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Abstract

Alternating Direction Implicit (ADI) schemes are constructed for the solution of two-dimensional higher-order
linear and nonlinear diffusion equations, particularly including the fourth-order thin film equation for surface
tension driven fluid flows. First and second-order accurate schemes are derived via approximate factorization of
the evolution equations. This approach is combined with iterative methods to solve nonlinear problems. Problems
in the fluid dynamics of thin films are solved to demonstrate the effectiveness of the ADI schemes.
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1. Introduction

In this article we build on the existing literature for second-order problems to construct and compare
classes of alternating direction implicit (ADI) schemes for nonlinear higher-order parabolic equations.
For nonlinear problems, we combine this approach with iterative methods for solving nonlinear
systems [39,58]. As in [36], we focus on the time-stepping of the ADI schemes, and expect that the
effects of spatial discretization in the numerical simulations will not significantly change our analysis of
smooth solutions for diffusive problems. We present these schemes in terms of approximate factorization
of the evolution equation [26,44,64] although they may also be interpreted in terms of additive operator
splitting [35,44].

Use of ADI methods for linear second- and fourth-order parabolic problems has a long history [14,24].
Recent work in numerical simulations of problems in fluid dynamics [28,29,59,60], has made extensive
use of these classical methods [14-16]. We extend this foundation and focus on the solution of fourth-
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order nonlinear parabolic equations in two dimensions. These problems arise in the study of surface
tension driven flow of thin liquid films [50,55]. In the formulation of these free surface problems, the
local flux of fluid is determined by gradients of the curvature of the surface. Such evolution equations for
the motion of the graph of the free surfagce- u(x, y, r) take the general form,

aa—l:+v-(f(u)VH)=o, (1.1)
where H is the mean curvature of the surface. In the study of lubrication flows of thin liquid films, the

mean curvature of the surface [22] is approximated by the Laplacian in the small gradieriMimi 1,

Uyper/ 1+ uf + sy /14 U2 — 2u uyuy,
H=
L+ u2 +u2)32

to yield a class of fourth-order nonlinear diffusion equations, called generalized thin film equations [9,
50,55],

88—’: + V- (fw)VV2u) =0. (1.3)

A brief list of some recent research in fluid dynamics involving numerical simulations of this class of
two-dimensional problem includes [21,28,29,52,53,59,60]. For most of this article we will focus on
methods for the thin film equation (1.3), however we will also describe how our methods can naturally be
applied to more strongly nonlinear equations like (1.1). Generalizations of (1.1), whelsn depends
on gradients ofi, have also been applied to problems involving surface diffusion of thin solid films [8],
generalized curvature evolution models for image processing [63,65], flows of non-Newtonian fluids [42],
and many other models in emerging areas of scientific research [41].

The numerical solution of differential equations of the form (1.3) poses several problems;

= Uy + Uy +O(|Vul?), (1.2)

(i) fourth-order parabolic equations are very stiff; the stability constraint on the time-step for explicit

methods At = O(Ax?%), is prohibitive, hence implicit methods are necessary,

(i) Eq. (1.3) is quasilinear and (1.1) is strongly nonlinear, hence convergence and accuracy are
important considerations,

(iii) for fluid dynamics applications, (1.3) is a degenerate equation, With = O(u?) asu — 0 with
p = 0, numerical solution of problems of this form become very sensitive to details of the numerical
scheme foi — 0 [9,33,67],

(iv) for two-dimensional problems, the spatial operator necessarily includes mixed derivative terms
which complicate splitting schemes.

The ADI schemes developed in this paper take a form that is easily generalized to the higher-order
analogue of (1.3) [7,41,61],

0

a_b; + (=)W (f)VVZu) =0, m=23..... (1.4)

These yet-higher-order equations have been suggested in connection with diffusion in semi-conductors
and in other physical systems [41]. Very little work has been done on these models, partly because they
accentuate the difficulties of (1.3)—they are even stiffer and have many more mixed derivative terms.

However, we will show that they can be treated in the same framework as (1.3) with our ADI schemes.
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In Section 2 we investigate linear constant coefficient problems for (1.3) and (1.4)f\ith= 1
and further generalize these results to the case wfigeea known function ofr, y andr. Section 3
addresses the nonlinear problem and discusses appropriate iterative schemes. Following this, in Section 4
we discuss discretizations of the spatial operators and relevant boundary conditions. We conclude in
Section 5 by employing the ADI methods developed in the previous sections to solve problems arising
out of the study of thin film flow [10,11,66].

It is hoped that this paper serves a dual role, firstly as a review of previous research on ADI schemes,
and secondly to develop extensions of such schemes that can facilitate numerical studies of higher-
order nonlinear parabolic problems arising from new mathematical models of a diverse range of physical
phenomena [41].

2. Theconstant-coefficient linear problem

We begin with the analysis of the linear problem for (1.3) whg¢e) = 1,
u; + Vi =0, (2.1)

with the two-dimensional biharmonic operat®tu = u . + 2u .y + Utyyyy . Equations of this form are
fundamental parts of many applied mathematical models, examples of which include; the Cahn—Hilliard
equation for binary mixtures [27,51], the Kuramoto-Sivashinsky equation for instabilities of flame fronts
in combustion theory [37], the Benney equation for surface waves on liquid films [6], and linearized
models of the spreading of thin viscous films [9]. ADI methods for problems involving the biharmonic
operator date back to the work of Conte and Dames [14—16] describing vibrational modes for thin plates;
Eqg. (2.1) describes the motion of a strongly damped plate.

