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Abstract

Alternating Direction Implicit (ADI) schemes are constructed for the solution of two-dimensional higher
linear and nonlinear diffusion equations, particularly including the fourth-order thin film equation for su
tension driven fluid flows. First and second-order accurate schemes are derived via approximate factori
the evolution equations. This approach is combined with iterative methods to solve nonlinear problems. P
in the fluid dynamics of thin films are solved to demonstrate the effectiveness of the ADI schemes.
 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

In this article we build on the existing literature for second-order problems to construct and co
classes of alternating direction implicit (ADI) schemes for nonlinear higher-order parabolic equ
For nonlinear problems, we combine this approach with iterative methods for solving non
systems [39,58]. As in [36], we focus on the time-stepping of the ADI schemes, and expect t
effects of spatial discretization in the numerical simulations will not significantly change our analy
smooth solutions for diffusive problems. We present these schemes in terms of approximate facto
of the evolution equation [26,44,64] although they may also be interpreted in terms of additive o
splitting [35,44].

Use of ADI methods for linear second- and fourth-order parabolic problems has a long history [1
Recent work in numerical simulations of problems in fluid dynamics [28,29,59,60], has made ex
use of these classical methods [14–16]. We extend this foundation and focus on the solution of
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order nonlinear parabolic equations in two dimensions. These problems arise in the study of surface
tension driven flow of thin liquid films [50,55]. In the formulation of these free surface problems, the
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local flux of fluid is determined by gradients of the curvature of the surface. Such evolution equati
the motion of the graph of the free surfacez = u(x, y, t) take the general form,

∂u

∂t
+ ∇ · (f (u)∇H

) = 0, (1.1)

whereH is the mean curvature of the surface. In the study of lubrication flows of thin liquid films
mean curvature of the surface [22] is approximated by the Laplacian in the small gradient limit,|∇u| � 1,

H =
uxx

√
1+ u2

y + uyy

√
1+ u2

x − 2uxuyuxy

(1+ u2
x + u2

y)
3/2

= uxx + uyy + O
(|∇u|2), (1.2)

to yield a class of fourth-order nonlinear diffusion equations, called generalized thin film equatio
50,55],

∂u

∂t
+ ∇ · (f (u)∇∇2u

) = 0. (1.3)

A brief list of some recent research in fluid dynamics involving numerical simulations of this cla
two-dimensional problem includes [21,28,29,52,53,59,60]. For most of this article we will foc
methods for the thin film equation (1.3), however we will also describe how our methods can natur
applied to more strongly nonlinear equations like (1.1). Generalizations of (1.1), wheref also depends
on gradients ofu, have also been applied to problems involving surface diffusion of thin solid films
generalized curvature evolution models for image processing [63,65], flows of non-Newtonian fluid
and many other models in emerging areas of scientific research [41].

The numerical solution of differential equations of the form (1.3) poses several problems;

(i) fourth-order parabolic equations are very stiff; the stability constraint on the time-step for e
methods,�t = O(�x4), is prohibitive, hence implicit methods are necessary,

(ii) Eq. (1.3) is quasilinear and (1.1) is strongly nonlinear, hence convergence and accura
important considerations,

(iii) for fluid dynamics applications, (1.3) is a degenerate equation, withf (u) = O(up) asu → 0 with
p � 0, numerical solution of problems of this form become very sensitive to details of the num
scheme foru → 0 [9,33,67],

(iv) for two-dimensional problems, the spatial operator necessarily includes mixed derivative
which complicate splitting schemes.

The ADI schemes developed in this paper take a form that is easily generalized to the highe
analogue of (1.3) [7,41,61],

∂u

∂t
+ (−1)m−1∇ · (f (u)∇∇2mu

) = 0, m = 2,3, . . . . (1.4)

These yet-higher-order equations have been suggested in connection with diffusion in semi-con
and in other physical systems [41]. Very little work has been done on these models, partly becau
accentuate the difficulties of (1.3)—they are even stiffer and have many more mixed derivative
However, we will show that they can be treated in the same framework as (1.3) with our ADI sche
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In Section 2 we investigate linear constant coefficient problems for (1.3) and (1.4) withf (u) ≡ 1
and further generalize these results to the case wheref is a known function ofx, y and t . Section 3
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addresses the nonlinear problem and discusses appropriate iterative schemes. Following this, in S
we discuss discretizations of the spatial operators and relevant boundary conditions. We con
Section 5 by employing the ADI methods developed in the previous sections to solve problems
out of the study of thin film flow [10,11,66].

It is hoped that this paper serves a dual role, firstly as a review of previous research on ADI sc
and secondly to develop extensions of such schemes that can facilitate numerical studies of
order nonlinear parabolic problems arising from new mathematical models of a diverse range of p
phenomena [41].

2. The constant-coefficient linear problem

We begin with the analysis of the linear problem for (1.3) wheref (u) ≡ 1,

ut + ∇4u = 0, (2.1)

with the two-dimensional biharmonic operator,∇4u ≡ uxxxx +2uxxyy +uyyyy . Equations of this form ar
fundamental parts of many applied mathematical models, examples of which include; the Cahn–
equation for binary mixtures [27,51], the Kuramoto-Sivashinsky equation for instabilities of flame
in combustion theory [37], the Benney equation for surface waves on liquid films [6], and linea
models of the spreading of thin viscous films [9]. ADI methods for problems involving the biharm
operator date back to the work of Conte and Dames [14–16] describing vibrational modes for thin
Eq. (2.1) describes the motion of a strongly damped plate.

