
Lecture 12: Introduction to
OpenMP (Part 1)

1

What is OpenMP
Open specifications for Multi Processing
Long version: Open specifications for MultiProcessing via
collaborative work between interested parties from the hardware
and software industry, government and academia.
• An Application Program Interface (API) that is used to explicitly

direct multi-threaded, shared memory parallelism.
• API components:

– Compiler directives
– Runtime library routines
– Environment variables

• Portability
– API is specified for C/C++ and Fortran
– Implementations on almost all platforms including Unix/Linux and

Windows

• Standardization
– Jointly defined and endorsed by major computer hardware and

software vendors
– Possibility to become ANSI standard 2

Brief History of OpenMP

• In 1991, Parallel Computing Forum (PCF) group
invented a set of directives for specifying loop
parallelism in Fortran programs.

• X3H5, an ANSI subcommittee developed an ANSI
standard based on PCF.

• In 1997, the first version of OpenMP for Fortran was
defined by OpenMP Architecture Review Board.

• Binding for C/C++ was introduced later.
• Version 3.1 is available since 2011.

3

4

Thread

• A process is an instance of a computer program that
is being executed. It contains the program code and
its current activity.

• A thread of execution is the smallest unit of
processing that can be scheduled by an operating
system.

• Differences between threads and processes:
– A thread is contained inside a process. Multiple threads

can exist within the same process and share resources
such as memory. The threads of a process share the
latter’s instructions (code) and its context (values that
its variables reference at any given moment).

– Different processes do not share these resources.
http://en.wikipedia.org/wiki/Process_(computing)

 5

http://en.wikipedia.org/wiki/Process_(computing)

Process

• A process contains all the information needed to execute
the program
– Process ID
– Program code
– Data on run time stack
– Global data
– Data on heap
Each process has its own address space.

• In multitasking, processes are given time slices in a
round robin fashion.
– If computer resources are assigned to another process, the

status of the present process has to be saved, in order that
the execution of the suspended process can be resumed at a
later time.

6

Threads

• Thread model is an extension of the process model.
• Each process consists of multiple independent

instruction streams (or threads) that are assigned
computer resources by some scheduling procedure.

• Threads of a process share the address space of this
process.
– Global variables and all dynamically allocated data objects

are accessible by all threads of a process

• Each thread has its own run-time stack, register,
program counter.

• Threads can communicate by reading/writing
variables in the common address space.

7

OpenMP Programming Model

• Shared memory, thread-based parallelism
– OpenMP is based on the existence of multiple threads in

the shared memory programming paradigm.

– A shared memory process consists of multiple threads.

• Explicit Parallelism
– Programmer has full control over parallelization. OpenMP

is not an automatic parallel programming model.

• Compiler directive based
– Most OpenMP parallelism is specified through the use of

compiler directives which are embedded in the source
code.

 8

OpenMP is not
– Necessarily implemented identically by all vendors

– Meant for distributed-memory parallel systems (it is designed
for shared address spaced machines)

– Guaranteed to make the most efficient use of shared memory

– Required to check for data dependencies, data conflicts, race
conditions, or deadlocks

– Required to check for code sequences

– Meant to cover compiler-generated automatic parallelization
and directives to the compiler to assist such parallelization

– Designed to guarantee that input or output to the same file is
synchronous when executed in parallel.

9

Fork-Join Parallelism
• OpenMP program begin as a single process: the master thread. The

master thread executes sequentially until the first parallel region
construct is encountered.

• When a parallel region is encountered, master thread
– Create a group of threads by FORK.
– Becomes the master of this group of threads, and is assigned the thread id 0

within the group.

• The statement in the program that are enclosed by the parallel region
construct are then executed in parallel among these threads.

• JOIN: When the threads complete executing the statement in the parallel
region construct, they synchronize and terminate, leaving only the
master thread.

10 Master thread is shown in red.

I/O
• OpenMP does not specify parallel I/O.
• It is up to the programmer to ensure that I/O is

conducted correctly within the context of a multi-
threaded program.

Memory Model
• Threads can “cache” their data and are not required

to maintain exact consistency with real memory all
of the time.

• When it is critical that all threads view a shared
variable identically, the programmer is responsible
for insuring that the variable is updated by all
threads as needed.

11

OpenMP Code Structure
#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 #pragma omp parallel
 {
 int ID = omp_get_thread_num();
 printf("Hello (%d)\n", ID);
 printf(" world (%d)\n", ID);
 }
}

12

Set # of threads for OpenMP
In csh
setenv OMP_NUM_THREAD 8

Compile: g++ -fopenmp hello.c

Run: ./a.out

See: http://wiki.crc.nd.edu/wiki/index.php/OpenMP

http://wiki.crc.nd.edu/wiki/index.php/OpenMP

• “Pragma”: stands for “pragmatic information.
A pragma is a way to communicate the
information to the compiler.

• The information is non-essential in the sense
that the compiler may ignore the information
and still produce correct object program.

13

OpenMP Core Syntax

#include “omp.h”
int main ()
{
 int var1, var2, var3;
 // Serial code
 . . .
 // Beginning of parallel section.
 // Fork a team of threads. Specify variable scoping
 #pragma omp parallel private(var1, var2) shared(var3)
 {
 // Parallel section executed by all threads
 . . .
 // All threads join master thread and disband
 }

 // Resume serial code . . .
}

14

OpenMP C/C++ Directive Format

OpenMP directive forms

– C/C++ use compiler directives

• Prefix: #pragma omp …

– A directive consists of a directive name followed by
clauses

Example: #pragma omp parallel default (shared) private (var1,
var2)

15

OpenMP Directive Format (2)

General Rules:

• Case sensitive

• Only one directive-name may be specified per
directive

• Each directive applies to at most one succeeding
statement, which must be a structured block.

• Long directive lines can be “continued” on
succeeding lines by escaping the newline
character with a backslash “\” at the end of a
directive line.

16

OpenMP parallel Region Directive

#pragma omp parallel [clause list]
Typical clauses in [clause list]
• Conditional parallelization

– if (scalar expression)
• Determine whether the parallel construct creates threads

• Degree of concurrency
– num_threads (integer expresson)

• number of threads to create

• Date Scoping
– private (variable list)

• Specifies variables local to each thread

– firstprivate (variable list)
• Similar to the private
• Private variables are initialized to variable value before the parallel directive

– shared (variable list)
• Specifies variables that are shared among all the threads

– default (data scoping specifier)
• Default data scoping specifier may be shared or none

17

Example:
#pragma omp parallel if (is_parallel == 1) num_threads(8) shared (var_b)
private (var_a) firstprivate (var_c) default (none)
{
/* structured block */
}

• if (is_parallel == 1) num_threads(8)

– If the value of the variable is_parallel is one, create 8 threads

• shared (var_b)
– Each thread shares a single copy of variable b

• private (var_a) firstprivate (var_c)
– Each thread gets private copies of variable var_a and var_c
– Each private copy of var_c is initialized with the value of var_c in main

thread when the parallel directive is encountered

• default (none)
– Default state of a variable is specified as none (rather than shared)
– Singals error if not all variables are specified as shared or private

 18

Number of Threads

• The number of threads in a parallel region is
determined by the following factors, in order of
precedence:
1. Evaluation of the if clause

2. Setting of the num_threads() clause

3. Use of the omp_set_num_threads() library function

4. Setting of the OMP_NUM_THREAD environment
variable

5. Implementation default – usually the number of cores
on a node

• Threads are numbered from 0 (master thread) to N-1

19

Thread Creation: Parallel Region Example

• Create threads with the parallel construct

#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 int nthreads, tid;
 #pragma omp parallel num_threads(4) private(tid)
 {
 tid = omp_get_thread_num();
 printf("Hello world from (%d)\n", tid);
 if(tid == 0)
 {
 nthreads = omp_get_num_threads();
 printf(“number of threads = %d\n”, nthreads);
 }
 } // all threads join master thread and terminates
}

 20

Clause to request
threads

Each thread executes a
copy of the code

within the structured
block

Thread Creation: Parallel Region Example
#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

int main(){

 int nthreads, A[100] , tid;

 // fork a group of threads with each thread having a private tid variable

 omp_set_num_threads(4);

 #pragma omp parallel private (tid)

 {

 tid = omp_get_thread_num();

 foo(tid, A);

 } // all threads join master thread and terminates

}

21

A single copy of A[] is shared
between all threads

SPMD vs. Work-Sharing

• A parallel construct by itself creates a “single
program multiple data” program, i.e., each thread
executes the same code.