2.1. First-order methodsi-weighted schemes

We first consider single-step time discretizations of (2.1) involving only the time-gtem@sdu"+1. In
this semi-discrete formulation we use the notatign, y, ") = u” (x, y) and"** =" + At, where the
superscripts denote discrete time steps. The finite difference approximation of the time derivative is taken
to beu, = "t — u")/ At + O(At). We apply the spatial operator 4o= 6u" 1 + (1 — 6)u”, called the
one-step generalized trapezoid ruleewneighted scheme. The discretization for (2.1) is then given by

utt — " 4 At[9V4u"+l + (- 9)V4u"] =0. (2.2)

Foro =1/2, (2.2) is a second-order accurate Crank—Nicolson scheme; for all @timed < 6 < 1,
the scheme is first-order accurate. o 0, (2.2) yields an explicit forward Euler scheme, while
6 = 1 corresponds to the unconditionally stable backward Euler method. Solving (2.2) fer-Arty
is an implicit problem foru”** involving the inversion of a two-dimensional spatial operator. Using
approximate factorization of this operator, ADI schemes solve this problem through the inversion of
simpler one-dimensional operators.

Separating implicit and explicit terms in (2.2) yields

(I +0AtVHutt = (I — (1 —0)AtVYu", (2.3)
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where I is the identity operator. The two-dimensional spatial operator acting’ohin (2.3) can be
expressed a sum of mixed-derivative terms and products of one-dimensional operators,

I +0AtV =L, L, +20Atd,,,, —0°At*D,D,, (2.4)
where the one-dimensional operators used above are

L,=I+6AtD,, L,=1+6AtD,, (2.5)
with

D,=d,:», D,=30,,,. (2.6)

Since (2.3) is at most second-order accurate, without loss of accuracy we can apply\tie €ghth
derivative operator, the last term on the right-side of (2.4)"tmstead ofu"+! to reduce it to an explicit
term while introducing only higher-order corrections(/0%). Applying the same approximation to the
mixed-derivative term 2A¢d,,,, similarly shifts it to operate on the explicit solutiafi, at the price of
reducing the scheme to first-order accuracy in time fof all

L.Lyu"™ = (I —1-0)AtV* —20Atd,yy, +0°At*D, D,)u". (2.7)

If the mixed derivative were not present, then second-order accuracy in time could be achieved for
6 = 1/2. ADI schemes for second-order linear parabolic equations with mixed derivative terms have been
considered by many authors [5,17,23,45,46,48]. Beam and Warming [5] give a thorough analysis of linear
one- and two-step ADI methods for second-order linear parabolic equations and show that the restriction
to first-order accuracy for one-step methods is unavoidable in the presence of mixed derivatives.

We note that Douglas and Gunn [23] suggested a splitting scheme using four operators allowing mixed
derivative terms to be treated implicitly, however their approach cannot easily be extended to the class of
boundary value problems for (1.3) we seek to solve (see Section 5). We will also not pursue the option
of splitting (2.1) into a system [30] of the form = V2P, with P = —V?u, corresponding to a pressure
field, though this approach has been used by other authors [3,33].

We use the approximate factorization (2.7) to write a first-order ADI scheme for (2.3) in the form

Lot = (I —(1—0)AtV* — 20Atd,,d,,)u" —OAtD ",
Lyu”+1 =u*+0AtDu",
whereu* represents an intermediate result obtained from solvind.thproblem. The original form of
(2.7) can be recovered by simply applying the operator to theL 4" equation. Eq. (2.7) can be
factored to yield various ADI schemes. We do not discuss these further, however it is noteworthy that
(2.8) is similar to the D’Yakanov form [47,62].
We can derive a more compact form of the ADI scheme (2.8) by subtraLtifigu" from both sides
of (2.7) to yield a factored equation for the change between successive timerstepsi! — u”, [2,4,
64], whereby we obtain
L,Lyv=—AtV%", (2.9)
with the generalized ADI operator-split form [44,56],
L.w=—AtV",
(L) Lyv=w, (2.10)

Wt =y +v.

(2.8)
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We will refer to this numerical scheme #é5,), denoting a first-order linear-equation scheme; similar
abbreviations will be used throughout.

We address the stability of the scheme (2.8) in terms of von Neumann stability analysis. Solutions of
the semi-discrete model can be expressed in terms of a superposition of Fourier modes with coefficients
that grow like powers of wavenumber-dependent amplification facidis),,

u'(x,y) = o (k)e * ), (2.11)

where the superscriptin 4" denotes the time-step and the superscript on the right-side of (2.11) denotes
a power ofo. Substituting (2.11) into (2.9) at the rescaled wavenumbes, k/AtY4, yields aAt-
independent formula for the amplification factor for each Fourier component,
A k2 + k2)°
o) —1=—— )
(1+0kH 1+ 0k

(2.12)

Since the right-side of (2.12) is negative definite, the requirement for unconditional stability, and hence
convergence of (2.10)¢ | < 1 for all k, is that the fraction is less than two in magnitude. The maximum

of this fraction, ¥6, is achieved on the curvefk)z, = 1/6. Consequently, the ADI schemd.,) is
unconditionally stable fop > 1/2. Foré < 1/2, Eq. (2.12) can be used to obtain the condition for
stability, At < Ax*(1 — 6 — /1 —20)/62.

