
1

Memory Access Scheduling

Scott Rixner1, William J. Dally, Ujval J. Kapasi, Peter Mattson, and John D. Owens

Computer Systems Laboratory
Stanford University
Stanford, CA 94305

{rixner, billd, ujk, pmattson, jowens}@cva.stanford.edu

Abstract

The bandwidth and latency of a memory system are strongly
dependent on the manner in which accesses interact with
the “3-D” structure of banks, rows, and columns character-
istic of contemporary DRAM chips. There is nearly an order
of magnitude difference in bandwidth between successive
references to different columns within a row and different
rows within a bank. This paper introduces memory access
scheduling, a technique that improves the performance of a
memory system by reordering memory references to exploit
locality within the 3-D memory structure. Conservative
reordering, in which the first ready reference in a sequence
is performed, improves bandwidth by 40% for traces from
five media benchmarks. Aggressive reordering, in which
operations are scheduled to optimize memory bandwidth,
improves bandwidth by 93% for the same set of applica-
tions. Memory access scheduling is particularly important
for media processors where it enables the processor to make
the most efficient use of scarce memory bandwidth.

1 Introduction

Modern computer systems are becoming increasingly lim-
ited by memory performance. While processor performance
increases at a rate of 60% per year, the bandwidth of a mem-
ory chip increases by only 10% per year making it costly to
provide the memory bandwidth required to match the pro-
cessor performance [14] [17]. The memory bandwidth bot-
tleneck is even more acute for media processors with
streaming memory reference patterns that do not cache well.
Without an effective cache to reduce the bandwidth
demands on main memory, these media processors are more

often limited by memory system bandwidth than other com-
puter systems.

To maximize memory bandwidth, modern DRAM compo-
nents allow pipelining of memory accesses, provide several
independent memory banks, and cache the most recently
accessed row of each bank. While these features increase
the peak supplied memory bandwidth, they also make the
performance of the DRAM highly dependent on the access
pattern. Modern DRAMs are not truly random access
devices (equal access time to all locations) but rather are
three-dimensional memory devices with dimensions of
bank, row, and column. Sequential accesses to different
rows within one bank have high latency and cannot be pipe-
lined, while accesses to different banks or different words
within a single row have low latency and can be pipelined.

The three-dimensional nature of modern memory devices
makes it advantageous to reorder memory operations to
exploit the non-uniform access times of the DRAM. This
optimization is similar to how a superscalar processor
schedules arithmetic operations out of order. As with a
superscalar processor, the semantics of sequential execution
are preserved by reordering the results.

This paper introduces memory access scheduling in which
DRAM operations are scheduled, possibly completing
memory references out of order, to optimize memory sys-
tem performance. The several memory access scheduling
strategies introduced in this paper increase the sustained
memory bandwidth of a system by up to 144% over a sys-
tem with no access scheduling when applied to realistic syn-
thetic benchmarks. Media processing applications exhibit a
30% improvement in sustained memory bandwidth with
memory access scheduling, and the traces of these applica-
tions offer a potential bandwidth improvement of up to
93%.

To see the advantage of memory access scheduling, con-
sider the sequence of eight memory operations shown in
Figure 1A. Each reference is represented by the triple (bank,
row, column). Suppose we have a memory system utilizing
a DRAM that requires 3 cycles to precharge a bank, 3 cycles
to access a row of a bank, and 1 cycle to access a column of
a row. Once a row has been accessed, a new column access
can issue each cycle until the bank is precharged. If these
eight references are performed in order, each requires a pre-

1. Scott Rixner is an Electrical Engineering graduate student at
the Massachusetts Institute of Technology.

Appears in ISCA-27 (2000)

2

charge, a row access, and a column access for a total of
seven cycles per reference, or 56 cycles for all eight refer-
ences. If we reschedule these operations as shown in Figure
1B they can be performed in 19 cycles.

The following section discusses the characteristics of mod-
ern DRAM architecture. Section 3 introduces the concept of
memory access scheduling and the possible algorithms that
can be used to reorder DRAM operations. Section 4
describes the streaming media processor and benchmarks
that will be used to evaluate memory access scheduling.
Section 5 presents a performance comparison of the various
memory access scheduling algorithms. Finally, Section 6
presents related work to memory access scheduling.

2 Modern DRAM Architecture

As illustrated by the example in the Introduction, the order
in which DRAM accesses are scheduled can have a dra-
matic impact on memory throughput and latency. To
improve memory performance, a memory controller must
take advantage of the characteristics of modern DRAM.

Figure 2 shows the internal organization of modern
DRAMs. These DRAMs are three-dimensional memories
with the dimensions of bank, row, and column. Each bank
operates independently of the other banks and contains an
array of memory cells that are accessed an entire row at a
time. When a row of this memory array is accessed (row
activation) the entire row of the memory array is transferred
into the bank’s row buffer. The row buffer serves as a cache
to reduce the latency of subsequent accesses to that row.
While a row is active in the row buffer, any number of reads
or writes (column accesses) may be performed, typically
with a throughput of one per cycle. After completing the

available column accesses, the cached row must be written
back to the memory array by an explicit operation (bank
precharge) which prepares the bank for a subsequent row
activation. An overview of several different modern DRAM
types and organizations, along with a performance compari-
son for in-order access, can be found in [4].

