THE STABLE COHOMOLOGY OF THE MODULI SPACE OF CURVES
WITH LEVEL STRUCTURES

ANDREW PUTMAN

Abstract. We prove that in a stable range, the rational cohomology of the moduli space
of curves with level structures is the same as that of the ordinary moduli space of curves: a
polynomial algebra in the Miller–Morita–Mumford classes.

1. Introduction

Let $\mathcal{M}_{g,p}$ be the moduli stack of smooth genus g algebraic curves over \mathbb{C} equipped with p
distinct ordered marked points. The fundamental group of $\mathcal{M}_{g,p}$ is the mapping class group
$\text{Mod}_{g,p}$ of an oriented genus g surface $\Sigma_{g,p}$ with p punctures, i.e., the group of isotopy classes
of orientation-preserving diffeomorphisms of $\Sigma_{g,p}$ that fix each puncture. In fact, $\mathcal{M}_{g,p}$ is a
classifying stack for $\text{Mod}_{g,p}$, so

$$H_\bullet(\mathcal{M}_{g,p}; \mathbb{Q}) \cong H_\bullet(\text{Mod}_{g,p}; \mathbb{Q}).$$

There is a rich interplay between the topology of $\text{Mod}_{g,p}$ and the algebraic geometry of $\mathcal{M}_{g,p}$.
In this paper, we study the cohomology of certain finite covers of $\mathcal{M}_{g,p}$, or equivalently
finite-index subgroups of $\text{Mod}_{g,p}$.

1.1. Analogy. More generally, let $\Sigma_{b,g,p}$ be an oriented genus g surface with p punctures
and b boundary components and let $\text{Mod}_{b,g,p}$ be its mapping class group, i.e., the group
of isotopy classes of orientation-preserving diffeomorphisms of $\Sigma_{b,g,p}$ that fix each puncture and
boundary component pointwise. We will omit p or b if it vanishes. There is a fruitful
analogy between $\text{Mod}_{b,g,p}$ and arithmetic groups like $\text{SL}_n(\mathbb{Z})$. The following table lists some
parallel structures and results:

<table>
<thead>
<tr>
<th></th>
<th>$\text{SL}_n(\mathbb{Z})$</th>
<th>$\text{Mod}_{b,g,p}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>natural action</td>
<td>vector in \mathbb{Z}^n</td>
<td>curve on $\Sigma_{b,g,p}$</td>
</tr>
<tr>
<td>associated space</td>
<td>locally symmetric space</td>
<td>$\mathcal{M}_{g,p}$</td>
</tr>
<tr>
<td>normal form</td>
<td>Jordan normal form</td>
<td>Thurston normal form (see [25])</td>
</tr>
</tbody>
</table>

See [10] for more details.

1.2. Stable cohomology. Our main theorem provides another entry in this table. To
motivate it, we first discuss homological stability and introduce the stable cohomology of the
mapping class group, focusing for simplicity on surfaces without punctures.² If $\Sigma_{g} \hookrightarrow \Sigma_{g'}$ is

Date: September 11, 2022.

AP was supported in part by NSF grant DMS-1811210.

¹There are various ways to define $\mathcal{M}_{g,b}$ when $b \geq 1$, e.g., by identifying smooth algebraic curves over
\mathbb{C} with hyperbolic metrics on the associated surfaces and letting $\mathcal{M}_{g,p}$ be the moduli space of complete
hyperbolic metrics on $\Sigma_{g,p}$ with geodesic boundary. However, these moduli spaces are not varieties.

²Adding punctures does change the stable cohomology, but in a controlled way. See [45, Proposition 2.1].
an embedding, then there is an induced map $\text{Mod}_g^b \to \text{Mod}_g^{b'}$ that extends mapping classes by the identity. Harer [32] proved that the resulting map

$$H^k(\text{Mod}_g^{b'}) \to H^k(\text{Mod}_g^b)$$

is an isomorphism if $g \gg k$. The cohomology in this regime is known as the stable cohomology of the mapping class group. At least rationally, it was calculated by Madsen–Weiss [47], who showed that it is a polynomial algebra in classes $\kappa_n \in H^{2n}$ called the Miller–Morita–Mumford classes. See [30, 36, 73, 74] for expository accounts of this circle of ideas.