• Work-sharing is to split up pathways through the
code between threads within a team.

– Loop construct

– Sections/section constructs

– Single construct

– …

22

Work-Sharing Construct

• Within the scope of a parallel directive, work-sharing
directives allow concurrency between iterations or
tasks

• Work-sharing constructs do not create new threads

• A work-sharing construct must be enclosed
dynamically within a parallel region in order for the
directive to execute in parallel.

• Work-sharing constructs must be encountered by all
members of a team or none at all.

• Two directives to be studied
– Do/for: concurrent loop iterations

– sections: concurrent tasks 23

Work-Sharing Do/for Directive

Do/for

• Shares iterations of a loop across the group

• Represents a “data parallelism”.

for directive partitions parallel iterations across
threads

Do is the analogous directive in Fortran

Usage:
#pragma omp for [clause list]

 /* for loop */

• Implicit barrier at end of for loop

24

Example Using for

25

#include <stdlib.h>
#include <stdio.h>
#include "omp.h"

int main()
{
 int nthreads, tid;

 omp_set_num_threads(3);
 #pragma omp parallel private(tid)
 {
 int i;
 tid = omp_get_thread_num();
 printf("Hello world from (%d)\n", tid);
 #pragma omp for
 for(i = 0; i <=4; i++)
 {
 printf(“Iteration %d by %d\n”, i, tid);
 }
 } // all threads join master thread and terminates
}

Another Example Using for

26

• Sequential code to add two vectors
for(i=0;i<N;i++) {c[i] = b[i] + a[i];}

• OpenMP implementation 1 (not desired)
#pragma omp parallel
{
 int id, i, Nthrds, istart, iend;
 id = omp_get_thread_num();
 Nthrds = omp_get_num_threads();
 istart = id*N/Nthrds;
 iend = (id+1)*N/Nthrds;
 if(id == Nthrds-1) iend = N;
 for(I = istart; i<iend; i++) {c[i] = b[i]+a[i];}
}

• A worksharing for construct to add vectors
#pragma omp parallel
{
 #pragma omp for
 {
 for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
 }
}

or

#pragma omp parallel for
{
 for(i=0; i<N; i++) {c[i]=b[i]+a[i];}
}

27

Execution for loop in parallel

int main()
{
 int b[3];
 char *cptr;
 int i;

 cptr = malloc(1);
 #pragma omp parallel for
 for(i=0; i<3; i++)
 b[i]=i;
}

28

Heap

Stack
b[0] b[1] b[2] cptr i

Master thread (0)
i

Thread (1)

i

Every thread has its own execution context: an address space containing all of the variables the thread
may access. The execution context includes static variables, dynamically allocated data structures in the
heap, and variables on the run-time stack. The execution context includes its own additional run-time
stack. A shared variable has the same address in the execution context of every thread. All threads
have access to shared variables. A private variable has a different address in the execution context of
every thread.

Example. During parallel execution of the for loop, index “i” is a private variable, while “b”, “cptr” and
heap data are shared.

• Canonical shape of “for” loop

for(index = start; index {<, 𝑜𝑟 ≤ 𝑜𝑟 ≥ 𝑜𝑟 >} end;

𝑖𝑛𝑑𝑒𝑥 + +
𝑖𝑛𝑑𝑒𝑥 − −

𝑖𝑛𝑑𝑒𝑥 += 𝑖𝑛𝑐
𝑖𝑛𝑑𝑒𝑥 −= 𝑖𝑛𝑐

)

– “for” loop must not contain statements that allow the loop to be exited
prematurely.
• Examples include: “break” statement, “return” statement, “exit” statement and “goto”

statement.

– The “continue” statement is allowed.

29

C/C++ for Directive Syntax

#pragma omp for [clause list]

 schedule (type [,chunk])
 ordered
 private (variable list)
 firstprivate (variable list)
 lastprivate (variable list)
 shared (variable list)
 reduction (operator: variable list)
 collapse (n)
 nowait
/* for_loop */

30

Private Clause

• Direct the compiler to make one or more variables private.

• We need every thread to work through N values of “j” for each
iteration of the “i” loop.

• If we do not make “j” private, all of threads try to initialize and
increment the same shared variable “j” – meaning the data race.

• The private copies of variable “j” will be accessible only inside
the for loop. The values are undefined on loop entry and exit.

31

#pragma omp parallel for private (j)
 for(i = 0; i < M; i++)
 for(j=0; j < N; j++)
 a[i][j] = min(a[i][j], a[i][k]+tmp[j]);

firstprivate Clause

• We want each thread’s private copy of array element x[0] to inherit
the value that the shared variable was assigned in the master
thread.

32

x[0] = 1.0;
#pragma omp parallel for private (j) firstprivate (x)
for(i=0; i < n; i++){
 for(j=1; j<4; j++)
 x[j]=g(i, x[j-1]);
 answer[i]=x[1]-x[3];
}

x[0] = 1.0;
for(i=0; i < n; i++){
 for(j=1; j<4; j++)
 x[j]=g(i, x[j-1]);
 answer[i]=x[1]-x[3];
}

lastprivate Clause
• Sequentially last iteration: the iteration that occurs last when the loop is executed

sequentially.
• The lastprivate clause directs the compiler to generate code at the end of the parallel for

loop that copies back to the master thread’s copy of a variable the private copy of the
variable from the thread that executed the sequentially last iteration of the loop.

33

for(i=0; i < n; i++){
 x[0] = 1.0;
 for(j=1; j<4; j++)
 x[j]= x[j-1]*(i+1);
 answer[i]=x[0]+x[1]+x[2]+x[3];
}
n_cubed = x[3];

• In the sequentially last iteration of the loop, x[3] gets assigned the value 𝑛3.
• To have this value accessible outside the parallel for loop, we declare x to be a lastprivate

variable. #pragma omp parallel for private(j) lastprivate(x)
for(i=0; i < n; i++){
 x[0] = 1.0;
 for(j=1; j<4; j++)
 x[j]= x[j-1]*(i+1);
 answer[i]=x[0]+x[1]+x[2]+x[3];
}
n_cubed = x[3];

Reduction

• How to combine values into a single accumulation
variable (avg)?

34

• Serial code
{
 double avg = 0.0, a[MAX];
 int i;
 …
 for(i =0; i<MAX; i++) {avg += a[i];}
 avg /= MAX;
}

Reduction Clause

• Reduction (operator: variable list): specifies how
to combine local copies of a variable in different
threads into a single copy at the master when
threads exit. Variables in variable list are
implicitly private to threads.
– Operators: +, *, -, &, |, ^, &&, and ||

– Usage
#pragma omp parallel reduction(+: sums) num_threads(4)

{

 /* compute local sums in each thread

}

 /* sums here contains sum of all local instances of sum */

 35

Reduction in OpenMP for

• Inside a parallel or a work-sharing construct:
– A local copy of each list variable is made and initialized

depending on operator (e.g. 0 for “+”)
– Compiler finds standard reduction expressions containing

operator and uses it to update the local copy.
– Local copies are reduced into a single value and combined

with the original global value when returns to the master
thread.