For example, the 128Mb NEC µPD45128163 [13], a typical
SDRAM, includes four internal memory banks, each com-
posed of 4096 rows and 512 columns. This SDRAM may be
operated at 125MHz, with a precharge latency of 3 cycles
(24ns) and a row access latency of 3 cycles (24ns). Pipe-
lined column accesses that transfer 16 bits may issue at the
rate of one per cycle (8ns), yielding a peak transfer rate of
250MB/s. However, it is difficult to achieve this rate on
non-sequential access patterns for several reasons. A bank
cannot be accessed during the precharge/activate latency, a
single cycle of high impedance is required on the data pins
when switching between read and write column accesses,
and a single set of address lines is shared by all DRAM
operations (bank precharge, row activation, and column
access). The amount of bank parallelism that is exploited
and the number of column accesses that are made per row
access dictate the sustainable memory bandwidth out of
such a DRAM, as illustrated in Figure 1 of the Introduction.

A memory access scheduler must generate a schedule that
conforms to the timing and resource constraints of these
modern DRAMs. Figure 3 illustrates these constraints for
the NEC SDRAM with a simplified bank state diagram and
a table of operation resource utilization. Each DRAM oper-
ation makes different demands on the three DRAM
resources: the internal banks, a single set of address lines,
and a single set of data lines. The scheduler must ensure that

Figure 1. Time to complete a series of memory references without (A) and with (B) access reordering.

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)
P A C

292827262524232221191817161514131210987654321 20 39383736353433323130 4443424140

P A C
P A C

P A C
P A C

P A C
P A C

P A C

4948474645 50 565554535251

11

(0,0,0)

(1,1,2)

(1,0,1)

(1,1,1)

(1,0,0)

(0,1,3)

(0,0,1)

(0,1,0)
P A C

191817161514131210987654321

P A

C
P

C
P A

C

A C

C

C

C

Time (Cycles)

R
ef

er
en

ce
s

(B
an

k,
 R

ow
, C

ol
um

n)
R

ef
er

en
ce

s
(B

an
k,

 R
ow

, C
ol

um
n)

Time (Cycles) DRAM Operations:

P: bank precharge (3 cycle occupancy)
A: row activation (3 cycle occupancy)
C: column access (1 cycle occupancy)

(A) Without access scheduling (56 DRAM Cycles)

(B) With access scheduling (19 DRAM Cycles)

3

the required resources are available for each DRAM opera-
tion it schedules.

Each DRAM bank has two stable states: IDLE and ACTIVE,
as shown in Figure 3A. In the IDLE state, the DRAM is pre-
charged and ready for a row access. It will remain in this
state until a row activate operation is issued to the bank. To
issue a row activation, the address lines must be used to
select the bank and the row being activated, as shown in
Figure 3B. Row activation requires 3 cycles, during which
no other operations may be issued to that bank, as indicated
by the utilization of the bank resource for the duration of the
operation. During that time, however, operations may be
issued to other banks of the DRAM. Once the DRAM’s row
activation latency has passed, the bank enters the ACTIVE
state, during which the contents of the selected row are held
in the bank’s row buffer. Any number of pipelined column
accesses may be performed while the bank is in the ACTIVE
state. To issue either a read or write column access, the
address lines are required to indicate the bank and the col-
umn of the active row in that bank. A write column access
requires the data to be transferred to the DRAM at the time
of issue, whereas a read column access returns the requested
data three cycles later. Additional timing constraints not
shown in Figure 3, such as a required cycle of high imped-
ance between reads and writes, may further restrict the use
of the data pins.

The bank will remain in the ACTIVE state until a precharge
operation is issued to return it to the IDLE state. The pre-
charge operation requires the use of the address lines to
indicate the bank which is to be precharged. Like row acti-
vation, the precharge operation utilizes the bank resource
for 3 cycles, during which no new operations may be issued
to that bank. Again, operations may be issued to other banks
during this time. After the DRAM’s precharge latency, the
bank is returned to the IDLE state and is ready for a new row
activation operation. Frequently, there are also timing con-
straints that govern the minimum latency between a column
access and a subsequent precharge operation. DRAMs typi-

cally also support column accesses with automatic pre-
charge, which implicitly precharges the DRAM bank as
soon as possible after the column access.

The shared address and data resources serialize access to the
different DRAM banks. While the state machines for the
individual banks are independent, only a single bank can
perform a transition requiring a particular shared resource
each cycle. For many DRAMs, the bank, row, and column
addresses share a single set of lines. Hence, the scheduler
must arbitrate between precharge, row, and column opera-
tions that all need to use this single resource. Other
DRAMs, such as Direct Rambus DRAMs (DRDRAMs) [3],
provide separate row and column address lines (each with
their own associated bank address) so that column and row
accesses can be initiated simultaneously. To approach the
peak data rate with serialized resources, there must be
enough column accesses to each row to hide the precharge/
activate latencies of other banks. Whether or not this can be
achieved is dependent on the data reference patterns and the
order in which the DRAM is accessed to satisfy those refer-
ences. The need to hide the precharge/activate latency of the
banks in order to sustain high bandwidth cannot be elimi-
nated by any DRAM architecture without reducing the pre-
charge/activate latency, which would likely come at the cost
of decreased bandwidth or capacity, both of which are unde-
sirable.

Figure 2. Modern DRAM organization.

Bank N

Bank 1

 Sense Amplifiers
(Row Buffer)

Column Decoder

R
ow

 D
ec

od
er

Data

Address

Memory
Array

(Bank 0)

Figure 3. Simplified state diagram and resource utilization
governing access to an internal DRAM bank.