1.3. Borel stability

Borel’s stability theorem [5] concerns another kind of stability. Roughly speaking, it says that in a stable range, the rational cohomology of a lattice Γ in a semisimple Lie group is independent of the lattice Γ. In particular, it is unchanged when you replace Γ by a subgroup of finite index. For instance, for $\ell \geq 2$ define $\text{SL}_n(\mathbb{Z}, \ell)$ be the level-ℓ subgroup of $\text{SL}_n(\mathbb{Z})$, i.e., the kernel of the action of $\text{SL}_n(\mathbb{Z})$ on $(\mathbb{Z}/\ell)^n$. We thus have a short exact sequence

$$1 \longrightarrow \text{SL}_n(\mathbb{Z}, \ell) \longrightarrow \text{SL}_n(\mathbb{Z}) \longrightarrow \text{SL}_n(\mathbb{Z}/\ell) \longrightarrow 1.$$

By the congruence subgroup property [2, 48], for $n \geq 3$ every finite-index subgroup of $\text{SL}_n(\mathbb{Z}, \ell)$ for some $\ell \geq 2$. Borel’s theorem implies that the inclusion $\text{SL}_n(\mathbb{Z}, \ell) \hookrightarrow \text{SL}_n(\mathbb{Z})$ induces an isomorphism $\mathbb{H}_k(\text{SL}_n(\mathbb{Z}, \ell); \mathbb{Q}) \cong H^k(\text{SL}_n(\mathbb{Z}); \mathbb{Q})$ for $n \gg k$. Note that this involves making the group smaller by passing to a finite-index subgroup rather than larger by increasing n. See [14] for a direct proof that passing to $\text{SL}_n(\mathbb{Z}, \ell)$ does not change the stable rational homology.

1.4. Level-ℓ subgroup

For $\ell \geq 2$, the level-ℓ subgroup of $\text{Mod}_{g,p}^b$, denoted $\text{Mod}_{g,p}^b(\ell)$, is the kernel of the action of $\text{Mod}_{g,p}^b$ on $H_1(\Sigma_{g,p}; \mathbb{Z}/\ell)$. This action preserves the algebraic intersection form, which is a symplectic form if $p + b \leq 1$. In that case, we have a short exact sequence

$$1 \longrightarrow \text{Mod}_{g,p}^b(\ell) \longrightarrow \text{Mod}_{g,p}^b \longrightarrow \text{Sp}_{2g}(\mathbb{Z}/\ell) \longrightarrow 1$$

that is analogous to (1.1). For $p + b \geq 2$, we get a similar exact sequence, but with a more complicated cokernel. For $b = 0$ and $p \leq 1$, the associated finite cover of $\mathcal{M}_{g,p}$ is the moduli space $\mathcal{M}_{g,p}[\ell]$ of smooth genus-g curves over \mathbb{C} with p marked points equipped with a full level-ℓ structure, i.e., a basis for the ℓ-torsion in their Jacobian.

1.5. Main theorem

Since $\text{Mod}_{g,p}^b$ is not a lattice in a Lie group, the only potential analogue of the Borel stability theorem that might possibly make sense for it would involve passing to a finite-index subgroup like $\text{Mod}_{g,p}^b(\ell)$. Our main theorem is about precisely this:

Theorem A. Let $g, p, b \geq 0$ and $\ell \geq 2$. Then the map $H_k(\text{Mod}_{g,p}^b(\ell); \mathbb{Q}) \to H_k(\text{Mod}_{g,p}^b; \mathbb{Q})$ induced by the inclusion $\text{Mod}_{g,p}^b(\ell) \to \text{Mod}_{g,p}^b$ is an isomorphism if $g \geq 2k^2 + 7k + 2$.

