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IMPLEMENTATION OF THE GMRES METHOD
USING HOUSEHOLDER TRANSFORMATIONS*

HOMER F. WALKER[

Abstract. The standard implementation of the GMRES method for solving large nonsymmetric
linear systems involves a Gram-Schmidt process which is a potential source of significant numerical
error. An alternative implementation is outlined here in which orthogonalization by Householder
transformations replaces the Gram-Schmidt process. This implementation requires slightly less stor-
age but somewhat more arithmetic than the standard one; however, numerical experiments suggest
that it is more stable, especially as the limits of residual reduction are reached. The extra arithmetic
required may be less significant when products of the coefficient matrix with vectors are expensive
or on vector and, in particular, parallel machines.
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systems, Householder transformations.

AMS(MOS) subject classifications. 65F10, 65N20

1. Introduction. Of interest here is the generalized minimal residual (GMRES)
method of Saad and Schultz [8]. This is an iterative method for solving large linear
systems of equations

(1.1) Ax b

in which A E Rnn is nonsymmetric. For a full description of this method and its
standard implementation, see [8]. For examples of its successful application to prob-
lems arising from the numerical solution of ordinary and partial differential equations,
see Brown and Sindmarsh [2] and Wigton, Yu and Young [10].

In brief, the GMRES method begins with an initial approximate solution xo and
initial residual ro b- Axo; at the mth iteration, a correction Zm is determined in
the Krylov subspace

Xm(V) span{v, Av,... ,Am-iv}
with v r0 which solves the least-squares problem

(1.2) min lib- A(xo + z)l]2.
z), (ro)

The mth iterate is then Xm xo + Zm. The correction Zm is chosen to reduce the
residual norm as much as possible among the space of allowable corrections, and
it is clear that the residual norm is nonincreasing from one iteration to the next.
Furthermore, one can show that if exact arithmetic were used, then the solution would
be reached in no more than n iterations [8, Corollary 3, p. 865].
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A natural approach to determining Zm is to determine a basis of Km (ro) and then
to solve an m-dimensional least-squares problem for the coefficients of the linear com-
bination of basis elements that solves (1.2). Since the method is likely to proceed
for a number of iterations, a basis should be determined for each m in a way which
allows economizing on the arithmetic incurred in incrementing m, e. g., by allowing
updating of the matrix factorizations used to solve the least-squares problems for in-
creasing values of m. An obvious choice of a basis for each m is {to, Aro,..., Am-lro},
and the solution of the least-squares problems for these bases can be carried out eco-
nomically as m is incremented (see Walker [9]). However, in many applications these
least-squares problems are likely to be very ill-conditioned even for fairly small values
of m, with a resulting degradation of the performance of the method. The GM-
RES implementation of [9], which uses these bases in conjunction with very stable
Householder transformations, was observed by Hindmarsh and Walker [5] to perform
significantly worse in stiff ODE solving experiments than the standard implementation
of [8]. We also found this implementation to perform far worse on the two numerical
problems outlined below than either the standard implementation or the implemen-
tation using Householder transformations given in the sequel, although details of the
performance of this implementation are not shown here. Consequently, the use of the
bases {ro, Aro,..., Am-ro} is not recommended.

The implementation of GMRES given by Saad and $chultz [8] determines Zm by
maintaining for each m a particular orthonormal basis {vi,..., Vm } of K’m (ro) together
with an upper-Hessenberg (m / 1) m matrix Hm. These are generated through
Arnoldi’s method, the basic form of which is the following:

ARNOLDI’S METHOD. Suppose Vl is given with Iiv1112 1.

For m 1, 2, do:
a. Set

him (Avm)TVi, i 1, 2,...,
Om+l Avm im= him
hm/,m I1m/1112,

b. If hm+l,m -0, then stop; otherwise, set
Vm+l ?m+l / hm+l,m.