36

{
 double avg = 0.0, a[MAX];
 int i;
 …
 #pragma omp parallel for reduction (+:avg)
 for(i =0; i<MAX; i++) {avg += a[i];}
 avg /= MAX;
}

Reduction Operators/Initial-Values

Operator Initial Value

+ 0

* 1

- 0

& ~0

| 0

^ 0

&& 1

|| 0

37

C/C++:

Monte Carlo to estimate PI

38

#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

int main(int argc, char *argv[])

{

 long int i, count; // count points inside unit circle

 long int samples; // number of samples

 double pi;

 unsigned short xi[3] = {1, 5, 177}; // random number seed

 double x, y;

 samples = atoi(argv[1]);

 count = 0;

 for(i = 0; i < samples; i++)

 {

 x = erand48(xi);

 y = erand48(xi);

 if(x*x + y*y <= 1.0) count++;

 }

 pi = 4.0*count/samples;

 printf("Estimate of pi: %7.5f\n", pi);

}

OpenMP version of Monte Carlo to Estimate PI

39

#include <stdio.h>

#include <stdlib.h>

#include “omp.h”

main(int argc, char *argv[])

{

 int i, count; /* points inside the unit quarter circle */

 unsigned short xi[3]; /* random number seed */

 int samples; /* samples Number of points to generate */

 double x,y; /* Coordinates of points */

 double pi; /* Estimate of pi */

 samples = atoi(argv[1]);

 #pragma omp parallel

 {

 xi[0] = 1; /* These statements set up the random seed */

 xi[1] = 1;

 xi[2] = omp_get_thread_num();

 count = 0;

 printf("I am thread %d\n", xi[2]);

 #pragma omp for firstprivate(xi) private(x,y) reduction(+:count)

 for (i = 0; i < samples; i++)

 {

 x = erand48(xi);

 y = erand48(xi);

 if (x*x + y*y <= 1.0) count++;

 }

 }

 pi = 4.0 * (double)count / (double)samples;

 printf("Count = %d, Samples = %d, Estimate of pi: %7.5f\n", count, samples, pi);

}

• A local copy of “count”
for each thread

• All local copies of “count”
added together and
stored in master thread

• Each thread needs
different random number
seeds.

Matrix-Vector Multiplication

40

#pragma omp parallel default (none) \
shared (a, b, c, m,n) private (i,j,sum)
num_threads(4)
for(i=0; i < m; i++){
 sum = 0.0;
 for(j=0; j < n; j++)
 sum += b[i][j]*c[j];
 a[i] =sum;
}

Thread 0, Thread 1, …etc…

schedule clause
• Describe how iterations of the loop are divided among the threads in the

group. The default schedule is implementation dependent.
• Usage: schedule (scheduling_class[, parameter]).

– static
Loop iterations are divided into pieces of size chunk and then statically assigned to threads.
If chunk is not specified, the iteration are evenly (if possible) divided contiguously among
the threads.

– dynamic
Loop iterations are divided into pieces of size chunk and then dynamically assigned to
threads. When a thread finishes one chunk, it is dynamically assigned another. The default
chunk size is 1.

– guided
For a chunk size of 1, the size of each chunk is proportional to the number of unassigned
iterations divided by the number of threads, decreasing to 1. For a chunk size with value
𝑘(𝑘 > 1), the size of each chunk is determined in the same way with the restriction that
the chunks do not contain fewer than 𝑘 iterations (except for the last chunk to be assigned,
which may have fewer than 𝑘 iterations). The default chunk size is 1.

– runtime
The scheduling decision is deferred until runtime by the environment variable
OMP_SCHEDULE. It is illegal to specify a chunk size for this clause

– auto
The scheduling decision is made by the compiler and/or runtime system.

41

• Static scheduling

• 16 iterations, 4 threads:

42

Static Scheduling

// static scheduling of matrix multiplication loops
#pragma omp parallel default (private) \
shared (a, b, c, dim) num_threads(4)
#pragma omp for schedule(static)
for(i=0; i < dim; i++)
{
 for(j=0; j < dim; j++)
 {
 c[i][j] = 0.0;
 for(k=0; j < dim; k++)
 c[i][j] += a[i][k]*b[k][j];
 }
}

43

Static schedule maps iterations to threads
at compile time

Dynamic Scheduling
• The time needed to execute different loop iterations may vary considerably.

44

for(i=0; i<n; i++)
{
 for(j=i; j < n; j++)
 a[i][j] = rand();
}

• The first iteration of the outermost loop (i=0) requires n times more work
than the last iteration (i=n-1). Inverting the two loops will not remedy the
imbalance. #pragma omp parallel default (private) \

shared (a, n) private(j) num_threads(4)
#pragma omp for schedule(dynamic)
for(i=0; i<n; i++)
{
 for(j=i; j < n; j++)
 a[i][j] = rand();
}

Environment Variables

• OMP_SCHEDULE “schedule[, chunk_size]”
– Control how “omp for schedule (RUNTIME)” loop

iterations are scheduled.

• OMP_NUM_THREADS integer
– Set the default number of threads to use

• OMP_DYNAMIC TRUE|FALSE
– Can the program use a different number of threads in

each parallel region?

• OMP_NESTED TRUE |FALSE
– Will nested parallel regions create new teams of

threads, or will they be serialized?

45

By default, worksharing for loops end with an implicit
barrier

• nowait: If specified, threads do not synchronize at the
end of the parallel loop

• ordered: specifies that the iteration of the loop must
be executed as they would be in serial program.

• collapse: specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause. The
sequential execution of the iteration in all associated
loops determines the order of the iterations in the
collapsed iteration space.

46

Avoiding Synchronization with nowait

#pragma omp parallel shared(A,B,C) private(id)
{
 id = omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i = 0; i < N; i++) { C[i] = big_calc3(i,A); }
 #pragma omp for nowait
 for(i = 0; i < N; i++) {B[i] = big_calc2(C,i); }
 A[id] = big_calc4(id);
}

47

Barrier: each threads waits till all threads arrive.

No implicit
barrier due to
nowait. Any

thread can begin
big_calc4()

immediately
without waiting

for other threads
to finish the loop

Implicit barrier
at the end of the

parallel region

• By default: worksharing for loops end with an
implicit barrier

• nowait clause:

– Modifies a for directive

– Avoids implicit barrier at end of for

48

Loop Collapse

• Allows parallelization of perfectly nested loops without
using nested parallelism

• Compiler forms a single loop and then parallelizes this

49

{
 …
 #pragma omp parallel for collapse (2)
 for(i=0;i< N; i++)
 {
 for(j=0;j< M; j++)
 {
 foo(A,i,j);
 }
 }
}

For Directive Restrictions

For the “for loop” that follows the for directive:

• It must not have a break statement

• The loop control variable must be an integer

• The initialization expression of the “for loop” must
be an integer assignment.

• The logical expression must be one of <, ≤, >, ≥

• The increment expression must have integer
increments or decrements only.

50

Lecture 12: Introduction to
OpenMP (Part 2)

51

Performance Issues I

• C/C++ stores matrices in row-major fashion.
• Loop interchanges may increase cache locality

52

{
 …
 #pragma omp parallel for
 for(i=0;i< N; i++)
 {
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

• Parallelize outer-most loop

Performance Issues II

53

{
 …
 for(i=0;i< N; i++)
 {
 #pragma omp parallel for
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

• Move synchronization points outwards. The inner loop is
parallelized.

• In each iteration step of the outer loop, a parallel region is
created. This causes parallelization overhead.

Performance Issues III

54

{
 …

 #pragma omp parallel for if(M > 800)
 for(j=0;j< M; j++)
 {
 aa[j] =alpha*bb[j] + cc[j];
 }
}

• Avoid parallel overhead at low iteration counts

C++: Random Access Iterators Loops

• Parallelization of random access iterator loops is supported

55

void iterator_example(){
 std::vector vec(23);
 std::vector::iterator it;

 #pragma omp parallel for default(none) shared(vec)
 for(it=vec.begin(); it< vec.end(); it++)
 {
 // do work with it //
 }
}

Conditional Compilation

• Keep sequential and parallel programs as a single source
code

56

#if def _OPENMP
#include “omp.h”
#endif

Main()
{
 #ifdef _OPENMP
 omp_set_num_threads(3);
#endif
 for(i=0;i< N; i++)
 {
 #pragma omp parallel for
 for(j=0;j< M; j++)
 {
 A[i][j] =B[i][j] + C[i][j];
 }
 }
}

Be Careful with Data Dependences

• Whenever a statement in a program reads or writes a memory
location and another statement reads or writes the same
memory location, and at least one of the two statements
writes the location, then there is a data dependence on that
memory location between the two statements. The loop may
not be executed in parallel.