2.1. First-order methods:θ -weighted schemes

We first consider single-step time discretizations of (2.1) involving only the time-stepsun andun+1. In
this semi-discrete formulation we use the notationu(x, y, tn) = un(x, y) andtn+1 = tn + �t , where the
superscripts denote discrete time steps. The finite difference approximation of the time derivative
to beut = (un+1 − un)/�t + O(�t). We apply the spatial operator tou = θun+1 + (1− θ)un, called the
one-step generalized trapezoid rule orθ -weighted scheme. The discretization for (2.1) is then given

un+1 − un + �t
[
θ∇4un+1 + (1− θ)∇4un

] = 0. (2.2)

For θ = 1/2, (2.2) is a second-order accurate Crank–Nicolson scheme; for all otherθ in 0 � θ � 1,
the scheme is first-order accurate. Forθ = 0, (2.2) yields an explicit forward Euler scheme, wh
θ = 1 corresponds to the unconditionally stable backward Euler method. Solving (2.2) for anyθ �= 0
is an implicit problem forun+1 involving the inversion of a two-dimensional spatial operator. Us
approximate factorization of this operator, ADI schemes solve this problem through the invers
simpler one-dimensional operators.

Separating implicit and explicit terms in (2.2) yields(
I + θ�t∇4

)
un+1 = (

I − (1− θ)�t∇4
)
un, (2.3)
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whereI is the identity operator. The two-dimensional spatial operator acting onun+1 in (2.3) can be
expressed a sum of mixed-derivative terms and products of one-dimensional operators,
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I + θ�t∇4 = LxLy + 2θ�t∂xxyy − θ2�t2DxDy, (2.4)

where the one-dimensional operators used above are

Lx = I + θ�tDx, Ly = I + θ�tDy, (2.5)

with

Dx = ∂xxxx, Dy = ∂yyyy. (2.6)

Since (2.3) is at most second-order accurate, without loss of accuracy we can apply the O(�t2) eighth
derivative operator, the last term on the right-side of (2.4), toun instead ofun+1 to reduce it to an explici
term while introducing only higher-order corrections, O(�t3). Applying the same approximation to th
mixed-derivative term 2θ�t∂xxyy similarly shifts it to operate on the explicit solutionun, at the price of
reducing the scheme to first-order accuracy in time for allθ ,

LxLyu
n+1 = (

I − (1− θ)�t∇4 − 2θ�t∂xxyy + θ2�t2DxDy

)
un. (2.7)

If the mixed derivative were not present, then second-order accuracy in time could be achie
θ = 1/2. ADI schemes for second-order linear parabolic equations with mixed derivative terms hav
considered by many authors [5,17,23,45,46,48]. Beam and Warming [5] give a thorough analysis o
one- and two-step ADI methods for second-order linear parabolic equations and show that the re
to first-order accuracy for one-step methods is unavoidable in the presence of mixed derivatives.

We note that Douglas and Gunn [23] suggested a splitting scheme using four operators allowin
derivative terms to be treated implicitly, however their approach cannot easily be extended to the
boundary value problems for (1.3) we seek to solve (see Section 5). We will also not pursue the
of splitting (2.1) into a system [30] of the formut = ∇2P , with P = −∇2u, corresponding to a pressu
field, though this approach has been used by other authors [3,33].

We use the approximate factorization (2.7) to write a first-order ADI scheme for (2.3) in the for

Lxu
∗ = (

I − (1− θ)�t∇4 − 2θ�t∂xx∂yy
)
un − θ�tDyu

n,

Lyu
n+1 = u∗ + θ�tDyu

n,
(2.8)

whereu∗ represents an intermediate result obtained from solving theLx-problem. The original form o
(2.7) can be recovered by simply applying theLx operator to theLyu

n+1 equation. Eq. (2.7) can b
factored to yield various ADI schemes. We do not discuss these further, however it is notewort
(2.8) is similar to the D’Yakanov form [47,62].

We can derive a more compact form of the ADI scheme (2.8) by subtractingLxLyu
n from both sides

of (2.7) to yield a factored equation for the change between successive time-steps,v = un+1 − un, [2,4,
64], whereby we obtain

LxLyv = −�t∇4un, (2.9)

with the generalized ADI operator-split form [44,56],

Lxw = −�t∇4un,

(L1) Lyv = w,

un+1 = un + v.

(2.10)
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We will refer to this numerical scheme as(L1), denoting a first-order linear-equation scheme; similar
abbreviations will be used throughout.
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We address the stability of the scheme (2.8) in terms of von Neumann stability analysis. Solut
the semi-discrete model can be expressed in terms of a superposition of Fourier modes with coe
that grow like powers of wavenumber-dependent amplification factors,σ (k),

un(x, y) = σ (k)nei(kxx+kyy), (2.11)

where the superscriptn in un denotes the time-step and the superscript on the right-side of (2.11) de
a power ofσ . Substituting (2.11) into (2.9) at the rescaled wavenumber,k̂ = k/�t1/4, yields a�t-
independent formula for the amplification factor for each Fourier component,

σ
(
k̂
) − 1= − (k2

x + k2
y)

2

(1+ θk4
x)(1+ θk4

y)
. (2.12)

Since the right-side of (2.12) is negative definite, the requirement for unconditional stability, and
convergence of (2.10),|σ | � 1 for all k, is that the fraction is less than two in magnitude. The maxim
of this fraction, 1/θ , is achieved on the curvek2

xk
2
y = 1/θ . Consequently, the ADI scheme(L1) is

unconditionally stable forθ � 1/2. For θ < 1/2, Eq. (2.12) can be used to obtain the condition
stability,�t <�x4(1− θ − √

1− 2θ)/θ2.