Clearly {v,..., Vm } generated by Arnoldi’s method is an orthonormal basis of K, (v)
for each m. In the GMRES implementation of [8], v ro/llrol[2 and the h.’s
constitute the (possibly) nonzero elements of the matrices Hm. Note that

A(v, Vm) (V, Vmq-1)Hm

for each m.
With these orthonormal bases and upper-Hessenberg matrices, Zm is determined

as follows" Setting z (Vl,..., Vm)y for y E Rm gives

(1.3)
lib- A(xo + z)l12 min Ilro A(vl,... Vm)Yll

y l:

min Ilro-(Vl,... Vm+)Hmyll2.

Since Vl is ro/llrollu and since {Vl,..., Vmh-1} is orthonormal, one has

(1.4)
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where el is the first canonical basis vector in Rm+l. It follows from (1.3) and (1.4)
that Zm (Vl,..., Vm)Ym where Ym solves

(1.5)

In fact, this characterization of Zm is valid even when hm+l,m 0, which occurs if
and only if the solution Ym of (1.5) yields zero residual. Thus the GMRES method is
forced to stop at the mth iteration if and only if Xm is the solution of (1.1).

Since Hm is upper-Hessenberg, (1.5) is easily solved. In actual practice, Hm is
maintained in factored form, and the factors are updated with each increment of m.
Typically, Hm is factored as Hm QmRm, where Qm is a product of Givens rotations
and Rm is upper-triangular. In this case (1.5) is equivalent to

yERm

and Ym is obtained by solving an upper-triangular system. Note that the absolute value
of the last coordinate of Ilroll2QTmel is just lib- Axmll2, and so the residual at the
mth iteration can be determined without actually having to compute the correction.

At the heart of Arnoldi’s method is a Gram-Schmidt process, and so we refer to the
GMRES implementation of [8] as the Gram-Schmidt implementation. The basic form
of Arnoldi’s method given above employs the classical Gram-Schmidt process, which
is numerically untrustworthy. Because of roundoff, there may be severe loss of or-
thogonality among the computed Vm’S. In practice, it is usual to implement Arnoldi’s
method using the modified Gram-Schmidt process (see Golub and Van Loan [4]).
Mathematically, this is just a rearrangement of the classical process; computationally,
it has superior properties.

Even the modified Gram-Schmidt process can fail to perform well if the vectors on
which it operates are not sufficiently independent. Indeed, if S (sl,... ,sin) is an
n m matrix the columns of which are to be orthonormalized and if Q (ql,. qm)
is the computed result of applying modified Gram-Schmidt to the columns of S using
floating point arithmetic with unit rounding error u, then Bjorck [1] has shown that

(1.6) QTQ I + E, [IEll2

where the condition number 2 (S) is the ratio of the largest singular value of S to the
smallest. It follows that at the mth step of Arnoldi’s method using modified Gram-
Schmidt, Vm+ may have a significantly nonzero conponent in the span of {vl,. Vm }
if 2((vl,...,vm,Avm)) is large, i. e., if Avm is nearly in the span of {vl,...,Vm}.
Shad [7, p. 214 has suggested that the Gram-Schmidt process in Arnoldi’s method
may be an important source of errors in the full and incomplete orthogonalization
methods ([6],[7]), which are related to GMRES.

There is an alternative orthogonalization procedure based on the use of Householder
transformations which is reliable even if the vectors to be orthonormalized are not very
independent. A Householder transformation is of the form P I- 2uuT, where I is
the identity matrix and Ilul12 1 We refer to u as the Householder vector which
determines P. Note that p-1 pT p. Also, note that the action of P on a vector
or matrix can be easily determined using u; in particular, one need not explicitly
form or store P in the applications of interest here. If two vectors of the same norm
are given, then it is easy to determine P so that it takes one vector into the other;
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furthermore, if the first k components of the two vectors are the same, then the u
which determines P can be chosen so that its first k components are zero. For more
on the properties and uses of Householder transformations, see Golub and Van Loan
[41.
To orthonormalize the columns of S (Sl,...,Sm), one determines House-