2.2. A second-order BDF method

To produce accurate calculations of long-time evolution of (2.1) it is necessary to derive numerical
methods that have higher-orders of accuracy in time. To achieve second-order accuracy greater care
must be taken in the approximate factorization of the implicit spatial operator, (2.7). Since, as described
above, single-step ADI schemes for (2.1) can not achieve second-order accuracy [5], we turn to a two-step
method. We consider a fully implicit scheme for the PDE (2.1) evaluated atrtidleand approximate
the time derivative by the second-order backward differentiation formula,

ou 3utt — gyt 4yt

—| = O(Ar?). 2.13
dat i+l 2At + ( ) ( )
This discretization is a desirable choice since it yieddstable multi-step methods [38]. Substituting this
approximation into (2.1) yields

2 4 1
(1 + §AIV4)un+l = —u" — Zu" (2.14)

3 3

with a truncation error of Q\r3). As in (2.4), factoring the two-dimensional spatial operator acting on
u"+1 yields a product of one-dimensional operators and mixed derivative remainders,

2 4 4 4 ,
I+ SAVE= Lo Ly + 2 Atdyy = gAPD. D, (2.15)
where the one-dimensional operatdrs L, correspond to (2.5) with = 2/3. As before, we can replace
the Q(Ar?) eighth order operator by an explicit term acting hwithout introducing any error terms
below Q(Ar3). However, this approximation can not be used for the mixed derivativeée&rrﬁmyu”+1
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without introducing @Ar?) errors. To avoid this difficulty, we make use of a linear extrapolation formula
to derive a second-order accurate explicit approximatiom/fot [5],

"t =2u" —u"t = u"t + O(ArP). (2.16)

The fourth-order mixed derivative term in (2.15) can then be appliédtd, instead of.” ™, while only
introducing G Ar®) errors. The resulting approximate factorization is

1 4 2 \°
L.Lu"™= §(4u" —u" ) - §At8xxyyﬁ"+l + (gm) D, D"t (2.17)

Finally, subtractingL, L ,u#"* from both sides of (2.17) yields
2 n n—1 2 4-n+1
LxLyv:—g(u —u )—§AtV u"r, (2.18)
with v = u"*1 — 7"*1, Consequently the ADI split form is given by

2 2
Low=—=(u"—u""t) — ZArvHitt,
3 3
(Ly) Lyv=uw, (2.19)

unJrl — L—tn+l + .

Von Neumann stability analysis ¢L,) yields the equation for the amplification facter—= a(l}),

3

This equation can be maost conveniently written as a quadratic equatidn ferl). Thereafter, direct
calculation shows that both roots are in the range|6 | < 1 for all k, and consequently th&.,) scheme
is unconditionally stable.

We note thatL,) is one of a large class of second-order linear multi-step methods; we will not pursue
a full analysis of the class of methods like that given by Beam and Warming [5]. However, we briefly
mention another second-order scheme given by Augenbaum et al. [2] to compare its form. Originally
studied in connection with a system of hyperbolic conservation laws, their scheme is derived from a
Crank—Nicolson scheme, (2.3) with=1/2, which, when applied to (2.1) takes the form

(1+ %k;‘) (1+ gk;‘) (c —1)?%= —%(o -1 - %(kf +k§)2(2a - 1. (2.20)

1
<1 + EAN4> Wt —u") = — AtV (2.21)

The spatial operator on the left is then expressed in terms of its approximate factorization (2:4)"With
replaced by (2.16) in the non-factored terms without loss of second-order accuracy to yield

1
L.L,(u"™™ —u") = —AtV" — Atdyeyy (@ —u") + y At*D Dy ("t — u"). (2.22)
We note that subtractingy, L, (#"+* — u") from both sides of (2.22) yields a two-step linear method of

the same general form as (2.18), {tle) scheme. In [2] this scheme was callib@ iterative reduction
of factorization error procedurand was claimed to eliminate grid-orientation errors in ADI methods.
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2.3. Higher-order linear parabolic problems

A benefit of the of the factored forms of the ADI schem@ds) and (L,) is that they are easily
extendable to higher-order diffusion equations of the form [7,41,61]

u 4+ (=", =0, m=12,..., (2.23)

wherev2"+2 = (3, + d,,)"*1. If we defineD, = 9,2.+> and similarly forD,, then the(L,) 0-weighted
scheme generalizes in a straightforward manner for (2.23) as

L.w = (=1)"AtVZm+2yn,
(hL1) Lyv=w, (2.24)
Wt =u" .
Von Neumann stability analysis of this scheme yields the amplification factor
2 2
o)~ 1= o
1+ 0k2m2) (1 + 0kgm+2)

m+1

(2.25)

wherek = k/AtY/@"+2_The condition that < 1 is automatically satisfied. Ensuring tHat < 1 is
equivalent to the condition that the fraction on the right is less than two in magnitude. The special case
for m = 1 was given by (2.12). For > 2, the extrema of the fraction occur &t | = |k,| = 6~ 1/2"+2],

and implies that for unconditional stability we need: 6,, = 2"~2. Somewhat surprisingly, this result
implies that form > 2 we must take? > 1, contrary to popular convention, which usually restricts

0 to 0< 0 <1 [38,49]. Consequently, fon > 2 (hL,) yields an interesting counter-example to the
conventional wisdom of-weighted averages. Fér< 6,, Eq. (2.25) provides the condition for stability,

At < Ax?"2(m=1 — 9 — 27/2,/p,, —0)/62. For an explicit methodd(= 0), this yields a very severe
time-step restriction for large, Ar < 2(Ax/+/2)%"+2,