2.2. A second-order BDF method

To produce accurate calculations of long-time evolution of (2.1) it is necessary to derive num
methods that have higher-orders of accuracy in time. To achieve second-order accuracy grea
must be taken in the approximate factorization of the implicit spatial operator, (2.7). Since, as de
above, single-step ADI schemes for (2.1) can not achieve second-order accuracy [5], we turn to a t
method. We consider a fully implicit scheme for the PDE (2.1) evaluated at timetn+1 and approximate
the time derivative by the second-order backward differentiation formula,

∂u

∂t

∣∣∣∣
tn+1

= 3un+1 − 4un + un−1

2�t
+ O

(
�t2). (2.13)

This discretization is a desirable choice since it yieldsA-stable multi-step methods [38]. Substituting t
approximation into (2.1) yields(

I + 2

3
�t∇4

)
un+1 = 4

3
un − 1

3
un−1, (2.14)

with a truncation error of O(�t3). As in (2.4), factoring the two-dimensional spatial operator acting
un+1 yields a product of one-dimensional operators and mixed derivative remainders,

I + 2

3
�t∇4 = LxLy + 4

3
�t∂xxyy − 4

9
�t2DxDy (2.15)

where the one-dimensional operatorsLx,Ly correspond to (2.5) withθ = 2/3. As before, we can replac
the O(�t2) eighth order operator by an explicit term acting onun without introducing any error term
below O(�t3). However, this approximation can not be used for the mixed derivative term4

3�t∂xxyyu
n+1
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without introducing O(�t2) errors. To avoid this difficulty, we make use of a linear extrapolation formula
to derive a second-order accurate explicit approximation forun+1 [5],

t
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ūn+1 ≡ 2un − un−1 = un+1 + O
(
�t2). (2.16)

The fourth-order mixed derivative term in (2.15) can then be applied toūn+1, instead ofun+1, while only
introducing O(�t3) errors. The resulting approximate factorization is

LxLyu
n+1 = 1

3

(
4un − un−1) − 4

3
�t∂xxyyū

n+1 +
(

2

3
�t

)2

DxDyū
n+1. (2.17)

Finally, subtractingLxLyū
n+1 from both sides of (2.17) yields

LxLyv = −2

3

(
un − un−1

) − 2

3
�t∇4ūn+1, (2.18)

with v = un+1 − ūn+1. Consequently the ADI split form is given by

Lxw = −2

3

(
un − un−1

) − 2

3
�t∇4ūn+1,

(L2) Lyv = w,

un+1 = ūn+1 + v.

(2.19)

Von Neumann stability analysis of(L2) yields the equation for the amplification factor,σ = σ (k̂),(
1+ 2

3
k4
x

)(
1+ 2

3
k4
y

)
(σ − 1)2 = −2

3
(σ − 1) − 2

3

(
k2
x + k2

y

)2
(2σ − 1). (2.20)

This equation can be most conveniently written as a quadratic equation for(σ − 1). Thereafter, direc
calculation shows that both roots are in the range 0� |σ | � 1 for all k, and consequently the(L2) scheme
is unconditionally stable.

We note that(L2) is one of a large class of second-order linear multi-step methods; we will not p
a full analysis of the class of methods like that given by Beam and Warming [5]. However, we b
mention another second-order scheme given by Augenbaum et al. [2] to compare its form. Or
studied in connection with a system of hyperbolic conservation laws, their scheme is derived
Crank–Nicolson scheme, (2.3) withθ = 1/2, which, when applied to (2.1) takes the form(

1+ 1

2
�t∇4

)(
un+1 − un

) = −�t∇4un. (2.21)

The spatial operator on the left is then expressed in terms of its approximate factorization (2.4) wiun+1

replaced by (2.16) in the non-factored terms without loss of second-order accuracy to yield

LxLy

(
un+1 − un

) = −�t∇4un −�t∂xxyy
(
ūn+1 − un

) + 1

4
�t2DxDy

(
ūn+1 − un

)
. (2.22)

We note that subtractingLxLy(ū
n+1 − un) from both sides of (2.22) yields a two-step linear method

the same general form as (2.18), the(L2) scheme. In [2] this scheme was calledthe iterative reduction
of factorization error procedureand was claimed to eliminate grid-orientation errors in ADI method
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2.3. Higher-order linear parabolic problems
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A benefit of the of the factored forms of the ADI schemes(L1) and (L2) is that they are easil
extendable to higher-order diffusion equations of the form [7,41,61]

ut + (−1)m−1∇2m+2u = 0, m = 1,2, . . . , (2.23)

where∇2m+2 = (∂xx + ∂yy)
m+1. If we defineDx = ∂x2m+2 and similarly forDy , then the(L1) θ -weighted

scheme generalizes in a straightforward manner for (2.23) as

Lxw = (−1)m�t∇2m+2un,

(hL1) Lyv = w,

un+1 = un + v.

(2.24)

Von Neumann stability analysis of this scheme yields the amplification factor

σ
(
k̂
) − 1= − (k2

x + k2
y)

m+1

(1+ θk2m+2
x )(1+ θk2m+2

y )
, (2.25)

wherek̂ = k/�t1/(2m+2). The condition thatσ � 1 is automatically satisfied. Ensuring that|σ | � 1 is
equivalent to the condition that the fraction on the right is less than two in magnitude. The speci
for m = 1 was given by (2.12). Form � 2, the extrema of the fraction occur at|kx | = |ky | = θ−1/[2m+2],
and implies that for unconditional stability we needθ � θm ≡ 2m−2. Somewhat surprisingly, this resu
implies that form > 2 we must takeθ > 1, contrary to popular convention, which usually restri
θ to 0 � θ � 1 [38,49]. Consequently, form > 2 (hL1) yields an interesting counter-example to t
conventional wisdom onθ -weighted averages. Forθ < θm Eq. (2.25) provides the condition for stabilit
�t < �x2m+2(2m−1 − θ − 2m/2

√
θm − θ )/θ2. For an explicit method (θ = 0), this yields a very sever

time-step restriction for largem, �t < 2(�x/
√

2)2m+2.

