
SOFTWARE PIPELINING OF NESTED LOOPS
FOR REAL-TIME DSP APPLICATIONS

Jian Wang

Speech Recognition Software
Nortel MontrCal Lab.

Mont&al, QC, Canada, H3E lH6
email: jiurangQ:nortel.ca

ABSTRACT

Modem DSP Processors have been integrated with Insrrucrion-

Level Purullelism(ILP), which presents a challenge to exploit ILP
within DSP applications. Software Pipelining is an efficient tcch-
nique used to expose ILP for loop programs and has been widely
used for current microprocessors. It has been recently used in DSP
compilers, but only for the innermost loops. This paper proposes a
new approach which extends software pipelining from innermost
loops to whole nested loops in DSP applications. Given a perfect
loop. we apply an existing software pipelining approach for the in-
nermost loops, then use the so-called pipelining-doverailing trans-
formation to extend software pipelining to the outer loops. We also
present a transformation to convert a non-perfect nested loop into a
perfect one. We have verified the above transformations with some
nested loops selected from DSP compiler-challenge C code. The
preliminary results are further presented in this paper.

1. INTRODUCTION

Modem DSP processors have been integrated with Instruction-
Level Parallelism(ILP). For example, Motorola DSP56300 allows
the parallel moves with MAC operation, which performs a multiply-
accumulate, two data moves, and two pointer updates. This presents
a challenge to exploit ILP within DSP applications for designers
of DSP optimizing compilers and for programmers. Even though
DSP compilers have been around for many years, their perfor-
mance is less than acceptable. For example, the overhead of com-
piled code(in terms of clock cycles and code space) typically lays
in the range from 2 to 8 [I ~ 21. Therefore design of new optimiza-
tion techniques for DSP compilers is in high demand.

Some efficient approaches in microprocessor compilers such
as scheduling and software pipelining [3] have been applied on
DSP compilers [4, 5, 61; In [I], some problems of software
pipelining in some commercial DSP compilers are mentioned. [4]
uses dependence retiming to enhance the effectiveness of software
pipelining. Since most of DSP programs are loop-intensive, soft-
ware pipelining can greatly benefit from improved clock cycles
and code space. However, only the optimization of the innermost
loops has been focused on so far [I, 4, 51. Since nested loops
are frequently-seen program structure in real-time DSP applica-
tions, it is necessary to extend the optimization from the inner-
most loops to the nested loops, in particular for those nested loops
whose innermost loops have small trip counts. On the other hand,
almost all modern DSP processors except TIs C6x have small rcg-
ister files, a lack of orthogonal instructions and multiple function

Bogong Su

Dept. of Computer Science
The William Paterson University of New Jersey

Wayne, NJ 07470, USA
email: bsuwpcQfrontier.wiEpateruon.edu.

units. Therefore applying the normal software pipelining technol-
ogy to the nested loops is impractical.

In this paper, we present a new approach to software pipeline
the nested loops in DSP applications, which could be used for
modem DSP processors. Our approach retains the existing mature
framework of software pipelining for the innermost loops, but ex-
tends this framework from the innermost loops to the whole nested
loops in a smooth and efficient fashion. Given a perfect nested
loop, we apply an existing software pipelining approach on the in-
nermost loop, then use the so-called pipelining-dovetailing trans-
formation to extend software pipelining to the outer loops. We also
present a transformation to convert a non-perfect nested loop into
a perfect one.

To verify our approach, we chose some DSP compiler-challenge
C codes which have nested loops from [11, and conducted the ex-
periment on Motorola DSP56300. Preliminary results show that
our approach can obtain an average performance improvement 01
23% over software pipelining of innermost loops only.

1

Sl

s2 sl
Sl s3 s2 sl

s2 n
s3 s2 sl

s3 s3 s2 sl

s3 s2

s3

(a) a loop (b) software pipelining

s2 Sl

&I

prelude

software pipelined

s3 s2 Sl n-2 IOOP body

s3 s2

s3
postlude

(c) software pipelined loop

Figure 1 An example of software pipelining

2. SOFTWARE PIPELINING AND
PIPELINING-DOVETAILING

Softwure pipelining is an efficient instruction-level loop schedul-

ing technique [3]. It tries to overlap the execution of operations
from several consecutive iterations of a loop under the constraints
of data dependences and hardware resources. A software pipelined
loop consists of three parts -prelude, posrlude and rhe sready smre.

