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ABSTRACT 

Modem DSP Processors have been integrated with Insrrucrion- 

Level Purullelism(ILP), which presents a challenge to exploit ILP 
within DSP applications. Software Pipelining is an efficient tcch- 
nique used to expose ILP for loop programs and has been widely 
used for current microprocessors. It has been recently used in DSP 
compilers, but only for the innermost loops. This paper proposes a 
new approach which extends software pipelining from innermost 
loops to whole nested loops in DSP applications. Given a perfect 
loop. we apply an existing software pipelining approach for the in- 
nermost loops, then use the so-called pipelining-doverailing trans- 
formation to extend software pipelining to the outer loops. We also 
present a transformation to convert a non-perfect nested loop into a 
perfect one. We have verified the above transformations with some 
nested loops selected from DSP compiler-challenge C code. The 
preliminary results are further presented in this paper. 

1. INTRODUCTION 

Modem DSP processors have been integrated with Instruction- 
Level Parallelism(ILP). For example, Motorola DSP56300 allows 
the parallel moves with MAC operation, which performs a multiply- 
accumulate, two data moves, and two pointer updates. This presents 
a challenge to exploit ILP within DSP applications for designers 
of DSP optimizing compilers and for programmers. Even though 
DSP compilers have been around for many years, their perfor- 
mance is less than acceptable. For example, the overhead of com- 
piled code(in terms of clock cycles and code space) typically lays 
in the range from 2 to 8 [ I ~ 21. Therefore design of new optimiza- 
tion techniques for DSP compilers is in high demand. 

Some efficient approaches in microprocessor compilers such 
as scheduling and software pipelining [3] have been applied on 
DSP compilers [4, 5, 61; In [I], some problems of software 
pipelining in some commercial DSP compilers are mentioned. [4] 
uses dependence retiming to enhance the effectiveness of software 
pipelining. Since most of DSP programs are loop-intensive, soft- 
ware pipelining can greatly benefit from improved clock cycles 
and code space. However, only the optimization of the innermost 
loops has been focused on so far [I, 4, 51. Since nested loops 
are frequently-seen program structure in real-time DSP applica- 
tions, it is necessary to extend the optimization from the inner- 
most loops to the nested loops, in particular for those nested loops 
whose innermost loops have small trip counts. On the other hand, 
almost all modern DSP processors except TIs C6x have small rcg- 
ister files, a lack of orthogonal instructions and multiple function 
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units. Therefore applying the normal software pipelining technol- 
ogy to the nested loops is impractical. 

In this paper, we present a new approach to software pipeline 
the nested loops in DSP applications, which could be used for 
modem DSP processors. Our approach retains the existing mature 
framework of software pipelining for the innermost loops, but ex- 
tends this framework from the innermost loops to the whole nested 
loops in a smooth and efficient fashion. Given a perfect nested 
loop, we apply an existing software pipelining approach on the in- 
nermost loop, then use the so-called pipelining-dovetailing trans- 
formation to extend software pipelining to the outer loops. We also 
present a transformation to convert a non-perfect nested loop into 
a perfect one. 

To verify our approach, we chose some DSP compiler-challenge 
C codes which have nested loops from [ 11, and conducted the ex- 
periment on Motorola DSP56300. Preliminary results show that 
our approach can obtain an average performance improvement 01 
23% over software pipelining of innermost loops only. 
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Figure 1 An example of software pipelining 

2. SOFTWARE PIPELINING AND 
PIPELINING-DOVETAILING 

Softwure pipelining is an efficient instruction-level loop schedul- 



ing technique [3]. It tries to overlap the execution of operations 
from several consecutive iterations of a loop under the constraints 
of data dependences and hardware resources. A software pipelined 
loop consists of three parts -prelude, posrlude and rhe sready smre. 

Figure I gives a simple example where the operations will be is- 
sued for execution at the same machine cycle if they are on the 
same line. Software pipelining is traditionally applied to the inner- 
most loops only. 
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Figure 2 Pipelining-Dovetailing 

Pipelining-dovetailing [7] is a simple but efficient loop trans- 
formation used to extend software pipelining from the innermost 
loops to the whole nested loop. The principle of pipelining-dovetailing 
is illustrated with a simple nested loop shown in Figure 2(I). First, 
assume we software pipeline the innermost loop as shown in Fig- 
ure 2(2). Then imaging that we fully unroll the outer loop as shown 
in Figure 2(3). Now, we present a transformation, called dovetail- 

ing, to transform Figure 2(3) to Figure 2(4). In Figure 2(3), the 
prelude of the second software pipelined loop can be moved up- 
ward to lit together with the postlude of the first software pipelined 
loop, thus generating Figure 2(4). After dovetailing, the loop in 
Figure 2(4) can be merged as shown in Figure 2(5). We re-write 
the merged loop in the form of a nested loop as shown in Figure 
2(6), where Ib(i1) means that i2 should count from 3 if il = 1, 
otherwise from I. We call “pipelining-dovetailing ” the transfor- 
mation from Figure 2(2) to Figure 2(6). 