holder transformations P1,...,Pm such that Pro... PIS R, an upper-triangular
matrix. It is natural to determine PI,..., Pm inductively by the requirement that
Pk...P(s,...,sk) be upper-triangular for k 1,...,m; if Pm...PS R, then
this requirement is met if and only if for k 2,..., m the first k- 1 components of
the Householder vector determining Pk are zero. Since S P1... P,R, the matrix Q
consisting of the first m columns of P1... Pm gives the desired orthonormalization of
the columns of S. If Q is computed in floating point arithmetic with unit rounding
error u, then (Bjorck [1])

(1.7) QTQ I + E, [IEllu u.

In view of the greater reliability of orthogonalization based on Householder trans-
formations, as reflected in (1.6) and (1.7), it seems worthwhile to consider implemen-
tations of the GMRES method in which this orthogonalization replaces the Gram-
Schmidt process in the implementation of [8]. We outline one such Householder im-
plementation here. It is based on a particular method of using Householder transfor-
mations to generate orthonormal bases of Krylov subspaces. This method is essen-
tially that used by Golub, Underwood and Wilkinson [3] in their implementation of
the Lanczos algorithm; see also Golub and Van Loan [4, pp. 334-335]. An analogous
implementation can be formulated without difficulty for the full orthogonalization
method of Shad [6], but we do not give this here.

Our experiments indicate that the Householder implementation given here has bet-
ter numerical properties than the Gram-Schmidt implementation, especially in the
final iterations when the limits of residual reduction are neared. This Householder
implementation uses slightly less storage than the Gram-Schmidt implementation;
however, it requires additional arithmetic. The increase in arithmetic is always less
than a factor of three, and we mention several important circumstances in which
it may not be an overriding concern. We also give a variation of the Householder
implementation of GMRES which may be useful in some circumstances on parallel
computers. This variation is obtained by using simple formulas to express products of
Householder transformations acting on vectors as operations involving matrix-vector
products. In our experiments, this variation performed well while analogous vari-
ations of the Gram-Schmidt implementation, which use the classical Gram-Schmidt
process, did not perform as effectively.

Notational conventions are as follows: Matrices are denoted by capital letters
whereas vectors and scalars are denoted by lower case letters.
Vector components and matrix entries are indicated by superscripts in parentheses,
e. g., v (i) denotes the ith component of the vector v. With or without subscripts or
other distinguishing marks, the letters H, J, L, P, and R always indicate matrices of
the following respective types: upper-Hessenberg, Givens rotation, lower-triangular,
Householder transformation, and upper-triangular. (See Golub and Van Loan [4] for
definitions and properties.) The ith canonical basis vector, i. e., the ith column of the
identity matrix I, is denoted by ei. Dimensions of vectors and matrices and, when
appropriate, their (possibly) nonzero elements are implicit from the contexts in which
they appear. For example, if R is p x q upper-triangular and we write R (ce, H, h),
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then H must be p x (q- 2) upper-Hessenberg and h must be a p-vector with zero
components after the qth.

2. The Householder implementation. We first formulate an algorithm which uses
Householder transformations to generate orthonormal bases of Krylov subspaces. Sim-
ilar use of Householder transformations is made in the references [3], [4] cited in the
introduction.

ALGORITHM 2.1. Suppose V is given with Iiv1112 1.

1. Choose P1 such that Ply1 -el.
2. For m 1, 2,..., do:

a. Set Vm P1 ...Proem.
b. If (Vl, AVl,..., Avm) has rank m, then stop;

otherwise, choose Pm+l such that
Pro+ 1... P1 (Vl, AVl,..., Avm) is upper-triangular.

LEMMA 2.1. A set {Vl,...,Vm} generated by Algorithm 2.1 is an orthonormal
basis of m(v1).