2.4. Variable coefficient linear problems

As a next step towards solving nonlinear problems of the form (1.3), we briefly consider the case of
fourth-order linear parabolic problems, with a prescribed coefficient funcfiea,f (x, y, t), known for
all values of position and time, namely

u + V- (f(x,y,6)VVZu) =0. (2.26)

This problem serves as a transition between the constant coefficient problem examined above and the
fully nonlinear problems to be consider in the following sections. In fact, problems of the form (2.26)
arise from linear stability analysis of solutions of the nonlinear problem (1.3). Moreover, (2.26) includes
the full structure of the spatial operator needed for the nonlinear problems. As will be described later,
careful consideration must be given to the spatial discretization of the diffusion coefficient in nonlinear
degenerate problems [9]. Since much of the analysis follows from the discussion given above we present
a concise summary of the results where attention will be focused on the new elements in the derivation
of the ADI scheme. We restrict ourselves to the first-order fully implicit backward Euler scheme,

(I+ AtV -[fVVe])utt =", (2.27)
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with the diffusion coefficientf"** = f(x, y, t"*1). Using the same approximations as made in (2.1), we
arrive at the approximate factorization of (2.27),

L L™= (1 — At(3,[ " 0uyy] + 05 [ " 0yxx]) + A°D, D, )u", (2.28)

where the one-dimensional operatdrs, L, are given by (2.5) witl® = 1 and the differential operators
are now defined as

D, =3[ 0], D, =3,[ "0,y ]- (2.29)

Note that the presence of the variable coefficignt, y, ¢) in (2.26) makes the one-dimensional spatial
operatorsL,, L, time-dependent and non-commutative. The variable coefficient also introduces a
distinction between the two fourth-order mixed derivative terms, which were previously combined in
(2.4). The ADI scheme for the variable coefficient problem takes the same general fism as

L.w=—AtV-(f"1vva"),
(vLy) Lyv=w, (2.30)

w'tl =y +v.

3. Nonlinear equations

The remainder of this article focuses on ADI methods for the nonlinear problem
u + V- (fw)Vvau) =0, (3.1)

in two dimensions. All of the ADI schemes for the linear problems in the previous sections fall under
the heading ohon-iterative factorized method®4]. That is, the calculation of the approximate solution

at the next time-stepy"**, required only a single application of the ADI scheni&4(, (vL1) or (Ly))

given the solution at the previous time-ste, (and u"~* for (L,)). The accurate numerical solution

of nonlinear problems, even in one dimension, generally necessitates the use of iterative schemes like
Newton’s method to converge td*. In general, solving multi-dimensional nonlinear problems like
(3.1) using a backward Euler scheme [52], actually involves a combination of iterative processes [58];

() (The “outer process”) Newton's method to converge to the solution of the discratizelihear
problem

(i) (The “inner process”) At each step of Newton’s method, GMRES [39] or some other iterative method
must be used to solve tHarge sparse linear algebra problemroduced by the two-dimensional
linearized operator (the Jacobian matrix).

Our use of approximate factorization-ADI schemes for the “inner process” reduces (ii) to a direct
solution of the approximately factored problem. The “outer process” (i) must still be iterated to guarantee
convergence to the solution. The resulting overall process can be describedtestare factorized
method[26,64]. In the following section we derive two classes of these methods for solving (3.1) and
present them in a form that generalizes the structure of the previous schiémesvL,), and(L,). We

will go on to compare these methods on a model nonlinear problem for two-dimensional thin film flow
in Section 6.
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3.1. Pseudo-linear factorization

Proceeding in a manner analogous to Sections 2 and 3, we derive a pseudo-linear factorization of the
backward Euler method for (3.1),

L.Lu"? =u" — (At ([ f (@) 8,y | + 8, [ £ (@ )8y ]) — APD, D, )", (3.2)
where the linear operators are defined by

L.=1+06AtD,, L,=I+6AD,, (3.3)
with 6 = 1 for the backward Euler method, and the differential operators are given by

Do=af @ o].  By=a,[f (@) (3.4)

Here the tildes refer to evaluation of the nonlinear coefficient functjom) at some explicit
approximation to the solution at*?, call it "**. 7"*! serves as a generalization of the linear estimate
"1 introduced in (2.16). We will describe more details about the choigg 0f shortly, but once it is
given, (3.2) is a linear equation faf*.

Proceeding formally, if we leb = u"+* — 7"+ and subtract, L,i"+* from both sides of (3.2), we
obtain

LiLyy=—(i""—u") — AtV - (f (@) vVvZi"Th). (3.5)
The ADI split equations for this backward Euler method are then

wa — _(ﬁn+l _ un) — AtV (f(ﬁn+l)vv2ﬁn+l)’

(pLy) Ly=w, (3.6)
un+l ~ L’zn+1 4.

If the exact solution.”** were known a priori, then it would serve as the correct valueifot. Since
this is not the case, we will think afpL1) as a linear iterative method with an initial estimate #6t!
given by the trivial explicit first-order approximatia”rfgo+l = u". Solving (pL1) with this #"** yields

an approximation of the solution at the next time-step that we will use as an improved esﬁﬁi‘aﬁe
another iteration ofpL,),

il =u@t, k=012 (3.7)

Similarly, we can derive a second-order pseudo-linear scheme using the BDF formula for the time
derivative (2.13), anéd = £ in (3.3),
- 1 2
Low= —§(3ﬂ”+1 — " ") — 30V (f(@+tyvvzrtt),
(pLy) Lyw=w, (3.8)

un+l ~ L’zn+1 4.