Figure I gives a simple example where the operations will be is-
sued for execution at the same machine cycle if they are on the
same line. Software pipelining is traditionally applied to the inner-
most loops only.

foril=l to2do
foril=l to2do

for i2=1 to IO do
(sl:

1
s2; sl;

for i2=3 to IO do
sl; (s3; s2; sl; }
s2;

s3;
s3; s2;

s3; I

(I) a nested loop (2) software pipelining of
the innermost loop

s3;s2;

s3;

s3;s2;

s3;

(3) unrolling the outer loop (4) dovetailing

s3;s2;

s3;

foril=l to2do

for i2=lb(i I) to IO do

(s3;s2;sl;}

s3;s2;

s3;

(5) merging
(6) re-writing in the form

of a nested loop

Figure 2 Pipelining-Dovetailing

Pipelining-dovetailing [7] is a simple but efficient loop trans-
formation used to extend software pipelining from the innermost
loops to the whole nested loop. The principle of pipelining-dovetailing
is illustrated with a simple nested loop shown in Figure 2(I). First,
assume we software pipeline the innermost loop as shown in Fig-
ure 2(2). Then imaging that we fully unroll the outer loop as shown
in Figure 2(3). Now, we present a transformation, called dovetail-

ing, to transform Figure 2(3) to Figure 2(4). In Figure 2(3), the
prelude of the second software pipelined loop can be moved up-
ward to lit together with the postlude of the first software pipelined
loop, thus generating Figure 2(4). After dovetailing, the loop in
Figure 2(4) can be merged as shown in Figure 2(5). We re-write
the merged loop in the form of a nested loop as shown in Figure
2(6), where Ib(i1) means that i2 should count from 3 if il = 1,
otherwise from I. We call “pipelining-dovetailing ” the transfor-
mation from Figure 2(2) to Figure 2(6).

3. OUR TRANSFORMATIONS FOR DSP

This section describes our new optimization approach used for
nested loops in real-time DSP applications. The ideas behind our
approach are to maintain the framework of the existing DSP com-
pilers and software pipelining of the innermost loops and to in-
sert two efficient but simple pre-transformations before or after
code generation. The two transformations are: (I) convert a non-
perfect nested loop into a perfect one and (2) apply pipelining-
dovetailing to the converted loop. In a DSP compiler, our transfor-
mations can be implemented in front-end (high-level) or in back-
end (instruction-level).

3.1. The Conditions

The conditions under which p&lining-dovetailing can be applied
are as follows: (I) the nested loops must be perfect and (2) dove-
tailing can not break the data dcpendences among the software
pipelined innermost loops.

A perject nested loop is a loop where there is no code between
different loop-levels. For example, the FIR Filter nested loop [I]
in Figure 3 is not a perfect loop (called non-perfect nested loop)
since there is code between the innermost level and the outer level
(e.g. sum=O; and oulput[i]= sum>>lS;).

for (i=O; i&l-ORDER; i++)

(sum=O;

for (i=O; j<ORDER; j++)

{ sum += array[i+j]*coefflj];]

output[i] = sum>> 15;

Figure 3 The nested loop in FIR Filter

For the second condition, we presented a theorem based on the
concept of distance vectors in [7]. The theorem provides a method
to verify the condition before dovetailing is applied. Actually, this
condition is very weak especially for the nested loops in real-time
DSP applications. In practice, we only need to check the data de-
pendence between the postlude of a software pipelined innermost
loop and the prelude of its next software pipelined innermost loop.
In most cases, there are no data dependences found.

3.2. Renaming and Loop Distribution

The first condition is not always satisfied for DSP’s nested loops.
Therefore, we present renaming and loop distribution transforma-
tions to convert a non-perfect loop into a perfect one before apply-
ing pipelining-dovetailing.

Note that for most nested loops in DSP applications, the code
between different loop-levels is the initialization part or the result-
stored part. It is not difficult to remove this code with the renaming
and loop distribution.