57

for(i=1;i< N; i++)
{
 a[i] = a[i] + a[i-1];
}

a[i] is written in loop iteration i and read in loop iteration i+1.
This loop can not be executed in parallel. The results may not
be correct.

Classification of Data Dependences

• A data dependence is called loop-carried if the two
statements involved in the dependence occur in
different iterations of the loop.

• Let the statement executed earlier in the sequential
execution be loop S1 and let the later statement be
S2.
– Flow dependence: the memory location is written in S1

and read in S2. S1 executes before S2 to produce the value
that is consumed in S2.

– Anti-dependence: The memory location is read in S1 and
written in S2.

– Output dependence: The memory location is written in
both statements S1 and S2.

58

• Anti-dependence

59

for(i=0;i< N-1; i++)
{
 x = b[i] + c[i];
 a[i] = a[i+1] + x;
}

• Parallel version with dependence removed
#pragma omp parallel for shared (a, a2)
for(i=0; i < N-1; i++)
 a2[i] = a[i+1];
#pragma omp parallel for shared (a, a2) lastprivate(x)
for(i=0;i< N-1; i++)
{
 x = b[i] + c[i];
 a[i] = a2[i] + x;
}

Poor performance, it requires
m-1 fork/join steps.

60

for(i=1;i< m; i++)
 for(j=0;j<n;j++)
{
 a[i][j] = 2.0*a[i-1][j];
}

for(i=1;i< m; i++)
 #pragma omp parallel for
 for(j=0;j<n;j++)
{
 a[i][j] = 2.0*a[i-1][j];
}

#pragma omp parallel for private (i)
for(j=0;j< n; j++)
 for(i=1;i<m;i++)
{
 a[i][j] = 2.0*a[i-1][j];
}

• Invert loop to yield better
performance(?).

• With this inverting, only a single
fork/join step is needed. The data
dependences have not changed.

• However, this change affect the
cache hit rate.

• Flow dependence is in general difficult to be
removed.

61

X = 0.0;
for(i=0;i< N; i++)
{
 X = X + a[i];
}

X = 0.0;
#pragma omp parallel for reduction(+:x)
for(i=0;i< N; i++)
{
 x = x + a[i];
}

• Elimination of induction variables.

62

idx = N/2+1; isum = 0; pow2 = 1;
for(i=0;i< N/2; i++)
{
 a[i] = a[i] + a[idx];
 b[i] = isum;
 c[i] = pow2;
 idx++; isum += i; pow2 *=2;
}

#pragma omp parallel for shared (a,b)
for(i=0;i< N/2; i++)
{
 a[i] = a[i] + a[i+N/2];
 b[i] = i*(i-1)/2;
 c[i] = pow(2,i);
}

• Parallel version

• Remove flow dependence using loop skewing

63

for(i=1;i< N; i++)
{
 b[i] = b[i] + a[i-1];
 a[i] = a[i]+c[i];
}

• Parallel version
b[1]=b[1]+a[0];
#pragma omp parallel for shared (a,b,c)
for(i=1;i< N-1; i++)
{
 a[i] = a[i] + c[i];
 b[i+1] = b[i+1]+a[i];
}
a[N-1] = a[N-1]+c[N-1];

• A flow dependence that can in general not be
remedied is a recurrence:

64

for(i=1;i< N; i++)
{
 z[i] = z[i] + l[i]*z[i-1];
}

Recurrence: LU Factorization of Tridiagonal Matrix

65

• Tx=LUx=Lz=b, z=Ux.
• Proceed as follows:
• Lz=b, Ux=z
• Lz=b is solved by:

66

z[0] = b[0];
for(i=1;i< n; i++)
{
 z[i] = b[i] - l[i]*z[i-1];
}

• Cyclic reduction probably is the best method to solve tridiagonal systems
• Z. Liu, B. Chapman, Y. Wen and L. Huang. Analyses for the Translation of OpenMP

Codes into SPMD Style with Array Privatization. OpenMP shared memory parallel
programming: International Workshop on OpenMP

• C. Addison, Y. Ren and M. van Waveren. OpenMP Issues Arising in the
Development of Parallel BLAS and LAPACK libraries. J. Sci. Programming –
OpenMP, 11(2), 2003.

• S.F. McGinn and R.E. Shaw. Parallel Gaussian Elimination Using OpenMP and MPI

V=alpha();
W=beta();
X=gamma(v,w);
Y=delta();
printf(“%g\n”, epsilon(x,y));

67

alpha beta

gamma

epsilon

delta

Data dependence diagram

Functions alpha, beta, delta may be executed
in parallel

Worksharing sections Directive

sections directive enables specification of task parallelism
– Sections construct gives a different structured block to each thread.

#pragma omp sections [clause list]
 private (list)
 firstprivate (list)
 lastprivate (list)
 reduction (operator: list)
 nowait
{
#pragma omp section
 structured_block
#pragma omp section
 structured_block
}

68

#include “omp.h”
#define N 1000
int main(){
 int i;
 double a[N], b[N], c[N], d[N];
 for(i=0; i<N; i++){
 a[i] = i*2.0;
 b[i] = i + a[i]*22.5;
 }
 #pragma omp parallel shared(a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for(i=0; i<N;i++) c[i] = a[i]+b[i];
 #pragma omp section
 for(i=0; i<N;i++) d[i] = a[i]*b[i];
 }
 }
}

69

Two tasks are
computed

concurrently

By default, there is a barrier at the end of the
sections. Use the “nowait” clause to turn of

the barrier.

70

#include “omp.h”

#pragma omp parallel
{
#pragma omp sections
 {
 #pragma omp section
 v=alpha();
 #pragma omp section
 w=beta();
 }
#pragma omp sections
 {
 #pragma omp section
 x=gamma(v,w);
 #pragma omp section
 y=delta();
 }
 printf(“%g\n”, epsilon(x,y));
}

Synchronization I

• Threads communicate through shared variables.
Uncoordinated access of these variables can lead to
undesired effects.
– E.g. two threads update (write) a shared variable in the

same step of execution, the result is dependent on the
way this variable is accessed. This is called a race
condition.

• To prevent race condition, the access to shared
variables must be synchronized.

• Synchronization can be time consuming.
• The barrier directive is set to synchronize all threads.

All threads wait at the barrier until all of them have
arrived.

71

Synchronization II

• Synchronization imposes order constraints and is
used to protect access to shared data

• High level synchronization:

– critical

– atomic

– barrier

– ordered

• Low level synchronization

– flush

– locks (both simple and nested)
72

Synchronization: critical

• Mutual exclusion: only one thread at a time can enter a critical region.
{
 double res;
 #pragma omp parallel
 {
 double B;
 int i, id, nthrds;
 id = omp_get_thread_num();
 nthrds = omp_get_num_threads();
 for(i=id; i<niters; i+=nthrds){
 B = some_work(i);
 #pragma omp critical
 consume(B,res);
 }
 }
}

73

Threads wait here: only one thread
at a time calls consume(). So this is
a piece of sequential code inside

the for loop.

Code Fragment for Manager/Worker Model
int main(int argc, char argv[])
{
 struct job_struct job_ptr;
 struct task_struct *task_ptr;
 …
 task_ptr = get_next_task(&job_ptr);
 while(task_ptr != NULL){
 complete_task(task_ptr);
 task_ptr = get_next_task(&job_ptr);
 }
 …
}

struct task_struct *get_next_task(struct job_struct *job_ptr)
{
 struct task_struct *answer;
 if(job_ptr == NULL) answer = NULL;
 else
 {
 answer = job_ptr->task;
 job_ptr = job_ptr->next;
 }
 return answer;
}

74

task next task next task next

Job_ptr

• Two threads complete the work

75

task next task next task next

Job_ptr Shared variables

task_ptr

Master thread

task_ptr

 Thread 1

76

int main(int argc, char argv[])
{
 struct job_struct job_ptr;
 struct task_struct *task_ptr;
 …
#pragma omp parallel private (task_ptr)
 {
 task_ptr = get_next_task(&job_ptr);
 while(task_ptr != NULL){
 complete_task(task_ptr);
 task_ptr = get_next_task(&job_ptr);
 }
 }
 …
}

struct task_struct *get_next_task(struct job_struct *job_ptr)
{
 struct task_struct *answer;
#pragma omp critical
 {
 if(job_ptr == NULL) answer = NULL;
 else
 {
 answer = job_ptr->task;
 job_ptr = job_ptr->next;
 }
 }
 return answer;
}

The execution of the
code block after the
parallel program is
replicated among the
threads

Ensure function
get_next_task()
executes atomically.