3We have switched to homology since that is more natural for our subsequent discussion.

4The paper [14] does not state its main result in this way, but the above is implicit in it. See [62, Theorem C] for a explicit proof along the same lines of a more general result allowing twisted coefficients.

5For $p \geq 2$, the cover of $\mathcal{M}_{g,p}$ associated to $\text{Mod}_{g,p}(\ell)$ covers $\mathcal{M}_{g,p}[\ell]$. The subgroup corresponding to $\mathcal{M}_{g,p}[\ell]$ is the kernel $\text{Mod}_{g,p}[\ell]$ of the action of $\text{Mod}_{g,p}$ not on $H_1(\Sigma_{g,p}; \mathbb{Z}/\ell)$ but on $H_1(\Sigma_{g,p}; \mathbb{Z}/\ell)$, which $\text{Mod}_{g,p}$ acts on via the map $\text{Mod}_{g,p} \to \text{Mod}_s$ that fills in the p punctures. Our main theorem does imply a corresponding theorem for $\text{Mod}_{g,p}[\ell]$ and $\mathcal{M}_{g,p}[\ell]$. See §1.8 below.
1.6. **Prior work.** Two special cases of Theorem A were already known. The case $k = 1$ was proved by Hain [31] using work of Johnson [40] on H_1 of the Torelli subgroup of $\Mod(\Sigma_g)$. Hain’s proof gives the better stable range $g \geq 3$. Little is known about the higher homology groups of the Torelli group, so this approach does not generalize (but see §1.10 below). The case $k = 2$ was proved by Putman [58]. The paper [58] also gives a better bound, namely $g \geq 5$. We will discuss the relationship between our proof and [58] below in §1.12.

1.7. **Necessity of hypotheses.** The hypotheses in Theorem A are necessary:

- No result like Theorem A can hold for integral cohomology. Indeed, Perron [53], Sato [70], and Putman [59] identified exotic torsion elements of $H_1(\Mod_{g,p}^b(\ell); \mathbb{Z})$ that do not come from $H_1(\Mod_{g,p}^b; \mathbb{Z})$. Presumably similar torsion phenomena also occur for higher integral homology groups. A representation-theoretic form of stability for this torsion was proved in [64, Theorem K].
- Theorem A’s conclusion is false outside a stable range. Indeed, Church–Farb–Putman [16] and Morita–Sakasai–Suzuki [51] independently proved that $H^{4g-5}(\Mod(\Sigma_g); \mathbb{Q}) = 0$, but Fullarton–Putman [27] proved that $H^{4g-5}(\Mod(\Sigma_g, \ell); \mathbb{Q})$ is enormous. The significance of $4g - 5$ here is that it is the rational cohomological dimension of $\Mod(\Sigma_g)$; see [33].

However, we expect that the stable range $g \geq 2k^2 + 7k + 2$ can be improved. While we think that new ideas would be required to get a linear stable range, the constants can probably be improved by working a bit harder.

Remark 1.1. Continuing the analogy with $\SL_n(\mathbb{Z})$, it is known that both of the above caveats also apply to its stable homology. For exotic torsion in the homology of its finite-index subgroups, see [43, Theorem 1.1] and [64, Theorem I], and for nonstability outside the stable range see [43, Theorem 1.4] and [12, 17, 18] for results at full level, and [43, Theorem 1.2] and [49, 52, 72] for results at level $\ell \geq 2$. □