Proof. The lemma is trivially true if m 1, so suppose m > 1. The facts that
PlY1 el and Pk... P1 (Vl, Avl,..., Avk-1) is upper-triangular for k 2,..., m imply
that for k 2,..., m the first k- 1 components of the Householder vector determining
Pk are zero. It follows that for 1 <_ k <_ m, vj P1... Pkej for j 1,..., k, i.e., that

(2.1) Pl ...Pk (Vl,’’’,Vk,’’’), 1 <_ k <_ m.

In particular, P1... Pm (Vl,..., Vm,...), and so {Vl,..., Vm} is an orthonormal set.
It remains to show that Xm (Vl) span{v1,..., Vm }. Certainly gl(Vl) span{v1}.

Suppose that

K’k(Vl) span{vl,AVl,... ,Ak-lvl } span{vl,..., Vk}

for some k such that 1 < k < m. Then

’k-{-1 (Vl) span{v1, Avl,..., Akvl} span{vl, Avl,..., Avk }.

Since k < m, (Vl, AVl,..., Avk) has rank k -{- 1, and so Pk+l... Pl(Vl, Avl,..., Avk)
is an upper-triangular matrix which also has rank k -{- 1. Consequently, the span of
{vl,AVl,... ,Avk} is the span of the first k/ 1 columns of P1...Pk+l. It follows from
(2.2) and (2.1) that ’kd-l(Vl)--span{vl,...,vk+i), and the induction is complete.

To use Algorithm 2.1 in implementing the GMRES method, we take vi :t:ro/[Iro[[2,
where for numerical soundness the sign is chosen so that the first component of Vl is
positive. At the ruth step of Algorithm 2.1, if (Vl, Avl,..., Avm) is of full rank, then
we choose Pm+l according to Algorithm 2.1 and set

Pro+1... P1 (Avl, Avm) Hm.

Writing z (Vl,... vm)y for y E Rm, one has

lib- A(xo + z)[[2 min [[ro A(vl,... vm)y[[2
yR

min [[-[-Ilroll2l- Hmy[[2.
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It follows that Zm (Vl,..., Vm)Ym, where Ym solves

(2.3)
yEl:t

As in the GMRES implementation of [8], the least-squares problem (2.3) is solved by
maintaining a factorization Hm QmRm, where Qm is a product of Givens rotations
and Rm is upper-triangular; these factors are updated with each increment of m. Then
(2.3) is equivalent to

min {{-i-Ilroll2QTmel- Rmy{]
2yER

and Ym is found by solving an upper-triangular system. Note that the absolute value
of the last coordinate of =t=llroll2QTmel is lib- Axmll2, and as in the Gram-Schmidt
implementation the residual can be found without having to compute the correction.
We give a complete outline of our Householder implementation of the GMRES

method below. This implementation is of a "restarted" version of the method, in
which the iteration proceeds for no more than a preset maximum number of times,
which we assume to be less than or equal to n.

ALGORITHM 2.2. Suppose an initial approximate solution xo, a tolerance TOL,
and an iteration limit MAXIT are given.

1. Compute ro b-Axo, and determine P such that Plro +/-llrolJ2el w.

2. For m 1,2, MAXIT, do:
a. Evaluate v Pro... P1AP1. Proem.
b. Ifv(re+l) v(n) 0, then proceed to step (e); otherwise, continue.
c. Determine Pm+l with a Householder vector having first m components

zero such that Pm+V has zero components after the (m / 1)st.
d. Overwrite v Pro+ v.
e. If m > 1, overwrite v Jm-1... Jlv.
f. If v(m+) -O, proceed to step (i); otherwise, continue.
g. Determine Jm acting on components m and m / 1

such that (Jmv) (m+) O.
h. Overwrite v Jmv and w Jmw.
i. Set

Rm (Rm-l,V),
if m= 1;
if m> 1.

j. If Iw(m+l) _< TOL or m MAXIT, then solve for Ym and overwrite
xo with Xm; otherwise, increment m.