77

{
 …
 #pragma omp parallel
 {
 #pragma omp for nowait shared(best_cost)
 for(i=0; i<N; i++){
 int my_cost;
 my_cost = estimate(i);
 #pragma omp critical
 {
 if(best_cost < my_cost)
 best_cost = my_cost;
 }
 }
 }
}

78

Only one thread at a time
executes if() statement. This

ensures mutual exclusion when
accessing shared data.

Without critical, this will set up
a race condition, in which the

computation exhibits
nondeterministic behavior

when performed by multiple
threads accessing a shared

variable

Synchronization: atomic

• atomic provides mutual exclusion but only applies to the
load/update of a memory location.

• This is a lightweight, special form of a critical section.
• It is applied only to the (single) assignment statement that

immediately follows it.

79

{
 …
 #pragma omp parallel
 {
 double tmp, B;
 ….
 #pragma omp atomic
 {
 X+=tmp;
 }
 }
}

Atomic only protects the update of X.

“ic” is a counter. The atomic construct ensures that no updates
are lost when multiple threads are updating a counter value.

80

• Atomic construct may only be used together with an expression
statement with one of operations: +, *, -, /, &, ^, |, <<, >>.

81

• The atomic construct does not prevent multiple threads
from executing the function bigfunc() at the same time.

Synchronization: barrier

Suppose each of the following two loops are run in parallel
over i, this may give a wrong answer.

82

for(i= 0; i<N; i++)
 a[i] = b[i] + c[i];
for(i= 0; i<N; i++)
 d[i] = a[i] + b[i];

There could be a data race in a[].

83

for(i= 0; i<N; i++)

 a[i] = b[i] + c[i];

for(i= 0; i<N; i++)

 d[i] = a[i] + b[i];

wait

barrier

To avoid race condition:
• NEED: All threads wait at the barrier point and only continue

when all threads have reached the barrier point.
Barrier syntax:
• #pragma omp barrier

Synchronization: barrier

barrier: each threads waits until all threads arrive

84

#pragma omp parallel shared (A,B,C) private (id)
{
 id=omp_get_thread_num();
 A[id] = big_calc1(id);
 #pragma omp barrier
 #pragma omp for
 for(i=0; i<N;i++){C[i]=big_calc3(i,A);}
 #pragma omp for nowait
 for(i=0;i<N;i++) {B[i]=big_calc2(i,C);}
 A[id]=big_calc4(id);
}

Implicit barrier at
the end of for

construct

No implicit barrier
due to nowait

Implicit barrier at the end of
a parallel region

When to Use Barriers

• If data is updated asynchronously and data
integrity is at risk

• Examples:

– Between parts in the code that read and write the
same section of memory

– After one timestep/iteration in a numerical solver

• Barriers are expensive and also may not scale to a
large number of processors

85

“master” Construct

• The “master” construct defines a structured block that is only executed
by the master thread.

• The other threads skip the “master” construct. No synchronization is
implied.

• It does not have an implied barrier on entry or exit.
• The lack of a barrier may lead to problems.

86

#pragma omp parallel
{
 …
 #pragma omp master
 {
 exchange_information();
 }
 #pragma omp barrier
 …
}

• Master construct to initialize the data

87

“single” Construct

• The “single” construct builds a block of code that is
executed by only one thread (not necessarily the master
thread).

• A barrier is implicitly set at the end of the single block (the
barrier can be removed by the nowait clause)

88

#pragma omp parallel
{
 …
 #pragma omp single
 {
 exchange_information();
 }
 do_other_things();
 …
}

• Single construct to initialize a shared variable

89

Synchronization: ordered

• The “ordered” region executes in the sequential
order

90

#pragma omp parallel private (tmp)
{
 …
 #pragma omp for ordered reduction(+:res)
 for(i=0;i<N;i++)
 {
 tmp = compute(i);
 #pragma ordered
 res += consum(tmp);
 }
 do_other_things();
 …
}

Synchronization: Lock routines

• A lock implies a memory fence of all thread visible variables.
• These routines are used to guarantee that only one thread

accesses a variable at a time to avoid race conditions.
• C/C++ lock variables must have type “omp_lock_t” or

“omp_nest_lock_t”.
• All lock functions require an argument that has a pointer to

omp_lock_t or omp_nest_lock_t.
• Simple Lock routines:

– omp_init_lock(omp_lock_t*); omp_set_lock(omp_lock_t*);
omp_unset_lock(omp_lock_t*);
omp_test_lock(omp_lock_t*); omp_destroy_lock(omp_lock_t*);

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

91

http://gcc.gnu.org/onlinedocs/libgomp/index.html

General Procedure to Use Locks

1. Define the lock variables

2. Initialize the lock via a call to omp_init_lock

3. Set the lock using omp_set_lock or omp_test_lock.
The latter checks whether the lock is actually
available before attempting to set it. It is useful to
achieve asynchronous thread execution.

4. Unset a lock after the work is done via a call to
omp_unset_lock.

5. Remove the lock association via a call to
omp_destroy_lock.

92

Locking Example

• The protected region
contains the update
of a shared variable

• One thread acquires
the lock and
performs the update

• Meanwhile, other
threads perform
some other work

• When the lock is
released again, the
other threads
perform the update

93

94

omp_lock_t lck;
omp_init_lock(&lck);
#pragma omp parallel shared(lck) private (tmp, id)
{
 id = omp_get_thread_num();
 tmp = do_some_work(id);
 omp_set_lock(&lck);
 printf(“%d %d\n”, id, tmp);
 omp_unset_lock(&lck);
}
omp_destroy_lock(&lck);

Thread waits here
for its turn.

Release the lock so
that the next thread

gets a turn

Dissociate the given lock
variable from any locks.

Initialize a lock
associated with lock

variables “lck” for
use in subsequent

calls.

Runtime Library Routines

• Routines for modifying/checking number of threads
– omp_set_num_threads(int n);
– int omp_get_num_threads(void);
– int omp_get_thread_num(void);
– int omp_get_max_threads(void);

• Test whether in active parallel region
– int omp_in_parallel(void);

• Allow system to dynamically vary the number of threads from one
parallel construct to another
– omp_set_dynamic(int set)

• set = true: enables dynamic adjustment of team sizes
• set = false: disable dynamic adjustment

– int omp_get_dynamic(void)

• Get number of processors in the system
– int omp_num_procs(void); returns the number of processors online

http://gcc.gnu.org/onlinedocs/libgomp/index.html#Top

95

http://gcc.gnu.org/onlinedocs/libgomp/index.html
http://gcc.gnu.org/onlinedocs/libgomp/index.html

Default Data Storage Attributes

• A shared variable has a single storage location in memory for the
whole duration of the parallel construct. All threads that
reference such a variable accesses the same memory. Thus,
reading/writing a shared variable provides an easy mechanism for
communicating between threads.
– In C/C++, by default, all program variables except the loop index

become shared variables in a parallel region.
– Global variables are shared among threads
– C: File scope variables, static variables, dynamically allocated

memory (by malloc(), or by new).

• A private variable has multiple storage locations, one within the
execution context of each thread.
– Not shared variables

• Stack variables in functions called from parallel regions are private.
• Automatic variables within a statement block are private.

– This holds for pointer as well. Therefore, do not assign a private
pointer the address of a private variable of another thread. The
result is not defined.