For this method, our initial estimate can now be given by the second-order explicit two-level extrapo-
lation, ﬁ’(’gl =2u" —y" 1,

If we do not iterate these methods at each time-step, then they are equivaléht)to(L,)
with the time-lagged or extrapolated explicit coefficients fau:), hence we call them pseudo-linear
approximations for (3.1). A similar ADI scheme was used by Dendy for the solution of a second-order
nonlinear parabolic problem [19]. There, Dendy proved the convergence of the ADI scheme for a general
class of second-order nonlinear parabolic problems without mixed derivatives.
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3.2. Approximate-Newton method schemes

We pause from our examination of the use of ADI schemes for the inner process in the solution of
(3.1) to examine the use of Newton’s method for the outer process. Consider solving (3.1) directly, using
a backward Euler method. At each time-step, the discretized problem requires the solution of the system
of nonlinear equations given by

Fl(u”H) =u"" —u"+ A1V (f(u"H)VVZu"H) =0. (3.9
Applying Newton’s method to solve this nonlinear system yields the iterative method,
~n+1 ~n+1 ~n+1 ~n+1
J(u(,:g )v:—Fl(u(,j) ) v:u(,:;l)—u(,:g , (3.10)

fork=0,1,2,..., where the Jacobian, or functional derivative, of the nonlinear system is the linearized
operator,

T o=t 0 =0 AV (of (@) YV () VYD) (3.11)

For " sufficiently close ta."*%, the sequenceﬁ’ggl} converges quadratically to the exact solution
u"+1. This approach was employed by Oron [52] to solve a thin film problem in two dimensions, where a
GMRES iterative method was used to solve the linear problem connected with the large sparse Jacobian
matrix J. As described in [52], this approach for the inner iterative process can be computationally
expensive and may become the limiting factor in the speed and resolution of numerical simulations for
these problems.

To develop a more computationally efficient approach, we consider an approximate Newton method,
where the Jacobian is approximated by a factorized opergtor, A = Z,xi,y, with the “one-
dimensional” linearized operators given by (3.3) witk- 1, and the differential operators given by

D.¢ = d.[of (@+)d, V2"t + f (") d,0],

5>’¢ =y [d’f/(’:‘nﬂ) a}’vzﬁnH + f([‘nﬂ) ay)'y‘p]' 512
Then we have the first-order ADI-Newton method
Low=—F (i),
(N1) Ly=w, (3.13)

iy = G+ v.

Note that apart from the differences in the definitions of the differential operdiqrd),, given by (3.4)
and (3.12), the two schemégL1) and(N,) are equivalent in structure. We note that the operators (3.12)
for (Ny) in fact contain explicitly evaluated mixed derivative terms present only for problems with non-
constant coefficient functiong (). It is hoped that keeping these terms yields a better approximation
of the Jacobian and improves convergence of the sch@vag relative to(pL,). In particular, it is
noteworthy that if the solution of (3.1) is independent of one direction in space, thatig(x,t) or
u = u(y,t), then(N,;) becomes identical with Newton’'s method. In this cag€,) would converge
quadratically, whilg(p L) converges linearly. We also note that the constructior{/a) can be applied
to strongly nonlinear problems like (1.1), whilg L) is limited to quasilinear problems like (3.1).

The schemé&N;) generalizes to yield other ADI-Newton methods simply by repladitig) and6
appropriately:
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(i) The second-order BDF scheni®,) comparable tqpL,) results from the choicé = 2/3 in (3.3)
and

P =u"tt - %(4»/’ —u"t) + %AIV (f @ty Vvt (3.14)

(i) There are two variants of the second-order Crank—Nicolson schemedwtth/2 for the nonlinear
problem. One, called a trapezoidal scheré;) is given by an average of the spatial operator at
explicit and implicit time-steps,

Fr™™) =u"" —u" + %At[v A(fHYVVEY) 4V - (f (") V VA (3.15)

The other, called a midpoint scheni@jy) is given by the spatial operator applied to the average of
the time-steps,

Fy (unJrl) = un+l —u" 4+ At |:V . (f(%[unJrl 4 un]>vv2%[un+l + un])]‘ (316)

The formal second-order accuracy of tk®t) and (Ny) schemes does not contradict Beam and
Warming’s result that one-step second-order accurate methods are not possible with mixed derivatives [5].

Their result applies only toon-iterative ADI methods. Consequently, the first iter +)1 can at best

be a first-order accurate solution, but with further iterati@ +)1 converges to a second-order accurate
solution at each time-step.
In general these ADI methods are all fundamentally linear iterative methods tol¥€') = 0 with
an approximate factorization used for the iteration operator matrix. We now briefly discuss issues related
to the convergence of these iterative methods. Rather than providing proofs specific to our schemes, we
will cast the schemes in the framework for general iterative methods for solving systems of nonlinear
equations and reference applicable results from that body of literature [39,58].
For convenience of the following discussion, we simplify our notation for the iterates ﬁfgl’nto

just u; and refer to the exact solution @f(x"*1) = 0 as the fixed poink,. Then we can write the
ADI-Newton schemes in the form

w1 =up — A F(wy),  Ay=Au) =L, L,. (3.17)
This takes the form of a general single-step iterative methpd, = G (u,). Convergence to the fixed
point u, will occur if ||8,G (u,)| < 1, where