IDLE ACTIVE

 Bank Precharge

Row Activation

Column Access

Address
Bank

Data

Cycle 1 2 3

Precharge:

Activate:

Read:

Write:

4

Address
Bank

Data

Address
Bank

Data

Address
Bank

Data

(A) Simplified bank state diagram

(B) Operation resource utilization

4

3 Memory Access Scheduling

Memory access scheduling is the process of ordering the
DRAM operations (bank precharge, row activation, and col-
umn access) necessary to complete the set of currently
pending memory references. Throughout the paper, the term
operation denotes a command, such as a row activation or a
column access, issued by the memory controller to the
DRAM. Similarly, the term reference denotes a memory ref-
erence generated by the processor, such as a load or store to
a memory location. A single reference generates one or
more memory operations depending on the schedule.

Given a set of pending memory references, a memory
access scheduler may chose one or more row, column, or
precharge operations each cycle, subject to resource con-
straints, to advance one or more of the pending references.
The simplest, and most common, scheduling algorithm only
considers the oldest pending reference, so that references
are satisfied in the order that they arrive. If it is currently
possible to make progress on that reference by performing
some DRAM operation then the memory controller makes
the appropriate access. While this does not require a compli-
cated access scheduler in the memory controller, it is clearly
inefficient, as illustrated in Figure 1 of the Introduction.

If the DRAM is not ready for the operation required by the
oldest pending reference, or if that operation would leave
available resources idle, it makes sense to consider opera-
tions for other pending references. Figure 4 shows the struc-
ture of a more sophisticated access scheduler. As memory
references arrive, they are allocated storage space while
they await service from the memory access scheduler. In the
figure, references are initially sorted by DRAM bank. Each
pending reference is represented by six fields: valid (V),
load/store (L/S), address (Row and Col), data, and whatever
additional state is necessary for the scheduling algorithm.
Examples of state that can be accessed and modified by the
scheduler are the age of the reference and whether or not
that reference targets the currently active row. In practice,

the pending reference storage could be shared by all the
banks (with the addition of a bank address field) to allow
dynamic allocation of that storage at the cost of increased
logic complexity in the scheduler.

As shown in Figure 4, each bank has a precharge manager
and a row arbiter. The precharge manager simply decides
when its associated bank should be precharged. Similarly,
the row arbiter for each bank decides which row, if any,
should be activated when that bank is idle. A single column
arbiter is shared by all the banks. The column arbiter grants
the shared data line resources to a single column access out
of all the pending references to all of the banks. Finally, the
precharge managers, row arbiters, and column arbiter send
their selected operations to a single address arbiter which
grants the shared address resources to one or more of those
operations.

The precharge managers, row arbiters, and column arbiter
can use several different policies to select DRAM opera-
tions, as enumerated in Table 1. The combination of policies
used by these units, along with the address arbiter’s policy,
determines the memory access scheduling algorithm. The
address arbiter must decide which of the selected precharge,
activate, and column operations to perform subject to the
constraints of the address line resources. As with all of the
other scheduling decisions, the in-order or priority policies
can be used by the address arbiter to make this selection.
Additional policies that can be used are those that select pre-
charge operations first, row operations first, or column oper-
ations first. A column-first scheduling policy would reduce
the latency of references to active rows, whereas a pre-
charge-first or row-first scheduling policy would increase
the amount of bank parallelism.

If the address resources are not shared, it is possible for both
a precharge operation and a column access to the same bank
to be selected. This is likely to violate the timing constraints
of the DRAM. Ideally, this conflict can be handled by hav-
ing the column access automatically precharge the bank

Figure 4. Memory access scheduler architecture.

Memory References

Precharge0

Row
 Arbiter0

Column
Arbiter

Address
Arbiter

PrechargeN

Row
 ArbiterN

DRAM Operations

Memory Access
Scheduler Logic

Bank 0 Pending References

V L/S Row Col Data State

Bank N Pending References

V L/S Row Col Data State

5

upon completion, which is supported by most modern
DRAMs.

4 Experimental Setup

Streaming media data types do not cache well, so they
require other types of support to improve memory perfor-
mance. In a stream (or vector) processor, the stream transfer
bandwidth, rather than the latency of any individual mem-
ory reference, drives processor performance. A streaming
media processing system, therefore, is a prime candidate for
memory access scheduling. To evaluate the performance
impact of memory access scheduling on media processing, a
streaming media processor was simulated running typical
media processing applications.

4.1 Stream Processor Architecture

Media processing systems typically do not cache streaming
media data types, because modern cache hierarchies cannot
handle them efficiently [10]. In a media computation on
long streams of data, the same operations are performed
repeatedly on consecutive stream elements, and the stream
elements are discarded after the operations are performed.
These streams do not cache well because they lack temporal
locality (stream elements are usually only referenced once)
and they have a large cache footprint, which makes it likely
that they will interfere with other data in the cache. In many
media processing systems, stream accesses bypass the cache

so as not to interfere with other data that does cache well.
Many streams are accessed sequentially, so prefetching
streams into the cache can sometimes be effective at
improving processor performance [15]. However, this is an
inefficient way to provide storage for streaming data
because address translation is required on every reference,
accesses are made with long addresses, tag overhead is
incurred in the cache, and conflicts may evict previously
fetched data.

The Imagine stream processor [16] employs a 64KB stream
register file (SRF), rather than a cache, to capture the refer-
ence locality of streams. Entire streams are transferred
between the DRAMs and the SRF. This is more efficient
than a cache because a single instruction, rather than many
explicit instructions, can be used to transfer a stream of data
to or from memory.