1.8. **Other finite-index subgroups, I.** If G is a finite-index subgroup of a group Γ, then using the transfer map (see, e.g., [11, §III.9]) one can show that the inclusion $G \hookrightarrow \Gamma$ induces a surjection $H_k(G; \mathbb{Q}) \twoheadrightarrow H_k(\Gamma; \mathbb{Q})$ for all k. This implies that if we are in a regime where the map

$$H_k(\Mod_{g,p}^b(\ell); \mathbb{Q}) \to H_k(\Mod_{g,p}^b; \mathbb{Q})$$

is an isomorphism, then for any intermediate subgroup

$$\Mod_{g,p}^b(\ell) \subset G \subset \Mod_{g,p}^b$$

the map

$$H_k(G; \mathbb{Q}) \to H_k(\Mod_{g,p}^b; \mathbb{Q})$$

is also an isomorphism. In other words, Theorem A implies a similar theorem for subgroups of $\Mod_{g,p}^b$ containing some $\Mod_{g,p}^b(\ell)$. There are many such subgroups. Here are two examples:

6 Actually, this paper only deals with the kernel $\Mod_{g,p}^b[\ell]$ of the action of $\Mod_{g,p}^b$ on $H_1(\Sigma_g; \mathbb{Z}/\ell)$ coming from the map $\Mod_{g,p}^b \to \Mod_p$ that fills in the punctures, glues discs to the boundary components, and extends mapping classes over these discs by the identity. As we will explain in §1.8, our theorem implies a corresponding theorem for $\Mod_{g,p}^b[\ell]$, so even for $k = 2$ our theorem is stronger than the one in the literature. A similar thing is true for the case $k = 1$ proved by Hain [31], though his proof can be generalized to this more general setting using the generalization of Johnson’s work in [60].

7 Brendle–Broaddus–Putman [9] generalized [27] to $\Mod_{g,p}^b$; however, it is still unknown whether the cohomology of $\Mod_{g,p}^b$ vanishes in its virtual cohomological dimension in general.

8 As we said above, it is known that better bounds are true for $k = 1, 2$.

9 For instance, if F_n is a free group of rank n and G is a finite-index subgroup of F_n, then G is a free group of rank at least n and the map $H_1(G; \mathbb{Q}) \to H_1(F_n; \mathbb{Q})$ is a surjection.
Example 1.2. The group $\text{Mod}^b_{g,p}$ acts on $H_1(\Sigma_g; \mathbb{Z}/\ell)$ via the surjection $\text{Mod}^b_{g,p} \to \text{Mod}_g$ that fills in the punctures, glues discs to the boundary components, and extends mapping classes over these discs by the identity. The kernel $\text{Mod}^b_{g,p}[\ell]$ of the resulting homomorphism $\text{Mod}^b_{g,p} \to \text{Sp}_{2g}(\mathbb{Z}/\ell)$ satisfies

$$\text{Mod}^b_{g,p}(\ell) \subset \text{Mod}^b_{g,p}[\ell] \subset \text{Mod}^b_{g,p}.$$

It is common in the literature to call $\text{Mod}^b_{g,p}[\ell]$ the level-ℓ congruence subgroup rather than $\text{Mod}^b_{g,p}(\ell)$. \hfill \Box

Example 1.3. Letting US_g be the unit tangent bundle of Σ_g, a spin structure on Σ_g is an element $\sigma \in H^1(US_g; \mathbb{F}_2)$ such that $\sigma(\lambda) = 1$, where $\lambda \in H_1(US_g; \mathbb{F}_2)$ is the loop around the fiber. If Σ_g is given the structure of a Riemann surface, then spin structures on Σ_g can be identified with theta characteristics, i.e., square roots of the canonical bundle [1, Proposition 3.2]. Let $\omega(\cdot, \cdot)$ be the algebraic intersection pairing on $H_1(\Sigma_g; \mathbb{F}_2)$. Johnson [39] showed that spin structures on Σ_g can be identified with \mathbb{F}_2-valued quadratic forms q on $H_1(\Sigma_g; \mathbb{F}_2)$ that refine ω, i.e., functions $q: H_1(\Sigma_g; \mathbb{F}_2) \to \mathbb{F}_2$ that satisfy

$$q(x + y) = q(x) + q(y) + \omega(x, y) \quad \text{for all } x, y \in H_1(\Sigma_g; \mathbb{F}_2).$$