3. Solve for Ym and overwrite xo with Xm.
a. Determine Ym which minimizes IIw- RmylI2 by solving an m m upper-

triangular system with the first m rows of Rm as the coefficient matrix
and the first m components of w as the right-hand side.

b. For k- 1,...,m, do:
Overwrite xo xo / y(mk)p... Pkek.

C. If Iw(m+l) _< TOL, accept xo as the solution; otherwise, return to 1.

In Algorithm 2.2, the Householder vectors determining P1,..., Pm are stored in-
stead of the orthonormal basis vectors Vl,..., Vm. Each basis vector vm P Proem
is generated when needed as part of larger computations in steps (2.a) and (3.b). Of
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course, the basis vectors generated in step (2.a) can be stored for later use in step (3.b)
if this is preferable to regenerating them in step (3.b). The Householder vectors are
of decreasing length, and they together with the upper-triangular matrices generated
by the algorithm can be stored in an array of dimension n (MAXIT / 1). This is
somewhat less storage than is required by the Gram-Schmidt implementation, which
stores full-length orthonormal basis vectors as well as upper-triangular matrices. Since
MAXIT << n in most applications, this savings in storage is unlikely to be a major
advantage.

Algorithm 2.2 requires more arithmetic than the Gram-Schmidt implementation
because of the need to generate basis vectors in steps (2.a) and (3.b). This arithmetic
is not necessary in the Gram-Schmidt implementation since orthonormal basis vectors
are available from storage. Except for this, the arithmetic needed by the Householder
and Gram-Schmidt implementations is about the same, and both require the same
number of products of A with vectors. For a more detailed comparison, we count
the number of multiplications and products of A with vectors required by the two
algorithms, assuming that MAXIT << n and ignoring terms less than O(n).

In Algorithm 2.2, step (1) requires about 2n multiplications and one A-product.
For each m, steps (2.a) and (2.d) require about 4nm multiplications and one A-
product. If a total of m iterations are performed in step (2), then about 2nm(m / 1)
multiplications and m A-products are required. For each k, step (3.b) requires about
2n(k-1)+n 2nk-n multiplications, and so step (3.b) requires a total of about nm2

multiplications. Thus Algorithm 2.2 requires about n(3m2 + 2m + 2) multiplications
and m+ 1 A-products to carry out m GMRES iterations and to compute the resulting
approximate solution. The Gram-Schmidt implementation requires one A-product to
compute the initial residual and about 2n multiplications to normalize it. At the mth
GMRES iteration, one A-product and about 2n(m / 1) multiplications are needed to
produce the next orthonormal basis vector. If a total of rn iterations are performed,
then about nm(m+3) multiplications and m A-products are required. Computing the
approximate solution after m iterations requires about nm additional multiplications.
The Gram-Schmidt implementation then requires about n(m+4m+2) multiplications
and m + 1 A-products to carry out m GMRES iterations and compute the resulting
approximate solution. There is a variation of the Gram-Schmidt implementation in
which successive basis vectors are "reorthogonalized", i. e., subjected again to the
Gram-Schmidt process, in the hope of reducing loss of orthogonality due to numerical
error. If reorthogonalization is carried out before normalization at every GMRES
iteration, then this variation requires about n(2m2 /5m/ 2) multiplications and m/ 1
A-products to carry out m GMRES iterations and compute the resulting approximate
solution.

The cost of the additional arithmetic required by Algorithm 2.2 may be significant;
however, it may not be prohibitive if MAXIT is small or if computation is done
on vector computers which effectively reduce the expense of applying Householder
transformations to vectors. Also, it may not be a very significant part of the overall
computational expense in applications in which A-products are relatively costly or in
which the GMRES iterations themselves are only a small part of a larger computa-
tion. One such application is that given by Brown and Hindmarsh [2] to stiff ODE
solving. There, A-products are approximated by forming difference quotients of values
of nonlinear functions and the iterative solution of linear systems is itself only a part
of the total effort of solving stiff ODE initial-value problems. Finally, our numeri-
cal experiments suggest that the variation of the Householder implementation given
in the next section may offer an opportunity for effectively exploiting parallelism in
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some instances. Analogous variations of the Gram-Schmidt implementation use the
classical Gram-Schmidt process and are not as numerically sound.
A numerical experiment. We compared the performance of the Householder and