96

97

/** main file **/
#include <stdio.h>
#include <stdlib.h>

double A[100];
int main(){
 int index[50];
 #pragma omp parallel
 work(index);
 printf(“%d\n”, index[0]);
}

/** file 1 **/
#include <stdio.h>
#include <stdlib.h>

extern double A[100];
void work(int *index){
 double temp[50];
 static int count;
}

• Variables “A”, “index” and “count” are shared by all threads.
• Variable “temp” is local (or private) to each thread.

Changing Data Storage Attributes

• Clauses for changing storage attributes
– “shared”, “private”, “firstprivate”

• The final value of a private inside a parallel “for” loop can
be transmitted to the shared variable outside the loop
with:
– “lastprivate”

• The default attributes can be overridden with:
– Default(private|shared|none)

• All data clauses listed here apply to the parallel construct
region and worksharing construct region except “shared”,
which only applies to parallel constructs.

98

Private Clause

• “private (variable list)” clause creates a new local copy of variables for
each thread.
– Values of these variables are not initialized on entry of the parallel region.
– Values of the data specified in the private clause can no longer be accessed

after the corresponding region terminates (values are not defined on exit of
the parallel region).

99

/*** wrong implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for private(tmp)
 for (int j=0; j<1000;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

“tmp” is not initialized

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Firstprivate Clause

• firstprivate initializes each private copy with the
corresponding value from the master thread.

100

/*** still wrong implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for firstprivate(tmp)
 for (int j=0; j<1000;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

Each thread get its own
“tmp” with an initial

value of 0.

“tmp” is 0 in version 3.0; unspecified in
version 2.5.

Lastprivate Clause

• Lastprivate clause passes the value of a private variable from the last
iteration to a global variable.
– It is supported on the work-sharing loop and sections constructs.
– It ensures that the last value of a data object listed is accessible after the

corresponding construct has completed execution.
– In case use with a work-shared loop, the object has the value from the

iteration of the loop that would be last in a “sequential” execution.

101

/*** useless implementation ***/
int main(){
 int tmp = 0;
#pragma omp parallel for firstprivate(tmp) lastprivate(tmp)
 for (int j=0; j<5;j++)
 tmp += j;
 printf(“%d\n”, tmp);
}

“tmp” is defined as its value at the “last
sequential” iteration, i.e, j = 5.

Correct Usage of Lastprivate

102

/*** correct usage of lastprivate ***/
int main(){
 int a, j;
#pragma omp parallel for private(j) lastprivate(a)
 for (j=0; j<5;j++)
 {
 a = j + 2;
 printf(“Thread %d has a value of a = %d for j = %d\n”,
 omp_get_thread_num(), a, j);
 }
 printf(“value of a after parallel = %d\n”, a);
}

Tread 0 has a value of a = 2 for j = 0
Tread 2 has a value of a = 4 for j = 2
Tread 1 has a value of a = 3 for j = 1
Tread 3 has a value of a = 5 for j = 3
Tread 4 has a value of a = 6 for j = 4
value of a after parallel = 6

Default Clause

• C/C++ only has default(shared) or default(none)

• Only Fortran supports default(private)

• Default data attribute is default(shared)
– Exception: #pragma omp task

• Default(none): no default attribute for variables
in static extent. Must list storage attribute for
each variable in static extent. Good programming
practice.

103

Lexical (static) and Dynamic Extent I

• Parallel regions enclose an arbitrary block of code,
sometimes including calls to another function.

• The lexical or static extent of a parallel region is the
block of code to which the parallel directive applies.

• The dynamic extent of a parallel region extends the
lexical extent by the code of functions that are called
(directly or indirectly) from within the parallel region.

• The dynamic extent is determined only at runtime.

104

Lexical and Dynamic Extent II

105

int main(){
#pragma omp parallel
 {
 print_thread_id();
 }
}

void print_thread_id()
{
 int id = omp_get_thread_num();
 printf(“Hello world from thread %d\n”, id);
}

Static extent

Dynamic
extent

106

107 R. Hartman-Baker. Using OpenMP

Threadprivate

• Threadprivate makes global data private to a thread
– C/C++: file scope and static variables, static class members
– Each thread gives its own set of global variables, with initial

values undefined.

• Different from private
– With private clause, global variables are masked.
– Threadrpivate preserves global scope within each thread.
– Parallel regions must be executed by the same number of

threads for global data to persist.

• Threadprivate variables can be initialized using copyin
clause or at time of definition.

108

If all of the conditions below hold, and if a
threadprivate object is referenced in two consecutive
(at run time) parallel regions, then threads with the
same thread number in their respective regions
reference the same copy of that variable:

– Neither parallel region is nested inside another parallel
region.

– The number of threads used to execute both parallel
regions is the same.

109

#include <stdio.h>
#include <stdlib.h>
#include "omp.h"

int *pglobal;
#pragma omp threadprivate(pglobal)

int main(){
 …
#pragma omp parallel for private(i,j,sum,TID) shared(n,length,check)
 for (i=0; i<n;i++)
 {
 TID = omp_get_thread_num();
 if((pglobal = (int*) malloc(length[i]*sizeof(int))) != NULL) {
 for(j=sum=0; j < length[i];j++) pglobal[j] = j+1;
 sum = calculate_sum(length[i]);
 printf(“TID %d: value of sum for I = %d is %d\n”, TID,i,sum);
 free(pglobal);
 } else {
 printf(“TID %d: not enough memory : length[%d] = %d\n", TID,i,length[i]);
 }
 }
} 110

Threadprivate directive is
used to give each thread a
private copy of the global

pointer pglobal.

111

/* source of function calculate_sum() */
extern int *pglobal;

int calculate_sum(int length){
 int sum = 0;
 for (j=0; j<length;j++)
 {
 sum += pglobal[j];
 }
 return (sum);
}

• Each thread has its own copy of sum0, updated in a parallel
region that is called several times. The values for sum0
from one execution of the parallel region will be available
when it is next started. 112

Copyin Clause

• Copyin allows to copy the master thread’s
threadprivate variables to corresponding
threadprivate variables of the other threads.

113

int global[100];
#pragma omp threadprivate(global)

int main(){
 for(int i= 0; i<100; i++) global[i] = i+2; // initialize data
#pragma omp parallel copyin(global)
 {
 /// parallel region, each thread gets a copy of global, with initialized value
 }
}

Copyprivate Clause

• Copyprivate clause is supported on the single directive to broadcast values of
privates from one thread of a team to the other threads in the team.
– The typical usage is to have one thread read or initialize private data that is

subsequently used by the other threads as well.
– After the single construct has ended, but before the threads have left the associated

barrier, the values of variables specified in the associated list are copied to the other
threads.

– Do not use copyprivate in combination with the nowait clause.

114

#include “omp.h”
Void input_parameters(int, int); // fetch values of input parameters

int main(){
 int Nsize, choice;
#pragma omp parallel private(Nsize, choice)
 {
 #pragma omp single copyprivate (Nsize, choice)
 input_parameters(Nsize,choice);
 do_work(Nsize, choice);
 }
}

Flush Directive

• OpenMP supports a shared memory model.
– However, processors can have their own “local” high

speed memory, the registers and cache.
– If a thread updates shared data, the new value will first

be saved in register and then stored back to the local
cache.

– The update are thus not necessarily immediately visible
to other threads.

115

Flush Directive

The flush directive is to make a thread’s temporary
view of shared data consistent with the value in
memory.

– #pragma omp flush (list)

– Thread-visible variables are written back to memory
at this point.

– For pointers in the list, note that the pointer itself is
flushed, not the object it points to.

116

Why Task Parallelism?