3. OUR TRANSFORMATIONS FOR DSP 

This section describes our new optimization approach used for 
nested loops in real-time DSP applications. The ideas behind our 
approach are to maintain the framework of the existing DSP com- 
pilers and software pipelining of the innermost loops and to in- 
sert two efficient but simple pre-transformations before or after 
code generation. The two transformations are: (I) convert a non- 
perfect nested loop into a perfect one and (2) apply pipelining- 
dovetailing to the converted loop. In a DSP compiler, our transfor- 
mations can be implemented in front-end (high-level) or in back- 
end (instruction-level). 

3.1. The Conditions 

The conditions under which p&lining-dovetailing can be applied 
are as follows: (I) the nested loops must be perfect and (2) dove- 
tailing can not break the data dcpendences among the software 
pipelined innermost loops. 

A perject nested loop is a loop where there is no code between 
different loop-levels. For example, the FIR Filter nested loop [I] 
in Figure 3 is not a perfect loop (called non-perfect nested loop) 
since there is code between the innermost level and the outer level 
(e.g. sum=O; and oulput[i]= sum>>lS;). 

for ( i=O; i&l-ORDER; i++) 

( sum=O; 

for (i=O; j<ORDER; j++) 

{ sum += array[i+j]*coefflj]; ] 

output[i] = sum>> 15; 

Figure 3 The nested loop in FIR Filter 

For the second condition, we presented a theorem based on the 
concept of distance vectors in [7]. The theorem provides a method 
to verify the condition before dovetailing is applied. Actually, this 
condition is very weak especially for the nested loops in real-time 
DSP applications. In practice, we only need to check the data de- 
pendence between the postlude of a software pipelined innermost 
loop and the prelude of its next software pipelined innermost loop. 
In most cases, there are no data dependences found. 

3.2. Renaming and Loop Distribution 

The first condition is not always satisfied for DSP’s nested loops. 
Therefore, we present renaming and loop distribution transforma- 
tions to convert a non-perfect loop into a perfect one before apply- 
ing pipelining-dovetailing. 



Note that for most nested loops in DSP applications, the code 
between different loop-levels is the initialization part or the result- 
stored part. It is not difficult to remove this code with the renaming 
and loop distribution. 

Let us take Figure 3 as an example. s’um is a variable which is 
initialized for the loop body of the innermost loop, its value will be 
stored after the innermost loop is finished. For each iteration of the 
outer loop, sum is re-used. For the first step, we need to rename 
all re-used variables to make loop distribution feasible. To do so, 
for each re-used variable, we introduce an array whose dimension 
is the number of iterations of the outer loop (if this number is not 
available at compiler time, we have to take the maximum one in 
the worst case) and use the array element to replace the variable in 
the code. The nested loop in Figure 3 becomes the one in Figure 
4(I) after sum is renamed. 

After renaming is done, we can apply loop distribution to the 
loop. The loop body of the outer loop can be considered into three 
parts - the initialization part, the innermost loop and the result- 
stored part. Loop distribution will convert the original nested loop 
into three loops. The initialization part forms a single level loop 
as does the result-stored part. The main part of the code now is 
a perfect nested loop. After loop distribution is done, the nested 
loop in Figure 4( 1) becomes the one in Figure 4(2). 

int sum[N-ORDER]; 

for ( i=O; i<N-ORDER; i++) 

( sum[i]=O: 

for (j=O; j<ORDER; j++) 

( sum[i] += array[i+j]*coeffu]; ) 

output[i] = sum[i]>>l5; 

t 

(I) Renaming 

int sum[N-ORDER]; 

for ( i=O; i<N-ORDER; i++) 

( sum[i]=O; ] 

for ( i=O; i<N-ORDER; i++) 

for (j=O; j<ORDER; j++) 

( sum[i] += army[i+j]*coefflj]; ] 

for ( i=O; i<N-ORDER; i++) 
(output[i] = sum[i]>>l5;) 

(2) Loop distribution 

Figure 4 Renaming and Loop distribution 

Note, although we illustrate our transformation in C language 
level before code generation, the transformation can be also done 
in instruction level after code generation. We will discuss the 
tradeoff between these two cases in the next subsection. 

3.3. The Optimization Framework 

As a result, the general framework of the nested loop optimization 
for DSP applications can be described in the following steps: 

check the first condition; if the loop is not a perfect one, for 
each re-used variable in the initialization part and the result- 
stored part, do the renaming; then do loop distribution; 

software pipeline the innermost loop; 

check the second condition; use the theorem in [7] or sim- 
ply check the prelude and the postlude of the software pipelined 
innermost loop; if the second condition is not satisfied, re- 
turn with not-dovetailing; 

do the pipelining-dovetailing on the perfect nested loop; 

The above framework can bc implemented in high level before 
code generation. In high level, renaming and loop distribution arc 
easily done. But, during code generation, some instructions (e.g. 
loop index register initialization) may be generated between loop 
levels and may degrade the performance of the final result. The 
advantage of this scheme is that the compiler implementation is 
easy. 