Gram-Schmidt implementations of the GMRES method on a nonsymmetric linear
system arising from the discretization of the boundary value problem

d
Ou

Au + cu + x f inD,

u 0 on OD,

where D [0, 1] x [0, 1] and c > 0 and d are constants. In our trials, we took
f(x) 1 and used a 100 100 mesh of discretization points on D. We used a variety
of values of c and d ranging from 1 to 1000, and the maximum number of GMRES
iterations allowed before restarting (MAXIT in Algorithm 2.2) ranged from 5 to 50.
No preconditioning was used in order to keep the issues of interest clear. Computing
was done in single precision on a Digital Equipment Corporation MicroVAX II running
Ultrix and using the f77 Fortran compiler.

L

o.o o’o.o o’o.o o’o.o o’o.o
no. o LteratLons

FIG. 1. The solid line is from the Householder implementation. The dotted line is from the Gram-Schmidt
implementation.

For each trial, we plotted the logarithm of the residual norm versus the number
of iterations for the two implementations. It is important to note that in these trials
the residual norms were determined "from scratch," i.e., at each iteration, the current
approximate solution was computed and multiplied by the coefficient matrix, then the
right-hand side vector was subtracted and the norm taken. In particular, the residual
norms were not taken to be the values maintained by the GMRES implementations.
An important aspect of these trials is that they show the unreliability of these values
as the limits of residual reduction are neared.

The results shown in Figure 1 are typical. They were obtained with c d 100 and
with the maximum number of iterations allowed before restarting equal to 10. Note
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the "sawtooth" pattern of residual-norm levels which appears as the limits of resid-
ual reduction are reached. This pattern continues unabated as additional iterations
are made. It is exhibited by both implementations, but it is much more pronounced
for the Gram-Schmidt implementation. We also tested the Gram-Schmidt imple-
mentation with reorthogonalization in this case and found the results to be visually
indistinguishable from those produced by the Gram-Schmidt implementation without
reorthogonalization.

3. A variation. We now give a variation of Algorithm 2.2 in which the products
of Householder transformations acting on vectors are replaced by operations which
to a large extent can be performed concurrently. Our hope is that this variation will
provide an effective way of exploiting parallelism in circumstances which favor eval-
uating matrix-vector products in parallel. We count as matrix-vector products such
operations as computing the inner products of a vector with the vectors in some set
and accumulating a sum of scalar multiples of vectors in some set. The modified
Gram-Schmidt process is inherently sequential, and the only apparent variations of
the Gram-Schmidt implementation of GMRES which can take advantage of paral-
lelism similarly use the potentially unstable classical Gram-Schmidt process. We have
no proof of the numerical superiority of the variation of the Householder implemen-
tation given here, but we describe a numerical experiment below in which it performs
significantly better than the Gram-Schmidt implementation using the classical Gram-
Schmidt process, even when reorthogonalization is done.

The variation of Algorithm 2.2 is based on the following: If v, Wl, Zl,..., win, Zm
are vectors, then one can write

(I + WmZT) (I + WlZ’)v v -[- d(1)Wl --...-- d(m)wm,
where d(1),..., d(m) are determined by

d() zT1 v,

z[v + +... +
Note that (3.1) is equivalent to specifying d (d(1),...,d(m))T by solving Ld
(z,..., Zm)TV using forward substitution, where

(3.2)

Then one can write

1 0 0

--zT wx 1 0
L

--ZTmWl --ZTmWm_I 1

(I + W,ZTm) (I + WZ’()V {I + (Wl,..., wm)L-l(zl,. ,Zm)T } v,

with L given by (3.2). It follows in particular that if one has Householder transforma-
tions Pk I- 2UkU’, k 1, m, and a vector v, then