2.4. Variable coefficient linear problems

As a next step towards solving nonlinear problems of the form (1.3), we briefly consider the c
fourth-order linear parabolic problems, with a prescribed coefficient function,f = f (x, y, t), known for
all values of position and time, namely

ut + ∇ · (f (x, y, t)∇∇2u
) = 0. (2.26)

This problem serves as a transition between the constant coefficient problem examined above
fully nonlinear problems to be consider in the following sections. In fact, problems of the form (
arise from linear stability analysis of solutions of the nonlinear problem (1.3). Moreover, (2.26) inc
the full structure of the spatial operator needed for the nonlinear problems. As will be describe
careful consideration must be given to the spatial discretization of the diffusion coefficient in non
degenerate problems [9]. Since much of the analysis follows from the discussion given above we
a concise summary of the results where attention will be focused on the new elements in the de
of the ADI scheme. We restrict ourselves to the first-order fully implicit backward Euler scheme,(

I +�t∇ · [f n+1∇∇2
])
un+1 = un, (2.27)
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with the diffusion coefficientf n+1 = f (x, y, tn+1). Using the same approximations as made in (2.1), we
arrive at the approximate factorization of (2.27),
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LxLyu
n+1 = (

I −�t
(
∂x

[
f n+1∂xyy

] + ∂y
[
f n+1∂yxx

]) + �t2DxDy

)
un, (2.28)

where the one-dimensional operatorsLx,Ly are given by (2.5) withθ = 1 and the differential operator
are now defined as

Dx = ∂x
[
f n+1∂xxx

]
, Dy = ∂y

[
f n+1∂yyy

]
. (2.29)

Note that the presence of the variable coefficientf (x, y, t) in (2.26) makes the one-dimensional spa
operatorsLx,Ly , time-dependent and non-commutative. The variable coefficient also introdu
distinction between the two fourth-order mixed derivative terms, which were previously combin
(2.4). The ADI scheme for the variable coefficient problem takes the same general form asL1,

Lxw = −�t∇ · (f n+1∇∇2un
)
,

(vL1) Lyv = w,

un+1 = un + v.

(2.30)

3. Nonlinear equations

The remainder of this article focuses on ADI methods for the nonlinear problem

ut + ∇ · (f (u)∇∇2u
) = 0, (3.1)

in two dimensions. All of the ADI schemes for the linear problems in the previous sections fall
the heading ofnon-iterative factorized methods[64]. That is, the calculation of the approximate solut
at the next time-step,un+1, required only a single application of the ADI scheme ((L1), (vL1) or (L2))
given the solution at the previous time-step,un (andun−1 for (L2)). The accurate numerical solutio
of nonlinear problems, even in one dimension, generally necessitates the use of iterative sche
Newton’s method to converge toun+1. In general, solving multi-dimensional nonlinear problems
(3.1) using a backward Euler scheme [52], actually involves a combination of iterative processes

(i) (The “outer process”) Newton’s method to converge to the solution of the discretizednonlinear
problem.

(ii) (The “inner process”) At each step of Newton’s method, GMRES [39] or some other iterative m
must be used to solve thelarge sparse linear algebra problemproduced by the two-dimension
linearized operator (the Jacobian matrix).

Our use of approximate factorization-ADI schemes for the “inner process” reduces (ii) to a
solution of the approximately factored problem. The “outer process” (i) must still be iterated to gua
convergence to the solution. The resulting overall process can be described as aniterative factorized
method[26,64]. In the following section we derive two classes of these methods for solving (3.1
present them in a form that generalizes the structure of the previous schemes,(L1), (vL1), and(L2). We
will go on to compare these methods on a model nonlinear problem for two-dimensional thin film
in Section 6.
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3.1. Pseudo-linear factorization
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Proceeding in a manner analogous to Sections 2 and 3, we derive a pseudo-linear factorizatio
backward Euler method for (3.1),

L̃xL̃yu
n+1 = un − (

�t
(
∂x

[
f

(
ũn+1

)
∂xyy

] + ∂y
[
f

(
ũn+1

)
∂yxx

]) − �t2D̃xD̃y

)
ũn+1, (3.2)

where the linear operators are defined by

L̃x = I + θ�tD̃x, L̃y = I + θ�tD̃y, (3.3)

with θ = 1 for the backward Euler method, and the differential operators are given by

D̃x ≡ ∂x
[
f

(
ũn+1)∂xxx], D̃y ≡ ∂y

[
f

(
ũn+1)∂yyy]. (3.4)

Here the tildes refer to evaluation of the nonlinear coefficient functionf (u) at some explicit
approximation to the solution attn+1, call it ũn+1. ũn+1 serves as a generalization of the linear estim
ūn+1 introduced in (2.16). We will describe more details about the choice ofũn+1 shortly, but once it is
given, (3.2) is a linear equation forun+1.

Proceeding formally, if we letv = un+1 − ũn+1 and subtract̃LxL̃yũ
n+1 from both sides of (3.2), we

obtain

L̃xL̃yv = −(
ũn+1 − un

) − �t∇ · (f (
ũn+1)∇∇2ũn+1). (3.5)

The ADI split equations for this backward Euler method are then

L̃xw = −(
ũn+1 − un

) − �t∇ · (f (
ũn+1

)∇∇2ũn+1
)
,

(pL1) L̃yv = w,

un+1 ∼ ũn+1 + v.

(3.6)

If the exact solutionun+1 were known a priori, then it would serve as the correct value forũn+1. Since
this is not the case, we will think of(pL1) as a linear iterative method with an initial estimate forun+1

given by the trivial explicit first-order approximatioñun+1
(0) = un. Solving (pL1) with this ũn+1 yields

an approximation of the solution at the next time-step that we will use as an improved estimateũn+1
(1) in

another iteration of(pL1),

ũn+1
(k+1) = un+1

(k) , k = 0,1,2, . . . . (3.7)

Similarly, we can derive a second-order pseudo-linear scheme using the BDF formula for th
derivative (2.13), andθ = 2

3 in (3.3),

L̃xw = −1

3

(
3ũn+1 − 4un + un−1

) − 2

3
�t∇ · (f (

ũn+1
)∇∇2ũn+1

)
,

(pL2) L̃yv = w,

un+1 ∼ ũn+1 + v.