117

#include “omp.h”
/* traverse elements in the list */

Void traverse_list(List *L){
 Element *e;
#pragma omp parallel private(e)
 {
 for(e = L->first; e != NULL; e = e->next)
 #pragma omp single nowait
 do_work(e);
 }
}

• Poor performance

118

#include “omp.h”
/* traverse elements in the list */

Void traverse_tree(Tree *T){
#pragma omp parallel sections
 {
 #pragma omp section
 if(T->left)
 traverse_tree(T->left);
 #pragma omp section
 if(T->right)
 traverse_tree(T->right);
 }
 process(T);
}

• Improved performance by sections
• Too many parallel regions

• Extra synchronization
• Not flexible

OpenMP 3.0 and Tasks

• What are tasks?
– Tasks are independent units of work
– Threads are assigned to perform the work

of each task.
• Tasks may be deferred
• Tasks may be executed immediately
• The runtime system decides which of the

above

• Why task?
– The basic idea is to set up a task queue:

when a thread encounters a task directive,
it arranges for some thread to execute the
associated block – at some time. The first
thread can continue.

119

OpenMP 3.0 and Tasks

Tasks allow to parallelize irregular problems
– Unbounded loops
– Recursive algorithms
– Manger/work schemes
– …

A task has
– Code to execute
– Data environment (It owns its data)
– Internal control variables
– An assigned thread that executes the code and the data

Two activities: packaging and execution
– Each encountering thread packages a new instance of a task

(code and data)
– Some thread in the team executes the task at some later time

 120

• OpenMP has always had tasks, but they were not
called “task”.
– A thread encountering a parallel construct, e.g., “for”,

packages up a set of implicit tasks, one per thread.

– A team of threads is created.

– Each thread is assigned to one of the tasks.

– Barrier holds master thread till all implicit tasks are
finished.

• OpenMP 3.0 adds a way to create a task explicitly for
the team to execute.

121

Task Directive
#pragma omp task [clauses]
 if(logical expression)
 untied
 shared (list)
 private (list)
 firstprivate (list)
 default(shared | none)
 structured block

• Each encountering thread creates a task

– Package code and data environment
– Can be nested

• Inside parallel regions
• Inside other tasks
• Inside worksharing

• An OpenMP barrier (implicit or explicit):
All tasks created by any thread of the current team are guaranteed to be completed at
barrier exit.

• Task barrier (taskwait):
Encountering thread suspends until all child tasks it has generated are complete.

122

123

/* serial code to compute Fibonacci */
int fib(int n)
{
 int i, j;
 if(n < 2) return n;
 i = fib(n-1);
 j = fib(n-2);
 return (i+j);
}
int main(){
 int n = 8;
 printf(“fib(%d) = %d\n”, n, fib(n);
}

Fibonacci series:
f(1) = 1
f(2) = 1
f(n) = f(n-1) + f(n-2)

/* OpenMP code to compute Fibonacci */

#include <stdlib.h>

#include <stdio.h>

#include "omp.h"

static int fib(int);

int main(){

 int nthreads, tid;

 int n = 8;

 #pragma omp parallel num_threads(4) private(tid)

 {

 #pragma omp single

 {

 tid = omp_get_thread_num();

 printf("Hello world from (%d)\n", tid);

 printf("Fib(%d) = %d by %d\n", n, fib(n), tid);

 }

 } // all threads join master thread and terminates

}

Static int fib(int n){

 int i, j, id;

 if(n < 2)

 return n;

 #pragma omp task shared (i) private (id)

 {

 i = fib(n-1);

 }

 #pragma omp task shared (j) private (id)

 {

 j = fib(n-2);

 }

 return (i+j);

}

/* Example of pointer chasing using task*/
Void process_list(elem_t *elem){
 #pragma omp parallel
 {
 #pragma omp single
 {
 while (ele != NULL) {
 #pragma omp task
 {
 process(elem);
 }
 elem = elem->next;
 }
 }
 }
}

124

Elem is firstprivate by
default

125

#include “omp.h”
/* traverse elements in the list */

Void traverse_list(List *L){
 Element *e;

 for(e = L->first; e != NULL; e = e->next)
 #pragma omp task
 do_work(e);
 #pragma omp taskwait

}

All tasks guaranteed to be completed here

126

/* Tree traverse using tasks*/

struct node{
 struct node *left, *right;
};
void traverse(struct node *p, int postorder){
 if(p->left != NULL)
 #pragma omp task
 traverse(p->left, postorder);
 if(p->right != NULL)
 #pragma omp task
 traverse(p->right, postorder);
 if(postorder){
 #pragma omp taskwait
 }
 process(p);
}

Task Data Scope

Data Scope Clauses
• shared (list)
• private (list)
• firstprivate (list)
• default (shared | none)
If no clause:

– Implicit rules apply: global variables are shared
Otherwise
– Firstprivate
– Shared attribute is lexically inherited

127

128

int a;
void foo(){
 int b, c;
 #pragma omp parallel shared (c)
 {
 int d;
 # pragma omp task
 {
 int e;
 /*
 a = shared
 b = firstprivate
 c = shared
 d = firstprivate
 e = private
 */
 }
}

Task Synchronization

Barriers (implicit or explicit)

– All tasks created by any thread of the current team
are guaranteed to be completed at barrier exit

Task Barrier

#pragma omp taskwait

– Encountering task suspends until child tasks
complete

129

Task Execution Model

• Tasks are executed by a thread of the team

– Can be executed immediately by the same thread
that creates it

• Parallel regions in 3.0 create tasks

– One implicit task is created for each thread

• Threads can suspend the execution of a task
and start/resume another

130

131

#include “omp.h”
/* traverse elements in the list */
List *L;
…
#pragma omp parallel
 traverse_list(L);

Multiple traversals of
the same list

#include “omp.h”
/* traverse elements in the list */
List *L;
…
#pragma omp parallel
#pragma omp single
 traverse_list(L);

Single traversal:
• One thread enters single

and creates all tasks
• All the team cooperates

executing them

132

#include “omp.h”
/* traverse elements in the list */
List L[N];
…
#pragma omp parallel for
For (i = 0; i < N; i++)
 traverse_list(L[i]);

Multiple traversals:
• Multiple threads create tasks
• All the team cooperates executing them

Hybrid MPI/OpenMP

• Vector mode: MPI is called only outside OpenMP parallel regions.

133

• Task mode: One or more threads in the parallel region are
dedicated to special tasks, like doing communication in the
background.

C+MPI

134

In
te

rc
o
n
n
ec

ti
o
n
 N

et
w

o
rk P P P P

P P P P

P P P P

P P P P In
te

rc
o
n
n
ec

ti
o
n
 N

et
w

o
rk Pt t t t

Pt t t t

Pt t t t

Pt t t t

(a) (b)C+MPI+OpenMP

Basic Hybrid Framework

135 Compileing: mpicc –fopenmp test.cc

Concept 1: ROOT MPI Process Controls
Communication

• Map one MPI process to one SMP node.
• Each MPI process fork a fixed number of threads.
• Communication among MPI process is handled by

main MPI process only.

136

…
#pragma omp master
{
 if(0== my_rank)
 // some MPI call as root process
 else
 // some MPI call as non-root process
} // end of omp master

137

Concept 2: Master OpenMP Thread Controls
Communication

• Each MPI process uses its own OpenMP master thread to
communicate.

• Need to take more care to ensure efficient
communications.

138

…
#pragma omp master
{
 some MPI call as an MPI process
} // end of omp master

139

Concept 3: All OpenMP Threads May Use MPI
Calls

• This is by far the most flexible communication scheme.
• Great care must be taken to account for explicitly which thread of which

MPI process communicates.
• Requires an addressing scheme that denotes which MPI process

participates in communication and which thread of MPI process is
involved, e.g., <my_rank, omp_thread_id>.

• Neither MPI nor OpenMP have built-in facilities for tracking
communication.

• Critical sections may be used for some level of control.

140

…
#pragma omp critical
{
 some MPI call as an MPI process
} // end of omp critical

141

Conjugate Gradient

• Algorithm
– Start with MPI program
– MPI_Send/Recv for communication
– OpenMP “for” directive for matrix-vector multiplication

142

Init.: x(0) =0, d(0) = 0, g(0) = -b;
Step 1. Compute the gradient: g(t) =Ax(t-1)-b
Step 2. Compute the direction vector:
 d(t) = -g(t)+(g(t)^Tg(t))/(g(t-1)^Tg(t-1))d(t-1)
Step 3. Compute the step size:
 s(t) = -(d(t)^Td(t))/(d(t)^TAd(t));
Step 4. Compute the new approximation of x:
 x(t) = x(t-1) + s(t) d(t).