56 s, (A7'F). (3.18)
Su
For Newton's methodA = J yielding ||§,G ()|l = 0, and we get quadratic convergence. In general,
this convergence rate won't apply for the approximation factorizations used in our ADI schemes, but
we can hope to show that the schemes are convergent under reasonable assumptions. Indeed, (3.17) w
converge if

|8.Guw)| = |1 — AT <1, (3.19)
as shown by Dennis [20] for Newton-like methods, and considered in connection with a class of inexact
Newton methods in [18]. Using the Schwartz inequality, this condition can be established if

| A - 1B <1, (3.20)
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wherekE is the error in the iteration operator [39,40]. For the ADI-Newton schemes, this is given by
E=J—A=0At(3[f@)dsyy] + 0y f@)yx:]) + O(AF?), (3.21)

where A = I + O(Ar). For the linear constant coefficient problem, withu) = 1, (3.20) can be
established in a straightforward manner using Fourier analysis to recover the linear stability results found
earlier. For the nonlinear problem, given sufficient smoothness similar bounds could be expected

to apply, but there may be additional restrictions Anto ensure convergence. A similar analysis of
Newton-like methods for time-dependent nonlinear convection—diffusion equations was briefly given
in [32]. We leave the details of the analysis of the convergence of these schemes for further study.

4, Spatial discretization and boundary conditions

To complete the formulation of the ADI schemes, we present the details of a second-order finite
difference spatial discretization and briefly discuss boundary conditions. For smooth solutions of the
diffusion equations we consider, consistent spatial discretizations should not significantly alter the results
obtained using the continuous spatial operators. Hence to streamline our presentation, we have neglecte
these considerations until now. Without loss of generality, the influence of spatial discreteness can be
incorporated back into the stability results, (2.12) and (2.20) by appropriately re-defining the wave-vector
k in terms of finite difference derivative operators, [2,34].

While ADI methods can be applied directly on any Cartesian cross product fagsh; , ") = u; ; |
x;j = (x;,y;)}, for clarity of presentation, we will use a uniform rectangular mesh wijtk= i Ax,

y; = jAy. For the linear constant-coefficient problem (2.1), we can discretize the spatial operators in
terms of

Uip1j— 2u;;+ui-1;
Ax?

= duutt (x;, y;) + O(Ax?), (4.1)

3xxul~,j =

Wiypj — M1 +6u;; —Auigj+uio;
Oxxxxlij = +2 = AXA]' = o = Oxxxtt (X, yj)+o(Ax2), (4.2)
and similarly foré,, andSs,,,,. Consequently, the standard thirteen-point stencil for the biharmonic

operator [1,38] is therefore

V4l/t (xi 5 y/) = Sxxxxui,j + 28xx8yyui,j + Sxxxxui,j + O(sz) + O(A)’Z), (43)
and the spatial discretizations of the one-dimensional operators (2.5) are given by
L. = +0At8,) +O(AtAX?),  Ly=( +0AtS,,,,) + O(AtAy?). (4.4)

Using this discretization, the ADI schemék;) and (L,) involve only the solution of sets of penta-
diagonal banded matrices.

Solution of the variable-coefficient linear problem (2.26) and the nonlinear problem (3.1) are only
slightly more complicated as they involve computation of first derivatives of a third order @ux,
(p,q)" = fVV2u. To maintain a finite difference stencil analogous to the biharmonic operator, we use
the second-order centered difference for the first derivatives of theSflpx; = (pi+1/2,; — pi—1/2,;)/Ax
= 0, p(xi, y;) + O(Ax?), and similarly foré,q; ;. We note that a similar discretization for the strongly
nonlinear equation (1.1) would require a stencil of twenty-one rather than thirteen pointdsificg)
includes mixed derivatives terms not presenVfu.
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The discretization of the flux also depends on the approximations used for the diffusion coefficient.
Ideall)_/, the exact qell—centered values ¢f at time sy fiﬁl}% = f(u(xiﬂ/z, _yj,t”+_1)) can _be
used in (2.27) and in the flux. However, depending on the constraints of available information, other
approximations may be made. If only valuesfobn grid points can be used, a trapezoidal average can
be employed [21],

1
Jiv1 = E[f(ui,j) + fuiss;)] + O(Ax?). (4.5)
For nonlinear problems witlf = f («), trapezoidal averages, and midpoint rules of the form
1
fiz12j= f(z[ui,j + ui+1,j]) +0(Ax?), (4.6)

have been commonly used. However, recent studies have shown that a different approximation, one
resembling an inverse derivative of a potential function,

ivy — Ui whereF (u) = d—u
F(uiyy,j) — Fu;j) S )
more faithfully reproduce some aspects of the behavior of the PDE. In Eitfjppy dissipating
schemedased on this approximation were shown to properly dissipate energy and preserve positivity
of solutions [9,21,33].

While relevant boundary conditions for (2.1) and (3.1) vary somewhat depending on intended
applications, for problems in fluid and solid mechanics, several sets of boundary conditions commonly
occur. For these fourth-order problems, Dirichlet conditions specify the value aid the second
normal derivatived,,u on the boundary of the domain. For the motion of plates described by (2.1),
homogeneous Dirichlet conditions describe simply-supported edges. For (3.1), inhomogeneous Dirichlet
conditions in one dimension were called pressure boundary conditions [13,25]. This is an appropriate
terminology since specifying a constant film thickness at the boundagy¢,, simplifies the form of
the pressure at the bounda®,= V?u = 9,,u = c,. Mass preserving no-flux boundary conditions are
specified byn - Q@ = 0, wheren is the unit outward normal. This condition is used to describe fluid
layers confined in a finite container, and also for free edges of vibrating plates. For thin film problems,
a contact angle condition must also be specified at a boundary; the contact angle can be specified by
the normal derivative of the film thickness at the boundary, = cot¢. Specifying a fixed contact
angle,d,u = cs, reduces the normal component of the flyXu)d, V2u, to f(1)d,,,u. These Neumann
boundary conditions were used in [66] withu = O to neglect any meniscus at the boundary. Since
both of these Neumann and Dirichlet boundary conditions are separable in terms of normal and tangent
directions, they are straightforward to implement in the ADI schemes using standard approaches from
one-dimensional problems. Periodic boundary conditions, as used in [60], yield sparse cyclic matrices
but these problems can be solved with ADI schemes using penta-diagonal matrices via the Sherman-
Morrison formula [57]. We note that some information on using ADI methods with curved boundaries
and non-rectangular domains is given in [47,49].