(3.8)

For this method, our initial estimate can now be given by the second-order explicit two-level ex
lation, ũn+1

(0) = 2un − un−1.
If we do not iterate these methods at each time-step, then they are equivalent to(L1), (L2)

with the time-lagged or extrapolated explicit coefficients forf (u), hence we call them pseudo-line
approximations for (3.1). A similar ADI scheme was used by Dendy for the solution of a second
nonlinear parabolic problem [19]. There, Dendy proved the convergence of the ADI scheme for a
class of second-order nonlinear parabolic problems without mixed derivatives.
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3.2. Approximate-Newton method schemes
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We pause from our examination of the use of ADI schemes for the inner process in the solu
(3.1) to examine the use of Newton’s method for the outer process. Consider solving (3.1) directly
a backward Euler method. At each time-step, the discretized problem requires the solution of the
of nonlinear equations given by

F1
(
un+1) ≡ un+1 − un +�t∇ · (f (

un+1)∇∇2un+1) = 0. (3.9)

Applying Newton’s method to solve this nonlinear system yields the iterative method,

J
(
ũn+1
(k)

)
v = −F1

(
ũn+1
(k)

)
, v = ũn+1

(k+1) − ũn+1
(k) , (3.10)

for k = 0,1,2, . . . , where the Jacobian, or functional derivative, of the nonlinear system is the linea
operator,

J
(
un+1

)
v ≡ δF1

δu
v = v + �t∇ · (vf ′(un+1

)∇∇2un+1 + f
(
un+1

)∇∇2v
)
. (3.11)

For ũn+1 sufficiently close toun+1, the sequence{ũn+1
(k) } converges quadratically to the exact solut

un+1. This approach was employed by Oron [52] to solve a thin film problem in two dimensions, w
GMRES iterative method was used to solve the linear problem connected with the large sparse J
matrix J . As described in [52], this approach for the inner iterative process can be computati
expensive and may become the limiting factor in the speed and resolution of numerical simulati
these problems.

To develop a more computationally efficient approach, we consider an approximate Newton m
where the Jacobian is approximated by a factorized operator,J ∼ A ≡ L̃xL̃y , with the “one-
dimensional” linearized operators given by (3.3) withθ = 1, and the differential operators given by

D̃xφ = ∂x
[
φf ′(ũn+1

)
∂x∇2ũn+1 + f

(
ũn+1

)
∂xxxφ

]
,

D̃yφ = ∂y
[
φf ′(ũn+1)∂y∇2ũn+1 + f

(
ũn+1)∂yyyφ]

.
(3.12)

Then we have the first-order ADI–Newton method

L̃xw = −F1
(
ũn+1

)
,

(N1) L̃yv = w,

ũn+1
(k+1) = ũn+1

(k) + v.

(3.13)

Note that apart from the differences in the definitions of the differential operators,D̃x, D̃y , given by (3.4)
and (3.12), the two schemes(pL1) and(N1) are equivalent in structure. We note that the operators (3
for (N1) in fact contain explicitly evaluated mixed derivative terms present only for problems with
constant coefficient functionsf (u). It is hoped that keeping these terms yields a better approxim
of the Jacobian and improves convergence of the scheme(N1) relative to (pL1). In particular, it is
noteworthy that if the solution of (3.1) is independent of one direction in space, that isu = u(x, t) or
u = u(y, t), then (N1) becomes identical with Newton’s method. In this case,(N1) would converge
quadratically, while(pL1) converges linearly. We also note that the construction for(N1) can be applied
to strongly nonlinear problems like (1.1), while(pL1) is limited to quasilinear problems like (3.1).

The scheme(N1) generalizes to yield other ADI–Newton methods simply by replacingF(u) andθ

appropriately:
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(i) The second-order BDF scheme(N2) comparable to(pL2) results from the choiceθ = 2/3 in (3.3)
and

r at
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nlinear
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s, but

(3.17) will

inexact
F2
(
un+1

) ≡ un+1 − 1

3

(
4un − un−1

) + 2

3
�t∇ · (f (

un+1
)∇∇2un+1

)
. (3.14)

(ii) There are two variants of the second-order Crank–Nicolson scheme withθ = 1/2 for the nonlinear
problem. One, called a trapezoidal scheme,(NT) is given by an average of the spatial operato
explicit and implicit time-steps,

FT
(
un+1) ≡ un+1 − un + 1

2
�t

[∇ · (f (
un+1)∇∇2un+1) + ∇ · (f (

un
)∇∇2un

)]
. (3.15)

The other, called a midpoint scheme,(NM) is given by the spatial operator applied to the averag
the time-steps,

FM
(
un+1) ≡ un+1 − un +�t

[
∇ ·

(
f

(
1

2

[
un+1 + un

])∇∇2 1

2

[
un+1 + un

])]
. (3.16)

The formal second-order accuracy of the(NT) and (NM) schemes does not contradict Beam a
Warming’s result that one-step second-order accurate methods are not possible with mixed deriva
Their result applies only tonon-iterativeADI methods. Consequently, the first iterateũn+1

(1) can at bes

be a first-order accurate solution, but with further iteration,ũn+1
(k) converges to a second-order accur

solution at each time-step.
In general these ADI methods are all fundamentally linear iterative methods to solveF(un+1) = 0 with

an approximate factorization used for the iteration operator matrix. We now briefly discuss issues
to the convergence of these iterative methods. Rather than providing proofs specific to our sche
will cast the schemes in the framework for general iterative methods for solving systems of no
equations and reference applicable results from that body of literature [39,58].

