of functions that are called 
(directly or indirectly) from within the parallel region. 

• The dynamic extent is determined only at runtime.  
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Lexical and Dynamic Extent II 
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int main(){ 
#pragma omp parallel 
     { 
          print_thread_id(); 
      }  
} 
 
void print_thread_id() 
{ 
     int id = omp_get_thread_num(); 
     printf(“Hello world from thread %d\n”, id); 
} 

Static extent 

Dynamic 
extent 
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Threadprivate 

• Threadprivate makes global data private to a thread 
– C/C++: file scope and static variables, static class members 
– Each thread gives its own set of global variables, with initial 

values undefined.  

• Different from private 
– With private clause, global variables are masked. 
– Threadrpivate preserves global scope within each thread.  
– Parallel regions must be executed by the same number of 

threads for global data to persist. 

• Threadprivate variables can be initialized using copyin 
clause or at time of definition. 

108 



If all of the conditions below hold, and if a 
threadprivate object is referenced in two consecutive 
(at run time) parallel regions, then threads with the 
same thread number in their respective regions 
reference the same copy of that variable: 

– Neither parallel region is nested inside another parallel 
region. 

– The number of threads used to execute both parallel 
regions is the same. 
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#include <stdio.h> 
#include <stdlib.h> 
#include "omp.h" 
 
int   *pglobal; 
#pragma omp threadprivate(pglobal) 
 
int main(){ 
     … 
#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check) 
     for (i=0; i<n;i++) 
     { 
          TID = omp_get_thread_num(); 
          if((pglobal = (int*) malloc(length[i]*sizeof(int))) != NULL) { 
              for(j=sum=0; j < length[i];j++) pglobal[j] = j+1; 
              sum = calculate_sum(length[i]); 
              printf(“TID %d: value of sum for I = %d is %d\n”, TID,i,sum); 
              free(pglobal); 
          } else { 
              printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,length[i]); 
          } 
     } 
} 110 

Threadprivate directive is 
used to give each thread a 
private copy of the global 

pointer pglobal. 
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/* source of function calculate_sum() */ 
extern int *pglobal; 
 
int  calculate_sum(int   length){ 
     int  sum = 0; 
     for (j=0; j<length;j++) 
     { 
          sum  += pglobal[j]; 
      }  
      return (sum); 
} 



• Each thread has its own copy of sum0, updated in a parallel 
region that is called several times. The values for sum0 
from one execution of the parallel region will be available 
when it is next started.  112 



Copyin Clause 

• Copyin allows to copy the master thread’s 
threadprivate variables to corresponding 
threadprivate variables of the other threads.  
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int   global[100]; 
#pragma omp threadprivate(global) 
 
int main(){ 
    for(int i= 0; i<100; i++) global[i] = i+2; // initialize data 
#pragma omp parallel copyin(global) 
    {  
         /// parallel region, each thread gets a copy of global, with initialized value 
    }     
} 



Copyprivate Clause 

• Copyprivate clause is supported on the single directive to broadcast values of 
privates from one thread of a team to the other threads in the team. 
– The typical usage is to have one thread read or initialize private data that is 

subsequently used by the other threads as well. 
– After the single construct has ended, but before the threads have left the associated 

barrier, the values of variables specified in the associated list are copied to the other 
threads.  

– Do not use copyprivate in combination with the nowait clause.  
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#include “omp.h” 
Void input_parameters(int, int); // fetch values of input parameters 
 
int main(){ 
    int Nsize, choice; 
#pragma omp parallel private(Nsize, choice) 
    {  
         #pragma omp single copyprivate (Nsize, choice) 
              input_parameters(Nsize,choice); 
        do_work(Nsize, choice); 
    }     
} 



Flush Directive 

• OpenMP supports a shared memory model.  
– However, processors can have their own “local” high 

speed memory, the registers and cache.  
– If a thread updates shared data, the new value will first 

be saved in register and then stored back to the local 
cache.  

– The update are thus not necessarily immediately visible 
to other threads. 
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Flush Directive 

The flush directive is to make a thread’s temporary 
view of shared data consistent with the value in 
memory.  

– #pragma omp flush (list) 

– Thread-visible variables are written back to memory 
at this point.  