Let us take Figure 3 as an example. s’um is a variable which is
initialized for the loop body of the innermost loop, its value will be
stored after the innermost loop is finished. For each iteration of the
outer loop, sum is re-used. For the first step, we need to rename
all re-used variables to make loop distribution feasible. To do so,
for each re-used variable, we introduce an array whose dimension
is the number of iterations of the outer loop (if this number is not
available at compiler time, we have to take the maximum one in
the worst case) and use the array element to replace the variable in
the code. The nested loop in Figure 3 becomes the one in Figure
4(I) after sum is renamed.

After renaming is done, we can apply loop distribution to the
loop. The loop body of the outer loop can be considered into three
parts - the initialization part, the innermost loop and the result-
stored part. Loop distribution will convert the original nested loop
into three loops. The initialization part forms a single level loop
as does the result-stored part. The main part of the code now is
a perfect nested loop. After loop distribution is done, the nested
loop in Figure 4(1) becomes the one in Figure 4(2).

int sum[N-ORDER];

for (i=O; i<N-ORDER; i++)

(sum[i]=O:

for (j=O; j<ORDER; j++)

(sum[i] += array[i+j]*coeffu];)

output[i] = sum[i]>>l5;

t

(I) Renaming

int sum[N-ORDER];

for (i=O; i<N-ORDER; i++)

(sum[i]=O;]

for (i=O; i<N-ORDER; i++)

for (j=O; j<ORDER; j++)

(sum[i] += army[i+j]*coefflj];]

for (i=O; i<N-ORDER; i++)
(output[i] = sum[i]>>l5;)

(2) Loop distribution

Figure 4 Renaming and Loop distribution

Note, although we illustrate our transformation in C language
level before code generation, the transformation can be also done
in instruction level after code generation. We will discuss the
tradeoff between these two cases in the next subsection.

3.3. The Optimization Framework

As a result, the general framework of the nested loop optimization
for DSP applications can be described in the following steps:

check the first condition; if the loop is not a perfect one, for
each re-used variable in the initialization part and the result-
stored part, do the renaming; then do loop distribution;

software pipeline the innermost loop;

check the second condition; use the theorem in [7] or sim-
ply check the prelude and the postlude of the software pipelined
innermost loop; if the second condition is not satisfied, re-
turn with not-dovetailing;

do the pipelining-dovetailing on the perfect nested loop;

The above framework can bc implemented in high level before
code generation. In high level, renaming and loop distribution arc
easily done. But, during code generation, some instructions (e.g.
loop index register initialization) may be generated between loop
levels and may degrade the performance of the final result. The
advantage of this scheme is that the compiler implementation is
easy.

We can also implement the above framework in instruction
level after code generation. In order to perform renaming and
loop distribution, WC need to adjust register allocation and gener-
ate some new instructions for holding the program semantics. The
advantage of the scheme is that the optimal code may be obtained,
but the drawback is the complexity of its implementation. We sug-
gest using this scheme if hand-craft code is needed. In section 4,
we use this scheme to conduct our experiment.

move #>FC,r I

move #>FA,r2

move *FB,r3

move #9,m3

for (i=O; i< 100; i++)
DO #lOO,L2

for tj=O; j<lO; j++)
DO #lO,Ll

C[i,j] +=A[i,j] * Bfj]; move X’(rl)‘a
move Y:(R)+,xO

(1) a nested loop move Y:(r3)+,yO

mat x0,yO.a

move a,X:(rl)+

LI:

L2:

(2) assembly code

Figure 5 A Working Example (I)

4. AN EXAMPLE AND PRELIMINARY RESULTS

In order to show how we conduct the preliminary experiment, we
first present a simple working example to illustrate the procedure
of our new optimization approach.

The example nested loop is shown in Figure 5(l). We first
generate its Motorola DSP56300 [8] assembly code(Figure 5(2))
where we use modular addressing mode for B[II’] and hardware
loop for ‘yor (...)“. It is a perfect nested loop so WC can directly
apply software pipelining and pipelining-dovetailing. Figure 6(l)
gives the result after the innermost loop is software pipelined, while
Figure 6(2) presents the result after pipelining-dovetailing is done

on Figure 6(I). Assuming all data is stored in the internal memory,
the execution time of Figure 6(l) is 2709 cycles and Figure 6(2)
is 201 I cycles. Therefore, pipelining-dovetailing can obtain an
improvement of 26% over software pipelining of innermost loops
only.