For convenience of the following discussion, we simplify our notation for the iterates fromũn+1
(k) to

just uk and refer to the exact solution ofF(un+1) = 0 as the fixed pointu∗. Then we can write the
ADI–Newton schemes in the form

uk+1 = uk − A−1
k F (uk), Ak ≡ A(uk) = L̃xL̃y. (3.17)

This takes the form of a general single-step iterative method,uk+1 = G(uk). Convergence to the fixe
point u∗ will occur if ‖δuG(u∗)‖ < 1, where

δG

δu
= I − δu

(
A−1F

)
. (3.18)

For Newton’s method,A = J yielding ‖δuG(u∗)‖ = 0, and we get quadratic convergence. In gene
this convergence rate won’t apply for the approximation factorizations used in our ADI scheme
we can hope to show that the schemes are convergent under reasonable assumptions. Indeed,
converge if∥∥δuG(uk)

∥∥ = ∥∥I − A−1
k J k

∥∥ < 1, (3.19)

as shown by Dennis [20] for Newton-like methods, and considered in connection with a class of
Newton methods in [18]. Using the Schwartz inequality, this condition can be established if∥∥A−1

k

∥∥ · ‖Ek‖ � 1, (3.20)
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whereE is the error in the iteration operator [39,40]. For the ADI–Newton schemes, this is given by( [ ] [ ]) (
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E ≡ J − A = θ�t ∂x f (u)∂xyy + ∂y f (u)∂yxx + O �t , (3.21)

where A = I + O(�t). For the linear constant coefficient problem, withf (u) = 1, (3.20) can be
established in a straightforward manner using Fourier analysis to recover the linear stability result
earlier. For the nonlinear problem, given sufficient smoothness ofu, similar bounds could be expecte
to apply, but there may be additional restrictions on�t to ensure convergence. A similar analysis
Newton-like methods for time-dependent nonlinear convection–diffusion equations was briefly
in [32]. We leave the details of the analysis of the convergence of these schemes for further stud

4. Spatial discretization and boundary conditions

To complete the formulation of the ADI schemes, we present the details of a second-orde
difference spatial discretization and briefly discuss boundary conditions. For smooth solutions
diffusion equations we consider, consistent spatial discretizations should not significantly alter the
obtained using the continuous spatial operators. Hence to streamline our presentation, we have n
these considerations until now. Without loss of generality, the influence of spatial discreteness
incorporated back into the stability results, (2.12) and (2.20) by appropriately re-defining the wave
k in terms of finite difference derivative operators, [2,34].

While ADI methods can be applied directly on any Cartesian cross product mesh,{u(xi,j , t
n) = un

i,j |
xi,j = (xi, yj )}, for clarity of presentation, we will use a uniform rectangular mesh withxi = i�x,
yj = j�y. For the linear constant-coefficient problem (2.1), we can discretize the spatial opera
terms of

δxxui,j ≡ ui+1,j − 2ui,j + ui−1,j

�x2
= ∂xxu(xi , yj )+ O

(
�x2), (4.1)

δxxxxui,j ≡ ui+2,j − 4ui+1,j + 6ui,j − 4ui−1,j + ui−2,j

�x4
= ∂xxxxu(xi, yj ) + O

(
�x2

)
, (4.2)

and similarly for δyy and δyyyy . Consequently, the standard thirteen-point stencil for the biharm
operator [1,38] is therefore

∇4u(xi, yj ) = δxxxxui,j + 2δxxδyyui,j + δxxxxui,j + O
(
�x2

) + O
(
�y2

)
, (4.3)

and the spatial discretizations of the one-dimensional operators (2.5) are given by

Lx = (I + θ�tδxxxx) + O
(
�t�x2), Ly = (I + θ�tδyyyy)+ O

(
�t�y2). (4.4)

Using this discretization, the ADI schemes(L1) and (L2) involve only the solution of sets of pent
diagonal banded matrices.

Solution of the variable-coefficient linear problem (2.26) and the nonlinear problem (3.1) are
slightly more complicated as they involve computation of first derivatives of a third order flux,Q =
(p, q)T ≡ f∇∇2u. To maintain a finite difference stencil analogous to the biharmonic operator, w
the second-order centered difference for the first derivatives of the flux,δxpi,j ≡ (pi+1/2,j −pi−1/2,j )/�x

= ∂xp(xi, yj ) + O(�x2), and similarly forδyqi,j . We note that a similar discretization for the strong
nonlinear equation (1.1) would require a stencil of twenty-one rather than thirteen points sinceH (1.2)
includes mixed derivatives terms not present in∇2u.



T.P. Witelski, M. Bowen / Applied Numerical Mathematics 45 (2003) 331–351 343

The discretization of the flux also depends on the approximations used for the diffusion coefficient.
Ideally, the exact cell-centered values off at time tn+1, f n+1 = f (u(xi+1/2, yj , t

n+1)) can be
, other
can

on, one

sitivity

ended
monly

(2.1),
irichlet

ropriate

are
uid

blems,
cified by
t
n
nce
tangent
es from
atrices
erman–
aries

ulated
used to
i+1/2,j
used in (2.27) and in the flux. However, depending on the constraints of available information
approximations may be made. If only values off on grid points can be used, a trapezoidal average
be employed [21],

fi+1/2,j = 1

2

[
f (ui,j )+ f (ui+1,j )

] + O
(
�x2). (4.5)

For nonlinear problems withf = f (u), trapezoidal averages, and midpoint rules of the form

fi+1/2,j = f

(
1

2
[ui,j + ui+1,j ]

)
+ O

(
�x2), (4.6)

have been commonly used. However, recent studies have shown that a different approximati
resembling an inverse derivative of a potential function,

fi+1/2,j = ui+1,j − ui,j

F (ui+1,j )− F(ui,j )
whereF(u) =

∫
du

f (u)
, (4.7)

more faithfully reproduce some aspects of the behavior of the PDE. In [67],entropy dissipating
schemesbased on this approximation were shown to properly dissipate energy and preserve po
of solutions [9,21,33].