(4.7)

Jiv12;=

5. Numerical experiments

We conclude by presenting simulations of nonlinear problems for the dynamics of thin films calculated
using the ADI schemes constructed above. We begin with a fundamental test problem [3,21,33] used to
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verify the order of accuracy of the ADI schemes and to demonstrate convergence of the solution to
the dynamic scaling law for the known self-similar solution. The second example illustrates interesting
pattern formation and spatial structure developed in a problem with dynamics controlled by a balance
between the fourth-order operator in (3.1) and lower order terms representing other physical effects. We
note that our ADI schemes are also being used for other studies on undercompressive shocks in thin
films [12].

5.1. A nonlinear test problem: Convergence to a self-similar solution

The thin film equation (3.1) withf (1) = u,
u+ V- (uVVzu) =0, (5.2)

has a well-known closed-form compactly-supportelddimensional radially-symmetric self-similar
solution [31] given by

2

=——— (L2 —y? 0<n<L, 5.2

u(r, 1) 8(d+2)td( ), n (5.2)
with u =0 fornp > L, and

t=[(d+4)(t+to)]l/(d+4), n=r/t, (5.3)

wherer = x in one dimensiond = 1) andr = /x2+ y? for d = 2. This solution, found by Smyth
and Hill [61] for d = 1, is the higher-order analogue of the Barenblatt—Pattle similarity solution for
the porous medium equation. However, unlike the porous medium equation, the numerical simulation
of higher-order nonlinear degenerate diffusion equations like (5.1) require careful analysis [7,9] and
highly specialized numerical schemes in order to preserve non-negativity [3,33] or positivity [9,21,67]
of the solution. Simulation of the similarity solution for the one-dimensional version of (5.1) using a
non-negativity preserving scheme was carried out in [33]. We will not pursue the discussion of these
specialized numerical schemes here other than to say that the method given by [67] could be easily
incorporated into our ADI schemes. Instead, we will use the analytic regularization of (5.1) shown by [7]
to preserve positivity. We replace the coefficient functfom) = u by

5

fe(u) = - (5.4)

so that f. (1) ~ u for u > ¢ and begin with positive initial data; the solution of this problem should
remain positive for all times. We take the initial data,

Uuo(x,y) = 8 + e 7@, (5.5)

wheres > 0 represents the thickness of an ultra-thin precursor layer under the Gaussian fluid droplet
centered at the origin.

We solve (5.1) using a 108 100 discrete grid on the unit square and Neumann boundary conditions
on all edges, with the parameters= 10°, § = 102, ando = 80. In Fig. 1 we show convergence of
the solution in the limit that the time-step vanishas,— 0. We verified the orders of accuracy expected
for the ADI schemes for this problem. In this plot, a simple measure of the error in the solution was
used—the difference between the height of the droplet at Timel0~4, (0, T'), compared with a very
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10—3

10-*2

Fig. 1. Convergence of the ADI schemes to a solution of the problem (5.1) at a finitg'tase\r — 0. First-order schemes:
pseudo-linear §L1) (3.6), Newton (V1) (3.13); Second-order schemes: pseudo-lingdry] (3.8), Newton-trapezoidalNT)
(3.15), and Newton-midpoint\j) (3.16).

accurate extrapolated value obtained frorgiVg) simulation,iz(0, T), i.e., E = |u(0, T) — u(0, T)|. As

shown in Fig. 1, the respective first and second-order accurate methods showed the rate of convergenct
expected up to a maximum time-step of approximatety~ 10~°. While the ADI schemes were shown

to be unconditionally stable for the linear constant coefficient problem, we should not expect this to hold
for nonlinear problems, where stability and convergence become solution-dependent issues. We note tha
while Ar =~ 10~° may seem to be a small time-step, in comparison, an explicit forward Euler method for
this problem did not converge for any time-step bigger tharr 2 x 1013, Note that this constraint

on the time-step is much tighter than the upper bornd= O(Ax*) = O(10°8) expected from linear
analysis; this illustrates the strong nonlinearity of (5.1).

With regard to the first-order methods, surprisingly the (non-iterative) pseudo-linear scheme (3.6)
outperforms the first-order approximate Newton method (3.13). Furthermore, it was found that iterating
the (pL1) scheme did not provide measurable improvement. In contrast, for the second-order accurate
methods, the pseudo-linear schemd.§) was not as accurate as the approximate Newton methods.
Again, no measurable improvement was noted in the results from the multistep pseudo-linear scheme
by using it iteratively. At a given size time-step, the pseudo-linear scheme had comparable but slightly
large errors than the Newton-trapezoid scheme (3.15). In comparison, the errors for the Newton-midpoint
scheme (3.16) are an order of magnitude smaller. Since it does not require the storage of the solution at
additional time-steps, theVyy) scheme uses less memory tharil§). If fewer than four iterations per
time-step are needed, the Newton scheme is also more computationally efficienp frafiof a given
error tolerance. A similar comparison witp L 1) suggests that at the same level of accuracy, a Newton-
midpoint code could be roughly one thousand times faster. For problems where a somewhat larger error
is acceptable the non-iterative pseudo-linear schgnig) may be the most efficient numerical method.

