Numerical Analysis Second Exam

Fall 2006

Name:

To receive credit you must show your work.

Problems

1. (10 points) Consider the linear system $\begin{bmatrix} 2 & -1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ Can it be solved

by the Jacobi iterative method?

2. (15 points) Write a computer program to use SOR with w = 1.25 to solve $\begin{bmatrix} 2\\ 2\\ 2 \end{bmatrix}$

$$\begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} =$$

$$\begin{bmatrix} 1\\ 3\\ 0 \end{bmatrix} \text{ with } ||x^{(k+1)} - x^{(k)}||_{\infty} < 10^{-5}, x = (x_1, x_2, x_3)^T.$$

3. (10 points) Let $l_k(x) = \prod_{j=0, j \neq k}^n \frac{x - x_j}{x_k - x_j}$ (k = 0, ..., n) be Lagrange polynomials on $x_0, ..., x_n$ distinct nodes. Prove that $\sum_{k=0}^n l_k(x) \equiv 1$.

4. (15 points) Let $l_i(x)$ be lagrange polynomials and $f[x_0, x_1, ..., x_i]$ be divided difference of $f \in C^n$ on $x_0, ..., x_n$ distinct nodes. Prove that $\sum_{i=0}^n f(x_i)l_i(x) = \sum_{i=0}^n f[x_0, x_1, ..., x_i] \prod_{j=0}^{i-1} (x - x_j)$, and $f[x_0, x_1, ..., x_n] = \sum_{i=0}^n f(x_i) \prod_{j=0, j \neq i}^n (x_i - x_j)^{-1}$.

5. (10 points) Prove the Parseval identity : $\langle f, g \rangle = \sum_{i=1}^{n} \langle f, u_i \rangle \langle g, u_i \rangle$ which is valid if f and g are in the span of the orthonormal set $[u_1, u_2, ..., u_n]$.

6. (10 points) Let $p(x) = \sum_{j=0}^{n} a_j \psi_j(x)$ be the best approximation of $f(x) \in C[a, b]$ in the subspace $H = Span\{\psi_0, \psi_1, ..., \psi_n\}$. Prove $\langle f - p, f - p \rangle = \langle f, f \rangle - \sum_{j=0}^{n} a_j \langle \psi_j, f \rangle$

7. (15 points) If $[u_1, ..., u_n]$ is an orthonormal system in an i. p. s. E, then a family of projection operators, P_n is defined by the equation $P_n f = \sum_{i=1}^n \langle f, u_i \rangle u_i$. Prove that:

a.
$$P_n(f+g) = P_n f + P_n g.$$
 (P_n is linear.)

- b. $P_n^2 = P_n$. (P_n is a projection.)
- c. $\langle P_n f, g \rangle = \langle f, P_n g \rangle$. (P_n is self-adjoint.)
- 8. (15 points) Find the coefficients a, b, c such that $\int_0^{\pi} (\sin(x) a bx cx^2)^2 dx$ attains its

minimum.

Bonus:

9. (10 points) Let A be an $n \times n$ Hermitian matrix. The spectral radius of any square matrix A is defined by $\rho(A) = \max_s |\lambda_s(A)|$, where $\lambda_s(A)$ denotes the s^{th} eigenvalue of A. Prove that $||A||_2 = \sqrt{\rho(A^*A)}$.

10. (10 points) Write a computer program to compute the cubic spline function S that interpolates the function $\sin(x)$ at 21 equally spaced nodes x_i i = 0, ..., 20 in the interval $[0, 2\pi]$, with $x_0 = 0$ and $x_2 = 2\pi$. Use the first boundary condition at the end points.