While relevant boundary conditions for (2.1) and (3.1) vary somewhat depending on int
applications, for problems in fluid and solid mechanics, several sets of boundary conditions com
occur. For these fourth-order problems, Dirichlet conditions specify the value ofu and the second
normal derivative∂nnu on the boundary of the domain. For the motion of plates described by
homogeneous Dirichlet conditions describe simply-supported edges. For (3.1), inhomogeneous D
conditions in one dimension were called pressure boundary conditions [13,25]. This is an app
terminology since specifying a constant film thickness at the boundary,u = c1, simplifies the form of
the pressure at the boundary,P ≡ ∇2u = ∂nnu = c2. Mass preserving no-flux boundary conditions
specified byn · Q = 0, wheren is the unit outward normal. This condition is used to describe fl
layers confined in a finite container, and also for free edges of vibrating plates. For thin film pro
a contact angle condition must also be specified at a boundary; the contact angle can be spe
the normal derivative of the film thickness at the boundary,∂nu = cotφ. Specifying a fixed contac
angle,∂nu = c3, reduces the normal component of the flux,f (u)∂n∇2u, to f (u)∂nnnu. These Neuman
boundary conditions were used in [66] with∂nu = 0 to neglect any meniscus at the boundary. Si
both of these Neumann and Dirichlet boundary conditions are separable in terms of normal and
directions, they are straightforward to implement in the ADI schemes using standard approach
one-dimensional problems. Periodic boundary conditions, as used in [60], yield sparse cyclic m
but these problems can be solved with ADI schemes using penta-diagonal matrices via the Sh
Morrison formula [57]. We note that some information on using ADI methods with curved bound
and non-rectangular domains is given in [47,49].

5. Numerical experiments

We conclude by presenting simulations of nonlinear problems for the dynamics of thin films calc
using the ADI schemes constructed above. We begin with a fundamental test problem [3,21,33]
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verify the order of accuracy of the ADI schemes and to demonstrate convergence of the solution to
the dynamic scaling law for the known self-similar solution. The second example illustrates interesting
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pattern formation and spatial structure developed in a problem with dynamics controlled by a b
between the fourth-order operator in (3.1) and lower order terms representing other physical effe
note that our ADI schemes are also being used for other studies on undercompressive shock
films [12].

5.1. A nonlinear test problem: Convergence to a self-similar solution

The thin film equation (3.1) withf (u) = u,

ut + ∇ · (u∇∇2u
) = 0, (5.1)

has a well-known closed-form compactly-supported,d-dimensional radially-symmetric self-simila
solution [31] given by

u(r, t) = 1

8(d + 2)τ d

(
L2 − η2

)2

+, 0� η � L, (5.2)

with u ≡ 0 for η > L, and

τ = [
(d + 4)(t + t0)

]1/(d+4)
, η = r/τ, (5.3)

wherer = x in one dimension (d = 1) andr = √
x2 + y2 for d = 2. This solution, found by Smyt

and Hill [61] for d = 1, is the higher-order analogue of the Barenblatt–Pattle similarity solutio
the porous medium equation. However, unlike the porous medium equation, the numerical sim
of higher-order nonlinear degenerate diffusion equations like (5.1) require careful analysis [7,
highly specialized numerical schemes in order to preserve non-negativity [3,33] or positivity [9,
of the solution. Simulation of the similarity solution for the one-dimensional version of (5.1) us
non-negativity preserving scheme was carried out in [33]. We will not pursue the discussion o
specialized numerical schemes here other than to say that the method given by [67] could b
incorporated into our ADI schemes. Instead, we will use the analytic regularization of (5.1) shown
to preserve positivity. We replace the coefficient functionf (u) = u by

fε(u) = u5

εu + u4
, (5.4)

so thatfε(u) ∼ u for u � ε and begin with positive initial data; the solution of this problem sho
remain positive for all times. We take the initial data,

u0(x, y) = δ + e−σ(x2+y2), (5.5)

whereδ > 0 represents the thickness of an ultra-thin precursor layer under the Gaussian fluid
centered at the origin.

We solve (5.1) using a 100× 100 discrete grid on the unit square and Neumann boundary cond
on all edges, with the parametersε = 10−9, δ = 10−2, andσ = 80. In Fig. 1 we show convergence
the solution in the limit that the time-step vanishes,�t → 0. We verified the orders of accuracy expec
for the ADI schemes for this problem. In this plot, a simple measure of the error in the solutio
used—the difference between the height of the droplet at timeT = 10−4, u(0, T ), compared with a very
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Fig. 1. Convergence of the ADI schemes to a solution of the problem (5.1) at a finite timeT as�t → 0. First-order schemes
pseudo-linear (pL1) (3.6), Newton (N1) (3.13); Second-order schemes: pseudo-linear (pL2) (3.8), Newton-trapezoidal (NT)
(3.15), and Newton-midpoint (NM) (3.16).

accurate extrapolated value obtained from a(NT) simulation,ū(0, T ), i.e.,E = |u(0, T ) − ū(0, T )|. As
shown in Fig. 1, the respective first and second-order accurate methods showed the rate of con
expected up to a maximum time-step of approximately�t ≈ 10−5. While the ADI schemes were show
to be unconditionally stable for the linear constant coefficient problem, we should not expect this
for nonlinear problems, where stability and convergence become solution-dependent issues. We
while �t ≈ 10−5 may seem to be a small time-step, in comparison, an explicit forward Euler meth
this problem did not converge for any time-step bigger than�t ≈ 2 × 10−13. Note that this constrain
on the time-step is much tighter than the upper bound�t = O(�x4) = O(10−8) expected from linea
analysis; this illustrates the strong nonlinearity of (5.1).