simple programs.
As a result, compared to software pipelining of innermost loops

only, our approach can obtain an improvement of 3OYc for FIR Fil-
ter, 12% for FIR Filter with Redundant Load Elimination and 26%
for the modified JPEG DCT.

move #>FC,r 1

move #>FA,r2

move #>FB,r3

move #9,m3

DO #lOO,L2

move X:(rl),a Y:(R)+,xO

move Y:(r3)+,yO

DO #9,L I

This paper has presented a new optimization approach for the nested
loop programs in real-time DSP applications. Based on the exist-
ing quite mature framework of software pipelining technique for
the innermost loops, our approach integrates renaming, loop dis-
tribution and pipelining-dovetailing.

mat x0,yO.a X:(rl),a Y:(r2)+,xO

move a,X:(rl)+ Y:(D)+,yO

Ll : mat x0,yO.a

move a,X:(rl)+

L2:

Nested loops are frequently-seen program structure in real-
time DSP applications. According to the characteristics of DSP’s
nested loops, our approach first uses renaming and loop distribu-
tion transformations to convert non-perfect nested loops to perfect
ones, then applies software pipelining on the innermost loops, and
finally performs pipelining-dovetailing on the converted loops and
extends the effect of software pipelining to the whole nested loops.

(I) software pipelining

move #>FC,r I

move #>FA,r2

move #>FB,r3

move #9,m3

We would like to thank Ms. Jeanette Myers for proof-reading.
Prof. Bogong Su was partially supported by the Faculty Summer
Research Award 1997 from the Center for Research, School of Sci-
ence and Health, The William Paterson University of New Jersey.

move X:(rl),a Y:(r2)+,xO

move Y:(r3)+,yO

DO #999,L I

mat xO,yO,a X:(rl),a Y:(r2)+,xO

move a,X:(rl)+ Y:(r3)+,yO

111

PI

131

L I : mat xO,yO,a

move a,X:(rl)+

141

151
(2) software pipelining plus

pipelining-dovetailing

Figure 6 A Working Example (2) WI

In the preliminary experiment, we chose three DSP compiler-
challenge C codes from [I]. The FIR filter and FIR filter with
redundant load elimination arc two level nested loops. The JPEG
Discrete Cosine Transform (JPEG DCT) is a three level nested
loop. JPEG DCT contains a large amount of code between the
innermost level and the mid-level loops, so it is not suitable for
our optimization before some modifications are made. Since our
experiment is conducted by hand, we only optimize the innermost
part.

[71

PI

We apply the simplest software pipclining method URPR [91
on the innermost loops of these three loops. Since there arc no
branches and loop-carried dependencies in all of these three codes,
URPR can produce the same results as other software pipelining
approaches which arc more complicated and unnecessary for our

[91

5. CONCLUSION

6. ACKNOWLEDGMENT

7. REFERENCES

Markus Levy. C compiler for dsps: Flex their muscles. In
EDN, June 5, 1997.

Peter Marwedel. Code generation for core processors. In proc.
of DAC-97, 1997.

B. R. Rau and J.A. Fisher. Instruction-level parallel process-
ing: History, overview and perspective. The Journal of Super-
computing, 7(l), January 1993.

F. Sanchez and J. Cortadella. Timed-constrained loop pipelin-
ing. In proc. of 8fh ISSS, 1995.

Jr. Thomas J. Dillon. The Use of Software Pipelining in Devel-
oping DSP Algorithms for the TMS32K6x. In proceedings
of lntemational Conference on Signal Processing Application

and Technology, Sept. 1997.

S. Novack, A. Nicolau, and N. Dutt. A Unified Code Gener-
ation Approach Using Mutation Scheduling. In Rook “Code

Generation for Embedded Processors’“. 1995.

Jian Wang and Guang R. Gao. Pipelining-dovetailing: A
transformation to enhance software pipelining for nested
loops. In proceedings of the 1996 International Conference on
Compiler Construction, Lecture notes in Computer Science,

No.1060, pages I - 17. Spring-Verlag, April 1996.

DSP56300 24-Bit Digital Signal Processor Family Manual.

Motorola, Inc., 1995.

B. Su, S. Ding, and J. Xia. URPR - an extension of URCR
for software pipclining. In proceedings of the f9th Interna-

tional Symposium on Microprogramming and Microarchitec-

tures (MICRO-19), pages 104 - 108, 1986.