– For pointers in the list, note that the pointer itself is 
flushed, not the object it points to.   
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Why Task Parallelism? 
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#include “omp.h” 
/* traverse elements in the list */ 
 
Void traverse_list(List *L){ 
    Element *e; 
#pragma omp parallel private(e) 
    {  
         for(e = L->first; e != NULL; e = e->next) 
              #pragma omp single nowait 
                   do_work(e); 
    }     
} 

• Poor performance 
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#include “omp.h” 
/* traverse elements in the list */ 
 
Void traverse_tree(Tree *T){ 
#pragma omp parallel sections 
    {  
          #pragma omp section 
              if(T->left) 
                   traverse_tree(T->left); 
          #pragma omp section 
              if(T->right) 
                   traverse_tree(T->right); 
    }     
    process(T); 
} 

• Improved performance by sections 
• Too many parallel regions 

• Extra synchronization 
• Not flexible 



OpenMP 3.0 and Tasks 

• What are tasks? 
– Tasks are independent units of work 
– Threads are assigned to perform the work 

of each task. 
• Tasks may be deferred 
• Tasks may be executed immediately 
• The runtime system decides which of the 

above 

• Why task? 
– The basic idea is to set up a task queue: 

when a thread encounters a task directive, 
it arranges for some thread to execute the 
associated block – at some time. The first 
thread can continue. 
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OpenMP 3.0 and Tasks 

Tasks allow to parallelize irregular problems 
– Unbounded loops 
– Recursive algorithms 
– Manger/work schemes 
– … 

A task has 
– Code to execute 
– Data environment (It owns its data) 
– Internal control variables 
– An assigned thread that executes the code and the data 

Two activities: packaging and execution 
– Each encountering thread packages a new instance of a task 

(code and data) 
– Some thread in the team executes the task at some later time 

 120 



• OpenMP has always had tasks, but they were not 
called “task”. 
–  A thread encountering a parallel construct, e.g., “for”, 

packages up a set of implicit tasks, one per thread. 

– A team of threads is created. 

– Each thread is assigned to one of the tasks. 

– Barrier holds master thread till all implicit tasks are 
finished.  

• OpenMP 3.0 adds a way to create a task explicitly for 
the team to execute. 
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Task Directive 
#pragma omp task [clauses] 
                                   if( logical expression) 
                                   untied 
                                   shared (list) 
                                   private (list) 
                                   firstprivate (list) 
                                   default(shared | none) 
       structured block     
 
• Each encountering thread creates a task 

– Package code and data environment 
– Can be nested 

• Inside parallel regions 
• Inside other tasks 
• Inside worksharing 

• An OpenMP barrier (implicit or explicit): 
All tasks created by any thread of the current team are guaranteed to be  completed at 
barrier exit. 

• Task barrier (taskwait): 
Encountering thread suspends until all child tasks it has  generated are complete.  
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/* serial code to compute Fibonacci */ 
int fib(int n) 
{ 
    int i, j; 
    if(n < 2) return n; 
    i = fib(n-1); 
    j = fib(n-2); 
    return (i+j); 
} 
int main(){ 
    int n = 8; 
    printf(“fib(%d) = %d\n”, n, fib(n); 
} 

Fibonacci series:  
f(1) = 1  
f(2) = 1 
f(n) = f(n-1) + f(n-2) 

/* OpenMP code to compute Fibonacci */ 

#include <stdlib.h> 

#include <stdio.h> 

#include "omp.h" 

static int fib(int); 

int main(){ 

    int nthreads, tid; 

    int n = 8; 

    #pragma omp parallel num_threads(4) private(tid) 

    { 

        #pragma omp single 

        { 

            tid = omp_get_thread_num(); 

            printf("Hello world from (%d)\n", tid); 

            printf("Fib(%d) = %d by %d\n", n, fib(n), tid); 

        } 

    } // all threads join master thread and terminates 

} 

 

Static int fib(int n){ 

    int i, j, id; 

    if(n < 2) 

        return n; 

    #pragma omp task shared (i) private (id) 

    { 

        i = fib(n-1); 

    } 

    #pragma omp task shared (j) private (id) 

    { 

        j = fib(n-2); 

     } 

    return (i+j); 