Stream memory transfers (similar to vector memory trans-
fers) are independent operations that are isolated from com-
putation. Therefore, the memory system can be loading
streams for the next set of computations and storing streams
for the previous set of computations while the current set of
computations are occurring. A computation cannot com-
mence until all of the streams it requires are present in the
stream register file. The Imagine streaming memory system
consists of a pair of address generators, four interleaved
memory bank controllers, and a pair of reorder buffers that
place stream data in the SRF in the correct order. All of

Table 1. Scheduling policies for the precharge managers, row arbiters, and column arbiter.

Policy Arbiters Description

in-order
precharge, row,

and column

A DRAM operation will only be performed if it is required by the oldest pending reference. While
used by almost all memory controllers today, this policy yields poor performance compared to
policies that look ahead in the reference stream to better utilize DRAM resources.

priority
precharge, row,

and column

The operation(s) required by the highest priority ready reference(s) are performed. Three possible
priority schemes include: ordered, older references are given higher priority; age-threshold, refer-
ences older than some threshold age gain increased priority; and load-over-store, load references
are given higher priority. Age-threshold prevents starvation while allowing greater reordering
flexibility than ordered. Load-over-store decreases load latency to minimize processor stalling on
stream loads.

open precharge
A bank is only precharged if there are pending references to other rows in the bank and there are
no pending references to the active row. The open policy should be employed if there is significant
row locality, making it likely that future references will target the same row as previous references
did.

closed precharge
A bank is precharged as soon as there are no more pending references to the active row. The
closed policy should be employed if it is unlikely that future references will target the same row as
the previous set of references.

most pending row and column

The row or column access to the row with the most pending references is selected. This allows
rows to be activated that will have the highest ratio of column to row accesses, while waiting for
other rows to accumulate more pending references. By selecting the column access to the most
demanded row, that bank will be freed up as soon as possible to allow other references to make
progress. This policy can be augmented by one of the priority schemes described above to prevent
starvation.

fewest pending column

The fewest pending policy selects the column access to the row targeted by the fewest pending
references. This minimizes the time that rows with little demand remain active, allowing refer-
ences to other rows in that bank to make progress sooner. A weighted combination of the fewest
pending and most pending policies could also be used to select a column access. This policy can
also be augmented by one of the priority schemes described above to prevent starvation.

6

these units are on the same chip as the Imagine processor
core.

The address generators support three addressing modes:
constant stride, indirect, and bit-reversed. The address gen-
erators may generate memory reference streams of any
length, as long as the data fits in the SRF. For constant stride
references, the address generator takes a base, stride, and
length, and computes successive addresses by incrementing
the base address by the stride. For indirect references, the
address generator takes a base address and an index stream
from the SRF and calculates addresses by adding each index
to the base address. Bit-reversed addressing is used for FFT
memory references and is similar to constant stride address-
ing, except that bit-reversed addition is used to calculate
addresses.

Figure 5 shows the architecture of the memory bank con-
trollers.2 References arriving from the address generators
are stored in a small holding buffer until they can be pro-
cessed. Despite the fact that there is no cache, a set of regis-
ters similar in function to the miss status holding registers
(MSHRs) of a non-blocking cache [9] exist to keep track of
in-flight references and to do read and write coalescing.
When a reference arrives for a location that is already the
target of another in-flight reference, the MSHR entry for

that reference is updated to reflect that this reference will be
satisfied by the same DRAM access. When a reference to a
location that is not already the target of another in-flight ref-
erence arrives, a new MSHR is allocated and the reference
is sent to the bank buffer. The bank buffer corresponds
directly to the pending reference storage in Figure 4,
although the storage for all of the internal DRAM banks is
combined into one 32 entry buffer. The memory controller
schedules DRAM accesses to satisfy the pending references
in the bank buffer and returns completed accesses to the
MSHRs. The MSHRs send completed loads to the reply
buffer where they are held until they can be sent back to the
reorder buffers. As the name implies, the reorder buffers
receive out of order references and transfer the data to the
SRF in order.

In this streaming memory system, memory consistency is
maintained in two ways: conflicting memory stream refer-
ences are issued in dependency order and the MSHRs
ensure that references to the same address complete in the
order that they arrive. This means that a stream load that fol-
lows a stream store to overlapping locations may be issued
as soon as the address generators have sent all of the store’s
references to the memory banks.

For the simulations, it was assumed that the processor fre-
quency was 500 MHz and that the DRAM frequency was
125 MHz.3 At this frequency, Imagine has a peak computa-
tion rate of 20GFLOPS on single precision floating point
computations and 20GOPS on 32-bit integer computations.
Each memory bank controller has two external NEC
µPD45128163 SDRAM chips attached to it to provide a
column access width of 32 bits, which is the word size of
the Imagine processor. These SDRAM chips were briefly
described earlier and a complete specification can be found
in [13]. The peak bandwidth of the SDRAMs connected to
each memory bank controller is 500MB/s, yielding a total
peak memory bandwidth of 2GB/s in the system.

4.2 Benchmarks

The experiments were run on a set of microbenchmarks and
five media processing applications. Table 2 describes the
microbenchmarks above the double line, and the applica-
tions below the double line. For the microbenchmarks, no
computations are performed outside of the address genera-
tors. This allows memory references to be issued at their
maximum throughput, constrained only by the buffer stor-
age in the memory banks. For the applications, the simula-
tions were run both with the applications’ computations and
without. When running just the memory traces, dependen-
cies were maintained by assuming the computation occurred
at the appropriate times but was instantaneous. The applica-
tions results show the performance improvements that can

Figure 5. Memory bank controller architecture.