We can also implement the above framework in instruction 
level after code generation. In order to perform renaming and 
loop distribution, WC need to adjust register allocation and gener- 
ate some new instructions for holding the program semantics. The 
advantage of the scheme is that the optimal code may be obtained, 
but the drawback is the complexity of its implementation. We sug- 
gest using this scheme if hand-craft code is needed. In section 4, 
we use this scheme to conduct our experiment. 

move #>FC,r I 

move #>FA,r2 

move *FB,r3 

move #9,m3 

for (i=O; i< 100; i++) 
DO #lOO,L2 

for tj=O; j<lO; j++) 
DO #lO,Ll 

C[i,j] +=A[i,j] * Bfj]; move X’(rl)‘a 
move Y:(R)+,xO 

(1) a nested loop move Y:(r3)+,yO 

mat x0,yO.a 

move a,X:(rl)+ 

LI: 

L2: 

(2) assembly code 

Figure 5 A Working Example (I) 

4. AN EXAMPLE AND PRELIMINARY RESULTS 

In order to show how we conduct the preliminary experiment, we 
first present a simple working example to illustrate the procedure 
of our new optimization approach. 

The example nested loop is shown in Figure 5(l). We first 
generate its Motorola DSP56300 [8] assembly code(Figure 5(2)) 
where we use modular addressing mode for B[II’] and hardware 
loop for ‘yor (...)“. It is a perfect nested loop so WC can directly 
apply software pipelining and pipelining-dovetailing. Figure 6(l) 
gives the result after the innermost loop is software pipelined, while 
Figure 6(2) presents the result after pipelining-dovetailing is done 



on Figure 6(I). Assuming all data is stored in the internal memory, 
the execution time of Figure 6(l) is 2709 cycles and Figure 6(2) 
is 201 I cycles. Therefore, pipelining-dovetailing can obtain an 
improvement of 26% over software pipelining of innermost loops 
only. 

simple programs. 
As a result, compared to software pipelining of innermost loops 

only, our approach can obtain an improvement of 3OYc for FIR Fil- 
ter, 12% for FIR Filter with Redundant Load Elimination and 26% 
for the modified JPEG DCT. 

move #>FC,r 1 

move #>FA,r2 

move #>FB,r3 

move #9,m3 

DO #lOO,L2 

move X:(rl),a Y:(R)+,xO 

move Y:(r3)+,yO 

DO #9,L I 

This paper has presented a new optimization approach for the nested 
loop programs in real-time DSP applications. Based on the exist- 
ing quite mature framework of software pipelining technique for 
the innermost loops, our approach integrates renaming, loop dis- 
tribution and pipelining-dovetailing. 

mat x0,yO.a X:(rl),a Y:(r2)+,xO 

move a,X:(rl)+ Y:(D)+,yO 

Ll : mat x0,yO.a 

move a,X:(rl)+ 

L2: 

Nested loops are frequently-seen program structure in real- 
time DSP applications. According to the characteristics of DSP’s 
nested loops, our approach first uses renaming and loop distribu- 
tion transformations to convert non-perfect nested loops to perfect 
ones, then applies software pipelining on the innermost loops, and 
finally performs pipelining-dovetailing on the converted loops and 
extends the effect of software pipelining to the whole nested loops. 

(I) software pipelining 

move #>FC,r I 

move #>FA,r2 

move #>FB,r3 

move #9,m3 
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move X:(rl),a Y:(r2)+,xO 

move Y:(r3)+,yO 

DO #999,L I 

mat xO,yO,a X:(rl),a Y:(r2)+,xO 

move a,X:(rl)+ Y:(r3)+,yO 

111 

PI 

131 

L I : mat xO,yO,a 

move a,X:(rl)+ 

141 

151 
(2) software pipelining plus 

pipelining-dovetailing 

Figure 6 A Working Example (2) WI 

In the preliminary experiment, we chose three DSP compiler- 
challenge C codes from [I]. The FIR filter and FIR filter with 
redundant load elimination arc two level nested loops. The JPEG 
Discrete Cosine Transform (JPEG DCT) is a three level nested 
loop. JPEG DCT contains a large amount of code between the 
innermost level and the mid-level loops, so it is not suitable for 
our optimization before some modifications are made. Since our 
experiment is conducted by hand, we only optimize the innermost 
part. 
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We apply the simplest software pipclining method URPR [91 
on the innermost loops of these three loops. Since there arc no 
branches and loop-carried dependencies in all of these three codes, 
URPR can produce the same results as other software pipelining 
approaches which arc more complicated and unnecessary for our 
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