Pm ...Pv {I- 2UmLUm} v,(3.3)
where

(3.4) Um= (u,. urn) and Lm

1 0 0

2uT2 ul 1 0

2UTmUl 2UTmUm_I 1
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Similarly,

Pl ...Pmv {I 2Vm(LTm)-lVTm} v,

where Um and Lm are given by (3.4). It is understood that the steps in evaluating
Pro... Ply using the right-hand side of (3.3) are the following:

1. Evaluate UmTv.
2. Solve Lind --2UTmV by forward substitution.
3. Evaluate

Similar remarks hold for evaluating the right-hand side of (3.5).
The full outline of the variation of Algorithm 2.2 is given in the following algorithm.
ALGORITHM 3.1. Suppose an initial approximate solution xo, a tolerance TOL,

and an iteration limit MAXIT are given.

1. Compute ro b- Axo, determine PI I- 2UlU such that
Pro +/-[Iroll2e =- w, and set U (u) and L1 (1).

2. For m 1,2, ..., MAXIT, do:
a. Evaluate v =_ {I 2UmLjn1UTm}A{I 2Urn (LTm)-UTm}em.
b. If v(m+) v(n) O, then proceed to step (e); otherwise, continue.

uT with Um having first m compo-c. Determine Pm+ I 2urn+ m+ +1
nents zero such that Pro+iv has zero components after the (m / 1)st.

d. Overwrite v Pm+v.
e. If m > 1, overwrite v Jm-... Jv.
f. If v(m+) ---O, proceed to step (i); otherwise, continue.
g. Determine Jm acting on components m and m/1 such that (Jmv) (m+) O.
h. Overwrite v Jmv and w Jmw.
i. Set

(v), if m 1;Rm-- (Rm-l,V), ifm > 1.

j. If [w(m+l) _< TOL or m MAXIT, then solve for Ym and overwrite
xo with Xm; otherwise, continue.

k. Set Urn+ (Urn, Urn+), evaluate

I-,m+ 2um+ Um 1

and increment m.. Solve for m and overwrite xo with xm.
a. Determine m which minimizes IIw- R,II by solving an m x m upper-

triangular system with the first rn rows of/ as the coefficient matrix
and the first m components of w as the right-hand side.

b. Overwrite o xo + {I- gm(L)-lgmT}(el,... ,em)Ym.
e. If Iw(m+l <_ TOL, accept :co as the solution; otherwise, return to 1.

A numerieal eperimen. We compared the performance of Algorithm 3.1 with that
of the Gram-Sehmidt implementation of GMRES using the classical Gram-Sehmidt
process with and without reorthogonaliation. There was essentially no difference in
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the performance of these implementations on the problem considered in the preceding
section. However, the difference was significant on a contrived problem (1.1) in which

1 0 0 a 1
0 2 0 0 1

A and b

0 0 0 n 1

As in the numerical experiment in the preceding section, we plotted the logarithm of
the residual norm versus the number of iterations for these implementations, with the
residual norm computed "from scratch." The computing environment and precision
were the same as before, and again no preconditioning was used.

Algorithm 3.1 performed markedly better than the Gram-Schmidt implementations
in our trials. The results shown in Figure 2 are typical. These results were obtained
with n 100, a 2,000, and with the maximum number of iterations allowed before
restarting equal to 32. The Gram-Schmidt implementation without reorthogonaliza-
tion performed very poorly. The Gram-Schmidt implementation with reorthogonal-
ization performed considerably better but did not achieve the final residual reduction
of Algorithm 3.1 and appeared to suffer greater instability as the limits of residual
reduction were approached. Although not shown, the performance of Algorithm 2.2
was about the same as that of Algorithm 3.1 in this and other trials.

F!G. 2. The solid line is from the variation of the Householder implementation. The dashed and dotted
lines are from the Gram-Schmidt implementations using the classical Gram-Schmidt process with and without
reorthogonalization, respectively.
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