2. Note that these are external memory banks, each composed of
separate DRAM chips in contrast to the internal memory banks
within each DRAM chip.

From Address Generator 0

From Address Generator 1

Holding
Buffer

Reply
Buffer

Off-chip DRAM

To Reorder Buffer 0

To Reorder Buffer 1

Holding
Buffer

MSHRs

Bank
Buffer

Memory
Controller

Interface

Memory Bank

Scheduler

Memory
Access

Imagine Processor

Controller

3. This corresponds to the expected clock frequency of the Imag-
ine stream processor and the clock frequency of existing
SDRAM parts.

7

be gained by using memory access scheduling with a mod-
ern media processor. The application traces, with instanta-
neous computation, show the potential of these scheduling
methods as processing power increases and the applications
become entirely limited by memory bandwidth.

5 Experimental Results

A memory controller that performs no access reordering
will serve as a basis for comparison. This controller per-
forms no access scheduling, as it uses an in-order policy,
described in Table 1, for all decisions: a column access will
only be performed for the oldest pending reference, a bank
will only be precharged if necessary for the oldest pending
reference, and a row will only be activated if it is needed by
the oldest pending reference. No other references are con-

sidered in the scheduling decision. This algorithm, or slight
variations such as automatically precharging the bank when
a cache line fetch is completed, can commonly be found in
systems today.

The gray bars of Figure 6 show the performance of the
benchmarks using the baseline in-order access scheduler.
Unsurprisingly, unit load performs very well with no access
scheduling, achieving 97% of the peak bandwidth (2GB/s)
of the DRAMs. The 3% overhead is the combined result of
infrequent precharge/activate cycles and the start-up/shut-
down delays of the streaming memory system.

The 14% drop in sustained bandwidth from the unit load
benchmark to the unit benchmark shows the performance
degradation imposed by forcing intermixed load and store
references to complete in order. Each time the references
switch between loads and stores a cycle of high impedance
must be left on the data pins, decreasing the sustainable
bandwidth. The unit conflict benchmark further shows the
penalty of swapping back and forth between rows in the
DRAM banks, which drops the sustainable bandwidth down
to 51% of the peak. The random benchmarks sustain about
15% of the bandwidth of the unit load benchmark. This loss
roughly corresponds to the degradation incurred by per-
forming accesses with a throughput of one word every
seven DRAM cycles (the random access throughput of the
SDRAM) compared to a throughput of one word every
DRAM cycle (the column access throughput of the
SDRAM).

The applications’ behavior closely mimics their associated
microbenchmarks. The QRD and MPEG traces include
many unit and small constant stride accesses, leading to a
sustained bandwidth that approaches that of the unit bench-
mark. The Depth trace consists almost exclusively of con-
stant stride accesses, but dependencies limit the number of
simultaneous stream accesses that can occur. The FFT trace
is composed of constant stride loads and bit-reversed stores.
The bit-reversed accesses sustain less bandwidth than con-
stant stride accesses because they generate sequences of ref-
erences that target a single memory bank and then a
sequence of references that target the next memory bank
and so on. This results in lower bandwidth than access pat-
terns that more evenly distribute the references across the
four memory banks. Finally, the Tex trace includes constant
stride accesses, but is dominated by texture accesses which
are essentially random within the texture memory space.
These texture accesses lead to the lowest sustained band-
width of the applications. Note that for the applications,
memory bandwidth corresponds directly to performance
because the applications make the same number of memory
references regardless of the scheduling algorithm. There-
fore, increased bandwidth means decreased execution time.

5.1 First-ready Scheduling

The use of a very simple first-ready access scheduler
improves performance by an average of over 25% on all of

Table 2. Benchmarks.

Name Description

Unit Load
Unit stride load stream accesses with paral-
lel streams to different rows in different
internal DRAM banks.

Unit
Unit stride load and store stream accesses
with parallel streams to different rows in
different internal DRAM banks.

Unit Conflict
Unit stride load and store stream accesses
with parallel streams to different rows in the
same internal DRAM banks.

Constrained
Random

Random access load and store streams con-
strained to a 64KB range.

Random Random access load and store streams to the
entire address space.

FFT Ten consecutive 1024-point real Fast Fou-
rier Transforms.

Depth
Stereo depth extraction from a pair of
320x240 8-bit grayscale images.a

QRD
QR matrix decomposition of a 192x96 ele-
ment matrix.b

MPEG MPEG2 encoding of three frames of
360x288 24-bit color video.

Tex
Triangle rendering of a 720x720 24-bit color
image with texture mapping.c

a. Depth performs depth extraction using Kanade’s algo-
rithm [8]. Only two stereo images are used in the bench-
mark, as opposed to the multiple cameras of the video-
rate stereo machine.

b. QRD uses blocked Householder transformations to gen-
erate an orthogonal Q matrix and an upper triangular R
matrix such that Q·R is equal to the input matrix.

c. Tex applies modelview, projection, and viewport trans-
formations on its unmeshed input triangle stream and
performs perspective-correct bilinear interpolated tex-
ture mapping on its generated fragments. A single frame
of the SPECviewperf 6.1.1 Advanced Visualizer bench-
mark image was rendered.