In this problem, the maximum of the solution remains at the origin for all times and Fig. 2(a) shows
how the droplet height evolves as a function of time. In carrying out simulations for longer times shown
in Fig. 2, we took advantage of adaptive time-stepping by adjugtingh connection with maintaining
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Fig. 2. (a) The time evolution of the droplet height in the nonlinear test problem on the unit square. (b) The numerical
approximately-radially-symmetry self-similar solution of the regularized problem shown in aZitezagraph to resolve the
fine-scale oscillatory structure of the thin film.

102

10

Y1 u(0,t)

0.1 0(t-1/5)""'">--,.,__.

0

—

0

10~2
10-8

10—4

10

(@) (b)

Fig. 3. (a) Mid-height contours of the initially circular spreading droplet in a large rectangular domain,<01, 0< y < 20.
(b) Evolution of the droplet height showing the intermediate asymptotics faf ta@ andd = 1 self-similar solutions.

a uniform convergence criterion for terminating the Newton iterations at each time-step [39], requiring
that||F(u’(1;§)1)|| be less than some fixed tolerance for a fixed number of iterakons

After an initial transient, for > 10~° the solution of (5.1), (5.5) converges to a regularized form of the
similarity solution (5.2) as in borne out by the height of the drop followix@, 1) = O(z~/%). The spatial
structure of the solution is shown in Fig. 2(b). ko®> §, the solution approaches (5.2); tor- §, there is
an oscillatory connection to the surrounding ultra-thin film layer. The oscillations are a real feature of the
solution, caused by the regularizations ), and have been studied using asymptotic analysis by King
and Bowen [43]. For large times,> 1071, the evolution is dominated by the boundary conditions and
the solution is no longer radially symmetric as it approaches a uniform flat state. This behavior is also
illustrated in Fig. 3, which shows results for a simulation with the same initial conditions on a domain
with a large aspect ratio, € x < 1 and 0< y < 20. For short times, the solution evolves like the- 2
radially symmetric similarity solution. For longer times, gradients across the narrow dimension of the
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domain approach zero, and the solution approaches a one-dimensional ferady, r) and evolves like
thed = 1 similarity solution withu (0, 1) = O(z~/%).

5.2. Pattern formation in dewetting films

Very thin films coating solid surfaces are unstable to perturbations that produce non-uniformities,
see [10,54,60,66] and references therein. A lubrication theory model for this physical behavior is given
by a thin film equation withf («) = «® and an additional disjoining pressure [10,54],

u, + V- (MSV[VZM — P(u)]) =0. (5.6)

A simple model for the intermolecular forces between the solid substrate and the fluid film can be
described by a disjoining pressure of the form

Pu) = is (1 - f). (5.7)
u u

In [10] it was shown that other models for the pressure, including the standard Lennard—Jones

potential [55], yield qualitatively similar behavior. The parametear (5.7) sets a scale for the minimum

film thickness. Ife = 0 then finite-time rupture occurs, with a singularity developing when 0 at

a point (see Fig. 4(a) along with [66] and references therein). In [66], rupture of two-dimensional thin

films was simulated using the ADI schemes developed here. In particular, some of the figures in [66]

were calculated using th@vi) ADI scheme on grids with 50& 500 up to 2000x 2000 points on the

unit square.
J : ‘ >
(@) (b)
)

Y, -
< <&
(c)
] Os; i oe
(d) (é ®

Fig. 4. Stages in the dewetting of a two-dimensional thin film; (a) formation of rupture points, (b) nucleation of dry-spots or

“holes”, (c) further dewetting producing a ridge network, (d) break-up of some ridges, (e) co-existence of fluid droplets and
ridges, (f) final stages of coarsening with only droplets.
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Fig. 5. Monotone decreasing energy of the solution of the dewetting model (5.6). Times corresponding to the stages of evolution
in Fig. 4 are indicated.

Fore > 0, complete rupture does not occur, but the process of forming regions where the film thickness
decreases to @) is called dewetting. Dewetting leads to the formation of evolving spatial patterns with
competition between droplets and fluid ridges [10,60] (see Fig. 4(d), (e)). Some stages from this evolution
process are shown in Fig. 4. These results were calculated usin@gtheéADI scheme for (5.7), (5.6)
with ¢ = 0.05 where Neumann boundary conditions are applied to a<1000 point mesh on the unit
square. Note that the inclusion of the second-order terms dBé&ipfrom (5.6) introduce no difficulties
in the ADI scheme. This problem has an energy functional,

]

8://%|Vu|2+ QO (u) dy dx, Q(u)=—/P(v)dv- (5:8)

u

The energy is monotone decreasing for all solutions of (5.6) [10]; in Fig. 5 we show that the ADI
simulation correctly reproduces this property of the dynamics. A similar dewetting model including
evaporative effects was studied by Schwartz et al. [60] to describe patterns in drying thin films, calculated
using an ADI scheme on a periodic domain. For these problems, questions of interest focus on complex
pattern formation, geometric instabilities, and the dynamics of topological transitions. Some aspects are
tractable analytically, but progress on most fronts requires insight that must be gained from numerical
simulation.
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