} 
 



/* Example of pointer chasing  using task*/ 
Void process_list(elem_t *elem){ 
    #pragma omp parallel 
    { 
         #pragma omp single 
         { 
             while (ele != NULL) { 
                 #pragma omp task 
                 { 
                      process(elem); 
                 } 
                 elem = elem->next; 
             } 
         } 
    } 
} 
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Elem is firstprivate by 
default 
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#include “omp.h” 
/* traverse elements in the list */ 
 
Void traverse_list(List *L){ 
    Element *e; 
      
     for(e = L->first; e != NULL; e = e->next) 
              #pragma omp task 
                   do_work(e); 
     #pragma omp taskwait   
 
} 

All tasks guaranteed to be completed here 
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/* Tree traverse using tasks*/ 
 
struct node{ 
    struct node *left, *right; 
}; 
void traverse(struct node *p, int postorder){ 
    if(p->left != NULL) 
         #pragma omp task 
          traverse(p->left, postorder); 
     if(p->right != NULL) 
         #pragma omp task 
          traverse(p->right, postorder); 
     if(postorder){ 
         #pragma omp taskwait   
     } 
     process(p);  
} 



Task Data Scope 

Data Scope Clauses 
• shared (list) 
• private (list) 
• firstprivate (list) 
• default (shared | none) 
If no clause: 

– Implicit rules apply: global variables are shared 
Otherwise 
– Firstprivate 
– Shared attribute is lexically inherited 
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int a; 
void foo(){ 
    int  b, c; 
    #pragma omp parallel shared (c) 
    {  
         int d; 
          # pragma omp task 
          { 
                 int e; 
                 /* 
                  a = shared 
                  b = firstprivate 
                  c = shared  
                  d = firstprivate 
                  e = private  
                 */   
     } 
} 



Task Synchronization 

Barriers (implicit or explicit) 

– All tasks created by any thread of the current team 
are guaranteed to be completed at barrier exit 

Task Barrier 

#pragma omp taskwait 

– Encountering task suspends until child tasks 
complete 
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Task Execution Model 

• Tasks are executed by a thread of the team  

– Can be executed immediately by the same thread 
that creates it 

• Parallel regions in 3.0 create tasks 

– One implicit task is created for each thread 

• Threads can suspend the execution of  a task 
and start/resume another 

130 
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#include “omp.h” 
/* traverse elements in the list */ 
List *L; 
… 
#pragma omp parallel 
 traverse_list(L); 
     

Multiple traversals of 
the same list 

#include “omp.h” 
/* traverse elements in the list */ 
List *L; 
… 
#pragma omp parallel 
#pragma omp single 
 traverse_list(L); 
     

Single traversal: 
• One thread enters single 

and creates all tasks 
• All the team cooperates 

executing them 
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#include “omp.h” 
/* traverse elements in the list */ 
List L[N]; 
… 
#pragma omp parallel for 
For (i = 0; i < N; i++)  
 traverse_list(L[i]); 
     

Multiple traversals: 
• Multiple threads create tasks 
• All the team cooperates executing them 



Hybrid MPI/OpenMP 

• Vector mode: MPI is called only outside OpenMP parallel regions.  
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• Task mode: One or more threads in the parallel region are 
dedicated to special tasks, like doing communication in the 
background.  



C+MPI 
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Basic Hybrid Framework 

135 Compileing: mpicc –fopenmp test.cc 



Concept 1: ROOT MPI Process Controls 
Communication 

• Map one MPI process to one SMP node. 
• Each MPI process fork a fixed number of threads. 
• Communication among MPI process is handled by 

main MPI process only. 
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… 
#pragma omp master 
{ 
     if(0== my_rank) 
          // some MPI call as root process 
     else 
          // some MPI call as non-root process 
} // end of omp master   
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Concept 2: Master OpenMP Thread Controls 
Communication 

• Each MPI process uses its own OpenMP master thread to 
communicate. 

• Need to take more care to ensure efficient 
communications. 
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… 
#pragma omp master 
{ 
     some MPI call as an MPI process 
} // end of omp master   
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Concept 3: All OpenMP Threads May Use MPI 
Calls 

• This is by far the most flexible communication scheme. 
• Great care must be taken to account for explicitly which thread of which 

MPI process communicates. 
• Requires an addressing scheme that denotes which MPI process 

participates in communication and which thread of MPI process is 
involved, e.g., <my_rank, omp_thread_id>. 