8

the benchmarks. First-ready scheduling uses the ordered
priority scheme, as described in Table 1, to make all sched-
uling decisions. The first-ready scheduler considers all
pending references and schedules a DRAM operation for
the oldest pending reference that does not violate the timing
and resource constraints of the DRAM. The most obvious
benefit of this scheduling algorithm over the baseline is that
accesses targeting other banks can be made while waiting
for a precharge or activate operation to complete for the old-
est pending reference. This relaxes the serialization of the
in-order scheduler and allows multiple references to
progress in parallel.

Figure 6 shows the sustained bandwidth of the in-order and
first-ready scheduling algorithms for each benchmark. The
sustained bandwidth is increased by 79% for the
microbenchmarks, 17% for the applications, and 40% for
the application traces. As should be expected, unit load
shows little improvement as it already sustains almost all of
the peak SDRAM bandwidth, and the random benchmarks
show an improvement of over 125%, as they are able to
increase the number of column accesses per row activation
significantly.

5.2 Aggressive Reordering

When the oldest pending reference targets a different row
than the active row in a particular bank, the first-ready
scheduler will precharge that bank even if it still has pend-
ing references to its active row. More aggressive scheduling
algorithms are required to further improve performance. In
this section, four scheduling algorithms, enumerated in
Table 3, that attempt to further increase sustained memory
bandwidth are investigated. The policies for each of the
schedulers in Table 3 are described in Table 1. The range of
possible memory access schedulers is quite large, and cov-
ering all of the schedulers examined in Section 3 would be
prohibitive. These four schedulers were chosen to be repre-
sentative of many of the important characteristics of an
aggressive memory access scheduler.

Figure 7 presents the sustained memory bandwidth for each
memory access scheduling algorithm on the given bench-
marks. These aggressive scheduling algorithms improve the
memory bandwidth of the microbenchmarks by 106-144%,
the applications by 27-30%, and the application traces by
85-93% over in-order scheduling.

Unlike the rest of the applications, MPEG does not show a
noticeable improvement in performance when moving to

Figure 6. Sustained memory bandwidth using in-order and first-ready access schedulers (2 GB/s peak supplied bandwidth).

Figure 7. Sustained memory bandwidth of memory access scheduling algorithms (2 GB/s peak supplied bandwidth).

Table 3. Reordering scheduling algorithm policies.

Algorithm Column Access Precharging Row Activation Access Selection

col/open priority (ordered) open priority (ordered) column first

col/closed priority (ordered) closed priority (ordered) column first

row/open priority (ordered) open priority (ordered) row first

row/closed priority (ordered) closed priority (ordered) row first

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Unit Load Unit Unit Conflict Constrained
Random

Random

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

in-order

first-ready

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

Microbenchmarks Applications Memory Traces

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Unit Load Unit Unit Conflict Constrained
Random

Random

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

) in-order
first-ready
col/open
col/closed
row/open
row/closed

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

Microbenchmarks Applications Memory Traces

9

the more aggressive scheduling algorithms. On a stream
architecture like Imagine, MPEG efficiently captures data
locality within the SRF. This makes MPEG compute-bound,
thereby eliminating any opportunity for performance
improvement by improving the memory system bandwidth.
However, the performance on the memory trace can be
improved by the aggressive scheduling algorithms to over
90% of the peak bandwidth of the memory system.

The use of a column-first or a row-first access selection pol-
icy makes very little difference across all of the bench-
marks. There are minor variations, but no significant
performance improvements in either direction, except for
FFT. This has less to do with the characteristics of the
scheduling algorithm than with the fact that the FFT bench-
mark is the most sensitive to stream load latency, and the
col/open scheduler happens to allow a store stream to delay
load streams in this instance.

The benchmarks that include random or somewhat random
address traces favor a closed precharge policy, in which
banks are precharged as soon as there are no more pending
references to their active row. This is to be expected as it is
unlikely that there will be any reference locality that would
make it beneficial to keep the row open. By precharging as
soon as possible, the access latency of future references is
minimized. For most of the other benchmarks, the differ-
ence between an open and a closed precharge policy is
slight. Notable exceptions are unit load and FFT. Unit load
performs worse with the col/closed algorithm. This is
because column accesses are satisfied rapidly, emptying the
bank buffer of references to a stream, allowing the banks to
be precharged prematurely in some instances. This phenom-
enon also occurs in the QRD and MPEG traces with the
col/closed algorithm. FFT performs much better with an
open precharging policy because of the bit-reversed refer-
ence pattern. A bit-reversed stream makes numerous
accesses to each row, but they are much further apart in time
than they would be in a constant stride access. Therefore,
leaving a row activated until that bank is actually needed by
another reference is advantageous, as it eliminates the need
to reactivate the row when those future references finally
arrive.

Figure 8 shows the effects of varying the bank buffer size on
sustained memory bandwidth when using memory access
scheduling. The row/closed scheduling algorithm is used
with bank buffers varying in size from 4 to 64 entries. The

unit load benchmark requires only 8 entries to saturate the
memory system. The unit conflict and random benchmarks
require 16 entries to achieve their peak bandwidth. The unit
and constrained random benchmarks are able to utilize
additional buffer space to improve bandwidth.

A 16 entry buffer allows all of the applications to achieve
their peak memory bandwidth, which is 7% higher than
with a 4 entry buffer. Depth and MPEG are not sensitive to
the bank buffer size at all because they are compute-bound
on these configurations. The bandwidth of Tex improves as
the buffer size is increased from 4 to 16 entries because the
larger buffer allows greater flexibility in reordering its non-
strided texture references. QRD benefits from increasing the
buffer size from 4 to 16 because it issues many conflicting
stream transfers that benefit from increased reordering. For
the applications’ memory traces, there is a slight advantage
to further increasing the buffer size beyond 16; a 16 entry
buffer improves bandwidth by 27% and a 64 entry buffer
improves bandwidth by 30% over a 4 entry buffer. Again,
the sustainable bandwidth of FFT fluctuates because of its
extreme sensitivity to load latency.