With regard to the first-order methods, surprisingly the (non-iterative) pseudo-linear schem
outperforms the first-order approximate Newton method (3.13). Furthermore, it was found that it
the (pL1) scheme did not provide measurable improvement. In contrast, for the second-order a
methods, the pseudo-linear scheme (pL2) was not as accurate as the approximate Newton meth
Again, no measurable improvement was noted in the results from the multistep pseudo-linear
by using it iteratively. At a given size time-step, the pseudo-linear scheme had comparable but
large errors than the Newton-trapezoid scheme (3.15). In comparison, the errors for the Newton-m
scheme (3.16) are an order of magnitude smaller. Since it does not require the storage of the so
additional time-steps, the (NM) scheme uses less memory than (pL2). If fewer than four iterations pe
time-step are needed, the Newton scheme is also more computationally efficient than (pL2) for a given
error tolerance. A similar comparison with (pL1) suggests that at the same level of accuracy, a New
midpoint code could be roughly one thousand times faster. For problems where a somewhat larg
is acceptable the non-iterative pseudo-linear scheme(pL2) may be the most efficient numerical metho

In this problem, the maximum of the solution remains at the origin for all times and Fig. 2(a) s
how the droplet height evolves as a function of time. In carrying out simulations for longer times
in Fig. 2, we took advantage of adaptive time-stepping by adjusting�t in connection with maintaining
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Fig. 2. (a) The time evolution of the droplet height in the nonlinear test problem on the unit square. (b) The nu
approximately-radially-symmetry self-similar solution of the regularized problem shown in a linear2-log graph to resolve the
fine-scale oscillatory structure of the thin film.

(a) (b)

Fig. 3. (a) Mid-height contours of the initially circular spreading droplet in a large rectangular domain, 0� x � 1, 0� y � 20.
(b) Evolution of the droplet height showing the intermediate asymptotics for thed = 2 andd = 1 self-similar solutions.

a uniform convergence criterion for terminating the Newton iterations at each time-step [39], req
that‖F(un+1

(K) )‖ be less than some fixed tolerance for a fixed number of iterationsK .
After an initial transient, fort > 10−5 the solution of (5.1), (5.5) converges to a regularized form of

similarity solution (5.2) as in borne out by the height of the drop followingu(0, t) = O(t−1/3). The spatial
structure of the solution is shown in Fig. 2(b). Foru � δ, the solution approaches (5.2); foru ∼ δ, there is
an oscillatory connection to the surrounding ultra-thin film layer. The oscillations are a real feature
solution, caused by the regularizations (ε, δ), and have been studied using asymptotic analysis by K
and Bowen [43]. For large times,t > 10−1, the evolution is dominated by the boundary conditions
the solution is no longer radially symmetric as it approaches a uniform flat state. This behavior
illustrated in Fig. 3, which shows results for a simulation with the same initial conditions on a do
with a large aspect ratio, 0� x � 1 and 0� y � 20. For short times, the solution evolves like thed = 2
radially symmetric similarity solution. For longer times, gradients across the narrow dimension
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domain approach zero, and the solution approaches a one-dimensional form,u = u(y, t) and evolves like
thed = 1 similarity solution withu(0, t) = O(t−1/5).
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5.2. Pattern formation in dewetting films

Very thin films coating solid surfaces are unstable to perturbations that produce non-unifor
see [10,54,60,66] and references therein. A lubrication theory model for this physical behavior i
by a thin film equation withf (u) = u3 and an additional disjoining pressure [10,54],

ut + ∇ · (u3∇[∇2u −P(u)
]) = 0. (5.6)

A simple model for the intermolecular forces between the solid substrate and the fluid film c
described by a disjoining pressure of the form

P(u) = 1

u3

(
1− ε

u

)
. (5.7)

In [10] it was shown that other models for the pressure, including the standard Lennard
potential [55], yield qualitatively similar behavior. The parameterε in (5.7) sets a scale for the minimu
film thickness. Ifε = 0 then finite-time rupture occurs, with a singularity developing whenu → 0 at
a point (see Fig. 4(a) along with [66] and references therein). In [66], rupture of two-dimension
films was simulated using the ADI schemes developed here. In particular, some of the figures
were calculated using the(N1) ADI scheme on grids with 500× 500 up to 2000× 2000 points on the
unit square.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Stages in the dewetting of a two-dimensional thin film; (a) formation of rupture points, (b) nucleation of dry-s
“holes”, (c) further dewetting producing a ridge network, (d) break-up of some ridges, (e) co-existence of fluid dropl
ridges, (f) final stages of coarsening with only droplets.
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Fig. 5. Monotone decreasing energy of the solution of the dewetting model (5.6). Times corresponding to the stages of
in Fig. 4 are indicated.

Forε > 0, complete rupture does not occur, but the process of forming regions where the film thi
decreases to O(ε) is called dewetting. Dewetting leads to the formation of evolving spatial patterns
competition between droplets and fluid ridges [10,60] (see Fig. 4(d), (e)). Some stages from this ev
process are shown in Fig. 4. These results were calculated using the(NT) ADI scheme for (5.7), (5.6
with ε = 0.05 where Neumann boundary conditions are applied to a 100× 100 point mesh on the un
square. Note that the inclusion of the second-order terms due toP(u) from (5.6) introduce no difficulties
in the ADI scheme. This problem has an energy functional,

E =
∫ ∫

1

2
|∇u|2 + Q(u)dy dx, Q(u) = −

∞∫
u

P (v)dv. (5.8)

The energy is monotone decreasing for all solutions of (5.6) [10]; in Fig. 5 we show that the
simulation correctly reproduces this property of the dynamics. A similar dewetting model incl
evaporative effects was studied by Schwartz et al. [60] to describe patterns in drying thin films, cal
using an ADI scheme on a periodic domain. For these problems, questions of interest focus on c
pattern formation, geometric instabilities, and the dynamics of topological transitions. Some asp
tractable analytically, but progress on most fronts requires insight that must be gained from nu
simulation.
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