•  Neither MPI nor OpenMP have built-in facilities for tracking 
communication. 

• Critical sections may be used for some level of control.  
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… 
#pragma omp critical 
{ 
     some MPI call as an MPI process 
} // end of omp critical   
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Conjugate Gradient 

• Algorithm  
– Start with MPI program 
– MPI_Send/Recv for communication 
– OpenMP “for” directive for matrix-vector multiplication  
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Init.: x(0) =0, d(0) = 0, g(0) = -b; 
Step 1. Compute the gradient: g(t) =Ax(t-1)-b 
Step 2. Compute the direction vector: 
       d(t) = -g(t)+(g(t)^Tg(t))/(g(t-1)^Tg(t-1))d(t-1) 
Step 3. Compute the step size: 
        s(t) = -(d(t)^Td(t))/(d(t)^TAd(t)); 
Step 4. Compute the new approximation of x: 
        x(t) = x(t-1) + s(t) d(t).   



#include <stdlib.h> 
#include <stdio.h> 
#include “MyMPI.h” 
int main(int argc, char *argv[]){ 
    double **a, *astorage, *b, *x; 
    int p, id, m, n, nl; 
    MPI_Init(&argc,&argv); 
    MPI_Comm_size(MPI_COMM_WORLD, &p); 
    MPI_Comm_rank(MPI_COMM_WORLD, &id);    
read_block_row_matrix(id,p,argv[1],(void*)(&a),(void*)(&astorage),MPI_DOUBLE,&m,&n); 
    nl = read_replicated_vector(id,p,argv[2],(void**)(&b),MPI_DOUBLE); 
    if((m!=n) ||(n != nl)) { 
         printf(“Incompatible dimensions %d %d time %d\n”, m,n,nl); 
    } 
    else{ 
         x = (double*)malloc(n*sizeof(double)); 
         cg(p,id,a,b,x,n); 
         print_replicated_vector(id,p,x,MPI_DOUBLE,n); 
    } 
    MPI_Finalize(); 
} 
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#define EPSILON 1.0e-10 

Double *piece;  

cg(int p, int id, double **a, double *b, double *x, int n){ 

   int  i, it; 

   double   *d, *g, denom1, denom2, num1, num2, s, *tmpvec; 

    d = (double*)malloc(n*sizeof(double)); 

    g =  (double*)malloc(n*sizeof(double)); 

    tmpvec = (double*)malloc(n*sizeof(double)); 

    piece = (double*)malloc(BLOCK_SIZE(id,p,n)*sizeof(double)); 

     for(i=0; i<n; i++){ 

          d[i] = x[i] = 0.0; 

          g[i] = -b[i]; 

     } 

      for(it=0; it<n; it++){ 

           denom1 = dot_product(g,g,n); 

           matrix_vector_product(id,p,n,a,x,g); 

           for(i=0;i<n;i++)  g[i]-=b[i]; 

           num1 = dot_product(g,g,n); 

           if(num1<EPSILON) break; 

           for(i=0;i<n;i++) d[i]=-g[i]+(num1/denom1)*d[i]; 

           num2 = dot_product(d,g,n); 

           matrix_vector_product(id,p,n,a,d,tmpvec); 

           denom2=dot_product(d,tmpvec,n); 

           s=-num2/denom2; 

           for(i=0;i<n;i++) x[i] += s*d[i]; 

      } 

}  144 



double dot_product(double *a, double *b, int n) 
{ 
     int i; 
     double answer=0.0; 
      for(i=0; i<n;i++) 
           answer+=a[i]*b[i]; 
      return answer; 
} 
double matrix_vector_product(int id, int p, int n, double **a, double *b, double *c){ 
     int i, j; 
     double tmp;  
     #pragma omp parallel for private (I,j,tmp) 
     for(i=0; i<BLOCK_SIZE(id,p,n);i++){ 
          tmp=0.0; 
           for(j=0;j<n;j++) 
                tmp+=a[i][j]*b[j]; 
           piece[i] = tmp; 
     } 
     new_replicate_block_vector(id,p,piece,n, c, MPI_DOUBLE); 
}  
void new_replicate_block_vector(int id, int p, double  *piece, int n, double *c, MPI_Datatype  dtype) 
{ 
    int *cnt, *disp; 
    create_mixed_xfer_arrays(id,p,n,&cnt,&disp); 
    MPI_Allgatherv(piece,cnt[id], dtype, c, cnt, disp, dtype, MPI_COMM_WORLD); 
} 
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Steady-State Heat Distribution 