To stabilize the sustainable bandwidth of FFT, load refer-
ences must be given higher priority than store references.
Write buffers are frequently used to prevent pending store
references from delaying load references required by the
processor [5]. As the bank buffer is already able to perform
this function, the col/open and row/open scheduling algo-
rithms can simply be augmented with a load-over-store pri-
ority scheme for their column access and row activation
policies. This allows load references to complete sooner, by
giving them a higher priority than store references, as
described in Table 1. Figure 9 shows that with the addition
of the load-over-store priority scheme, the FFT trace sus-

Figure 8. Sensitivity to bank buffer size.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Unit Load Unit Unit Conflict Constrained
Random

Random

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

4 Entries
8 Entries
16 Entries
32 Entries
64 Entries

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT Depth QRD MPEG Tex Weighted
Mean

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

Microbenchmarks Applications Memory Traces

Figure 9. Sustained memory bandwidth for FFT with load-
over-store scheduling.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

FFT FFT Trace

M
em

o
ry

 B
an

d
w

id
th

 (
M

B
/s

)

in-order
first-ready
col/open
row/open
load/col/open
load/row/open

FFT

10

tains over 97% of the peak memory system bandwidth with
both the load/row/open and load/col/open schedulers. Using
a load-over-store policy does not affect the other applica-
tions which are not as sensitive to load latency.

6 Related Work
Stream buffers prefetch data structured as streams or vectors
to hide memory access latency [7]. Stream buffers do not,
however, reorder the access stream to take advantage of the
3-D nature of DRAM. For streams with small, fixed strides,
references from one stream tend to make several column
accesses for each row activation, giving good performance
on a modern DRAM. However, conflicts with other streams
and non-stream accesses often evict the active row, thereby
reducing performance. McKee’s Stream Memory Controller
(SMC) extends a simple stream buffer to reduce memory
conflicts among streams by issuing several references from
one stream before switching streams [6] [12]. The SMC,
however, does not reorder references within a single stream.

The Command Vector Memory System (CVMS) [2] reduces
the processor to memory address bandwidth by transferring
commands to the memory controllers, rather than individual
references. A command includes a base and a stride which
is expanded into the appropriate sequence of references by
each off-chip memory bank controller. The bank controllers
in the CVMS utilize a row/closed scheduling policy among
commands to improve the bandwidth and latency of the
SDRAM. The Parallel Vector Access unit (PVA) [11] aug-
ments the Impulse memory system [1] with a similar mech-
anism for transferring commands to the Impulse memory
controller. Neither of these systems reorder references
within a single stream. Conserving address bandwidth, as in
the CVMS and PVA, is important for systems with off-chip
memory controllers, but is largely orthogonal to memory
access scheduling.

The SMC, CVMS, and PVA do not handle indirect (scatter/
gather) streams. These references are usually handled by the
processor cache, as they are not easily described to a stream
prefetching unit. However, indirect stream references do not
cache well because they are large and lack both spatial and
temporal locality. These references also do not typically
make consecutive column accesses to the same row,
severely limiting the sustainable data bandwidth when those
references are satisfied in order. The memory access sched-
uling techniques described here work for indirect streams as
well as for strided streams, as demonstrated by the improve-
ments in the random benchmarks and the Tex application.

Hitachi has proposed an access optimizer for embedded
DRAM as part of a system-on-a-chip and has built a test
chip containing the access optimizer and some DRAM [18].
This access optimizer implements a first-ready scheduler,
and is 1.5mm2, dissipates 26mW, and runs at 100MHz in a
0.18µm process. While the more aggressive schedulers
would require more logic, this should give a feel for the
actual cost of memory access scheduling.

7 Conclusions

Memory bandwidth is becoming the limiting factor in
achieving higher performance, especially in media process-
ing systems. Processor performance improvements will
continue to outpace increases in memory bandwidth, so
techniques are needed to maximize the sustained memory
bandwidth. To maximize the peak supplied data bandwidth,
modern DRAM components allow pipelined accesses to a
three-dimensional memory structure. Memory access
scheduling greatly increases the bandwidth utilization of
these DRAMs by buffering memory references and choos-
ing to complete them in an order that both accesses the
internal banks in parallel and maximizes the number of col-
umn accesses per row access, resulting in improved system
performance.

Memory access scheduling realizes significant bandwidth
gains on a set of media processing applications as well as on
synthetic benchmarks and application address traces. A sim-
ple reordering algorithm that advances the first ready mem-
ory reference gives a 17% performance improvement on
applications, a 79% bandwidth improvement for the
microbenchmarks, and a 40% bandwidth improvement on
the application traces. The application trace results give an
indication of the performance improvement expected in the
future as processors become more limited by memory band-
width. More aggressive reordering, in which references are
scheduled to increase locality and concurrency, yields sub-
stantially larger gains. Bandwidth for synthetic benchmarks
improved by 144%, performance of the media processing
applications improved by 30%, and the bandwidth of the
application traces increased by 93%.