#include <stdlib.h>
#include <stdio.h>
#include “MyMPI.h”
int main(int argc, char *argv[]){
 double **a, *astorage, *b, *x;
 int p, id, m, n, nl;
 MPI_Init(&argc,&argv);
 MPI_Comm_size(MPI_COMM_WORLD, &p);
 MPI_Comm_rank(MPI_COMM_WORLD, &id);
read_block_row_matrix(id,p,argv[1],(void*)(&a),(void*)(&astorage),MPI_DOUBLE,&m,&n);
 nl = read_replicated_vector(id,p,argv[2],(void**)(&b),MPI_DOUBLE);
 if((m!=n) ||(n != nl)) {
 printf(“Incompatible dimensions %d %d time %d\n”, m,n,nl);
 }
 else{
 x = (double*)malloc(n*sizeof(double));
 cg(p,id,a,b,x,n);
 print_replicated_vector(id,p,x,MPI_DOUBLE,n);
 }
 MPI_Finalize();
}

143

#define EPSILON 1.0e-10

Double *piece;

cg(int p, int id, double **a, double *b, double *x, int n){

 int i, it;

 double *d, *g, denom1, denom2, num1, num2, s, *tmpvec;

 d = (double*)malloc(n*sizeof(double));

 g = (double*)malloc(n*sizeof(double));

 tmpvec = (double*)malloc(n*sizeof(double));

 piece = (double*)malloc(BLOCK_SIZE(id,p,n)*sizeof(double));

 for(i=0; i<n; i++){

 d[i] = x[i] = 0.0;

 g[i] = -b[i];

 }

 for(it=0; it<n; it++){

 denom1 = dot_product(g,g,n);

 matrix_vector_product(id,p,n,a,x,g);

 for(i=0;i<n;i++) g[i]-=b[i];

 num1 = dot_product(g,g,n);

 if(num1<EPSILON) break;

 for(i=0;i<n;i++) d[i]=-g[i]+(num1/denom1)*d[i];

 num2 = dot_product(d,g,n);

 matrix_vector_product(id,p,n,a,d,tmpvec);

 denom2=dot_product(d,tmpvec,n);

 s=-num2/denom2;

 for(i=0;i<n;i++) x[i] += s*d[i];

 }

} 144

double dot_product(double *a, double *b, int n)
{
 int i;
 double answer=0.0;
 for(i=0; i<n;i++)
 answer+=a[i]*b[i];
 return answer;
}
double matrix_vector_product(int id, int p, int n, double **a, double *b, double *c){
 int i, j;
 double tmp;
 #pragma omp parallel for private (I,j,tmp)
 for(i=0; i<BLOCK_SIZE(id,p,n);i++){
 tmp=0.0;
 for(j=0;j<n;j++)
 tmp+=a[i][j]*b[j];
 piece[i] = tmp;
 }
 new_replicate_block_vector(id,p,piece,n, c, MPI_DOUBLE);
}
void new_replicate_block_vector(int id, int p, double *piece, int n, double *c, MPI_Datatype dtype)
{
 int *cnt, *disp;
 create_mixed_xfer_arrays(id,p,n,&cnt,&disp);
 MPI_Allgatherv(piece,cnt[id], dtype, c, cnt, disp, dtype, MPI_COMM_WORLD);
}

145

Steady-State Heat Distribution

Solve 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 𝑓 𝑥, 𝑦 , 0 ≤ 𝑥 ≤ 𝑎, 0 ≤ 𝑦 ≤ 𝑏
With 𝑢 𝑥, 0 = 𝐺1 𝑥 , 𝑢 𝑥, 𝑏 = 𝐺2 𝑥 , 0 ≤ 𝑥 ≤ 𝑎

𝑢 0, 𝑦 = 𝐺3 𝑦 , 𝑢 𝑎, 𝑦 = 𝐺4 𝑦 , 0 ≤ 𝑦 ≤ 𝑏

146

• Use row-decomposition.

int find_steady_state(int p, int id, iny my_rows, double **u, double **w)

{

 double diff, global_diff, tdiff; int its;

 MPI_Status status; int i,j;

 its = 0;

 for(;;) {

 if(id>0) MPI_Send(u[1], N, MPI_DOUBLE, id-1,0,MPI_COMM_WORLD);

 if(id < p-1) {

 MPI_Send(u[my_rows-2],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD);

 MPI_Recv(u[my_rows-1],N,MPI_DOUBLE,id+1,0,MPI_COMM_WORLD,&status);

 }

 if(id>0) MPI_Recv(u[0],N,MPI_DOUBLE,id-1,0,MPI_COMM_WORLD,&status);

 diff = 0.0;

#pragma omp parallel private (I,j,tdiff)

 {

 tdiff = 0.0;

 #pragma omp for

 for(i=1;i<my_rows-1;i++)

 for(j=1;j<N-1;j++){

 w[i][j]=(u[i-1][j]+u[i+1][j]+u[i][j-1]+u[i][j+1])/4.0;

 if(fabs(w[i][j]-u[i][j]) >tdiff) tdiff = fabs(w[i][j]-u[i][j]);

 }

 #pragma omp for nowait

 for(i=1;i<my_rows-1;i++)

 for(j=1;j<N-1;j++)

 u[i][j] = w[i][j];

 #pragma omp critical

 if(tdiff > diff) diff = tdiff;

 }

 MPI_Allreduce(&diff,&global_diff,1,MPI_DOUBLE,MPI_MAX,MPI_COMM_WORLD);

 if(global_diff <= EPSILON) break;

 its++;

 }

}
147

OpenMP multithreading in MPI

• MPI-2 specification
– Does not mandate thread support
– Does define what a “thread compliant MPI” should do
– 4 levels of thread support

• MPI_THREAD_SINGLE: There is no OpenMP multithreading in the
program.

• MPI_THREAD_FUNNELED: All of the MPI calls are made by the master
thread.

This will happen if all MPI calls are outside OpenMP parallel regions or are in master
regions.
A thread can determine whether it is the master thread by calling
MPI_Is_thread_main

148

• MPI_THREAD_SERIALIZED: Multiple threads make MPI calls,
but only one at a time.

• MPI_THREAD_MULTIPLE: Any thread may make MPI calls at
any time.

149

• Threaded MPI Initialization

Instead of starting MPI by MPI_Init,

int MPI_Init_thread(int *argc, char ***argv, int
required, int *provided)

required: the desired level of thread support.

provided: the actual level of thread support provided by the
system.

Thread support at levels MPI_THREAD_FUNNELED or higher
allows potential overlap of communication and computation.

http://www.mpi-forum.org/docs/mpi-20-html/node165.htm

150

#include <stdio.h>
#include <stdlib.h>
#include "mpi.h"
#include "omp.h"

int main(int argc, char *argv[])
{
 int rank, omp_rank, mpisupport;

 MPI_Init_thread(&argc, &argv, MPI_THREAD_MULTIPLE, &mpisupport);
 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

#pragma omp parallel private(omp_rank)
{
 omp_rank = omp_get_thread_num();
 printf("Hello. This is process %d, thread %d\n",
 rank, omp_rank);
}
 MPI_Finalize();
}

151

References:
– http://bisqwit.iki.fi/story/howto/openmp/
– http://openmp.org/mp-documents/omp-hands-on-

SC08.pdf
– https://computing.llnl.gov/tutorials/openMP/
– http://www.mosaic.ethz.ch/education/Lectures/hpc
– R. van der Pas. An Overview of OpenMP
– B. Chapman, G. Jost and R. van der Pas. Using OpenMP:

Portable Shared Memory Parallel Programming. The MIT
Press, Cambridge, Massachusetts, London, England

– B. Estrade, Hybrid Programming with MPI and OpenMP

152

http://bisqwit.iki.fi/story/howto/openmp/
http://bisqwit.iki.fi/story/howto/openmp/
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
http://openmp.org/mp-documents/omp-hands-on-SC08.pdf
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/