Solve 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑓 𝑥, 𝑦 , 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏  
With 𝑢 𝑥, 0 = 𝐺1 𝑥 , 𝑢 𝑥, 𝑏 = 𝐺2 𝑥 ,  0 ≤ 𝑥 ≤ 𝑎 

𝑢 0, 𝑦 = 𝐺3 𝑦 , 𝑢 𝑎, 𝑦 = 𝐺4 𝑦 ,  0 ≤ 𝑦 ≤ 𝑏 
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• Use row-decomposition.  

int find_steady_state(int p, int id, iny my_rows, double **u, double **w) 

{ 

      double diff, global_diff, tdiff; int its;  

      MPI_Status   status; int i,j; 

      its = 0; 

      for(;;) { 

            if(id>0) MPI_Send(u[1], N, MPI_DOUBLE, id-1,0,MPI_COMM_WORLD); 

            if(id < p-1) { 

                  MPI_Send(u[my_rows-2],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD); 

                  MPI_Recv(u[my_rows-1],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD,&status); 

            } 

            if(id>0) MPI_Recv(u[0],N,MPI_DOUBLE,id-1,0,MPI_COMM_WORLD,&status); 

            diff = 0.0; 

#pragma omp parallel private (I,j,tdiff) 

            { 

                  tdiff = 0.0; 

                   #pragma omp for             

                   for(i=1;i<my_rows-1;i++) 

                        for(j=1;j<N-1;j++){ 

                             w[i][j]=(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1])/4.0; 

                             if(fabs(w[i][j]-u[i][j]) >tdiff)  tdiff = fabs(w[i][j]-u[i][j]); 

                         } 

                   #pragma omp for nowait 

                    for(i=1;i<my_rows-1;i++) 

                         for(j=1;j<N-1;j++) 

                              u[i][j] = w[i][j]; 

                   #pragma omp critical 

                  if(tdiff > diff) diff = tdiff; 

            } 

            MPI_Allreduce(&diff,&global_diff,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD); 

            if(global_diff <= EPSILON) break; 

            its++; 

      } 

} 
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OpenMP multithreading in MPI 

• MPI-2 specification  
– Does not mandate thread support 
– Does define what a “thread compliant MPI” should do 
– 4 levels of thread support 

• MPI_THREAD_SINGLE: There is no OpenMP multithreading in the 
program. 

• MPI_THREAD_FUNNELED: All of the MPI calls are made by the master 
thread. 

This will happen if all MPI calls are outside OpenMP parallel regions or are in master 
regions. 
A thread can determine whether it is the master thread by calling 
MPI_Is_thread_main 
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• MPI_THREAD_SERIALIZED: Multiple threads make MPI calls, 
but only one at a time. 

 

 

 

 

 

 

• MPI_THREAD_MULTIPLE: Any thread may make MPI calls at 
any time. 
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• Threaded MPI Initialization 

Instead of starting MPI by MPI_Init, 

int MPI_Init_thread(int *argc, char ***argv, int 
required, int *provided) 

required: the desired level of thread support. 

provided:  the actual level of thread support provided by the 
system. 

Thread support at levels MPI_THREAD_FUNNELED or higher 
allows potential overlap of communication and computation. 

http://www.mpi-forum.org/docs/mpi-20-html/node165.htm 

150 



#include <stdio.h> 
#include <stdlib.h> 
#include "mpi.h" 
#include "omp.h" 
 
int main(int argc, char *argv[]) 
{ 
    int rank, omp_rank, mpisupport; 
 
    MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpisupport); 
    MPI_Comm_rank(MPI_COMM_WORLD, &rank); 
 
#pragma omp parallel private(omp_rank) 
{ 
    omp_rank = omp_get_thread_num(); 
    printf("Hello. This is process %d, thread %d\n", 
          rank, omp_rank); 
} 
    MPI_Finalize(); 
} 
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