A comparison of alternative scheduling algorithms shows
that on most benchmarks it is advantageous to employ a
closed page scheduling policy in which banks are pre-
charged as soon as the last column reference to an active
row is completed. This is in part due to the ability of the
DRAM to combine the bank precharge request with the
final column access. There is little difference in perfor-
mance between scheduling algorithms that give preference
to row accesses over column accesses, except that the
col/closed algorithm can sometimes close pages too soon,
somewhat degrading performance. Finally, scheduling loads
ahead of stores improves application performance for
latency sensitive applications.

Contemporary cache organizations waste memory band-
width in order to reduce the memory latency seen by the
processor. As memory bandwidth becomes more precious,
this will no longer be a practical solution to reducing mem-
ory latency. Media processing has already encountered this
phenomenon, because streaming media data types do not
cache well and require careful bandwidth management. As
cache organizations evolve to be more conscious of memory
bandwidth, techniques like memory access scheduling will
be required to sustain a significant fraction of the available
data bandwidth. Memory access scheduling is, therefore, an

11

important step toward maximizing the utilization of the
increasingly scarce memory bandwidth resources.

Acknowledgments

The authors would like to thank the other members of the
Imagine project for their contributions. The authors would
also like to thank Kekoa Proudfoot and Matthew Eldridge
for providing the Tex benchmark triangle trace data. The
research described in this paper was supported by the
Defense Advanced Research Projects Agency under ARPA
order E254 and monitored by the Army Intelligence Center
under contract DABT63-96-C-0037.

References
[1] CARTER, JOHN, ET AL., Impulse: Building a Smarter Memory

Controller. In Proceedings of the Fifth International Sympo-
sium on High Performance Computer Architecture (January
1999), pp. 70-79.

[2] CORBAL, JESUS, ESPASA, ROGER, AND VALERO, MATEO, Com-
mand Vector Memory Systems: High Performance at Low
Cost. In Proceedings of the 1998 International Conference
on Parallel Architectures and Compilation Techniques (Octo-
ber 1998), pp. 68-77.

[3] CRISP, RICHARD, Direct Rambus Technology: The New Main
Memory Standard. IEEE Micro (November/December 1997),
pp. 18-28.

[4] CUPPU, VINODH, ET AL., A Performance Comparison of Con-
temporary DRAM Architectures. In Proceedings of the Inter-
national Symposium on Computer Architecture (May 1999),
pp. 222-233.

[5] EMER, JOEL S. AND CLARK, DOUGLAS W., A Characterization of
Processor Performance in the VAX-11/780. In Proceedings of
the International Symposium on Computer Architecture (June
1984), pp. 301-310.

[6] HONG, SUNG I., ET AL., Access Order and Effective Bandwidth
for Streams on a Direct Rambus Memory. In Proceedings of
the Fifth International Symposium on High Performance
Computer Architecture (January 1999), pp. 80-89.

[7] JOUPPI, NORMAN P., Improving Direct-Mapped Cache Perfor-
mance by the Addition of a Small Fully-Associative Cache
and Prefetch Buffers. In Proceedings of the International
Symposium on Computer Architecture (May 1990),pp. 364-
373.

[8] KANADE, TAKEO, KANO, HIROSHI, AND KIMURA, SHIGERU, Devel-
opment of a Video-Rate Stereo Machine. In Proceedings of
the International Robotics and Systems Conference (August
1995), pp. 95-100.

[9] KROFT, DAVID, Lockup-Free Instruction Fetch/Prefetch Cache
Organization. In Proceedings of the International Symposium
on Computer Architecture (May 1981), pp. 81-87.

[10] LEE, RUBY B. AND SMITH, MICHAEL D., Media Processing: A
new design target. IEEE Micro (August 1996), pp. 6-9.

[11] MATTHEW, BINU K., ET AL., Design of a Parallel Vector Access
Unit for SDRAM Memory Systems. In Proceedings of the
Sixth International Symposium on High-Performance Com-
puter Architecture (January 2000), pp. 39-48.

[12] MCKEE, SALLY A. AND WULF, WILLIAM A., Access Ordering and
Memory-Conscious Cache Utilization. In Proceedings of the
First Symposium on High Performance Computer Architec-
ture (January 1995), pp. 253-262.

[13] NEC Corporation. 128M-bit Synchronous DRAM 4-bank,
LVTTL Data Sheet. Document No. M12650EJ5V0DS00, 5th
Edition, Revision K (July 1998).

[14] PATTERSON, DAVID, ET AL., A Case for Intelligent RAM. IEEE
Micro (March/April 1997), pp. 34-44.

[15] RANGANATHAN, PARTHASARATHY, ET AL., Performance of Image
and Video Processing with General-Purpose Processors and
Media ISA Extensions. In Proceedings of the International
Symposium on Computer Architecture (May 1999), pp. 124-
135.

[16] RIXNER, SCOTT, ET AL., A Bandwidth-Efficient Architecture
for Media Processing. In Proceedings of the International
Symposium on Microarchitecture (December 1998), pp. 3-13.

[17] SAULSBURY, ASHLEY, PONG, FONG, AND NOWATZYK, ANDREAS,
Missing the Memory Wall: The Case for Processor/Memory
Integration. In Proceedings of the International Symposium
on Computer Architecture (May 1996), pp. 90-101.

[18] WATANABE, TAKEO, ET AL., Access Optimizer to Overcome the
“Future Walls of Embedded DRAMs” in the Era of Systems
on Silicon. In IEEE International Solid-State Circuits Confer-
ence Digest of Technical Papers (February 1999), pp. 370-
371.