Such quadratic forms are classified up to isomorphism by their \mathbb{F}_2-valued Arf invariant. The group Mod_g acts on the set of spin structures on Σ_g, and this action is transitive on the set of spin structures of a fixed Arf invariant. If σ is a spin structure on Σ_g, then the stabilizer subgroup $\text{Mod}_g(\sigma)$ of σ in Mod_g is known as a spin mapping class group [10] (see, e.g., [34, 35]). We have

$$\text{Mod}_g(2) \subset \text{Mod}_g(\sigma) \subset \text{Mod}_g,$$

so our theorem implies a similar result for $\text{Mod}_g(\sigma)$. \hfill \Box

1.9. Other finite-index subgroups, II. It is natural to wonder if something like Theorem A holds for all finite-index subgroups, not just the level-ℓ ones. For H_1, this is a conjecture of Ivanov [38] that has been the subject of a large amount of work; see, e.g., [23, 56, 65]. These papers prove this in many cases, but Ivanov’s conjecture remains open in general. For $k \geq 2$, nothing is known about the stable H_k of finite-index subgroups of the mapping class group other than Theorem A.

1.10. Torelli group. The intersection of all the $\text{Mod}^b_{g,p}(\ell)$ as ℓ ranges over integers $\ell \geq 2$ is the Torelli group, i.e., the kernel $\mathcal{T}^b_{g,p}$ of the action of $\text{Mod}^b_{g,p}$ on $H_1(\Sigma_g; \mathbb{Z})$. Very little is known about the homology of $\mathcal{T}^b_{g,p}$; indeed, while Johnson [40] calculated $H_1(\mathcal{T}^b_{g,p})$ and showed that it was finitely generated for $g \geq 3$, aside from a few low-complexity cases it is not known if $H_2(\mathcal{T}^b_{g,p})$ is finitely generated, even rationally. It is not clear if Theorem A implies anything about the homology of $\mathcal{T}^b_{g,p}$. However, sufficient regularity results about the homology of Torelli would imply Theorem A.

To explain this, let us restrict ourselves for simplicity to closed surfaces. Let

$$\text{Sp}_{2g}(\mathbb{Z}, \ell) = \ker(\text{Sp}_{2g}(\mathbb{Z}) \to \text{Sp}_{2g}(\mathbb{Z}/\ell))$$

10Be warned that in the literature there is another group that is often called the spin mapping class group. This group is a $\mathbb{Z}/2$-extension of $\text{Mod}_g(\sigma)$, and does not lie in Mod_g. See, e.g., [28].

11Johnson’s work covers the cases where $p + b \leq 1$. See [60] for how to generalize this to surfaces with multiple punctures and boundary components (at least rationally).
be the level-\(\ell\) subgroup of \(\text{Sp}_{2g}(\mathbb{Z})\). The commutative diagram of short exact sequences

\[
\begin{array}{c}
1 \longrightarrow \mathcal{I}_g \longrightarrow \text{Mod}_g(\ell) \longrightarrow \text{Sp}_{2g}(\mathbb{Z}, \ell) \longrightarrow 1 \\
\downarrow \quad \downarrow \quad \downarrow \\
1 \longrightarrow \mathcal{I}_g \longrightarrow \text{Mod}_g \longrightarrow \text{Sp}_{2g}(\mathbb{Z}) \longrightarrow 1
\end{array}
\]

induces a map between the corresponding Hochschild–Serre spectral sequences. To prove Theorem A (though perhaps with a different bound), it is enough to prove that this map between spectral sequences is an isomorphism in a range, i.e., that for \(g\) large we have

\[
\text{H}_p(\text{Sp}_{2g}(\mathbb{Z}, \ell); \text{H}_1(\mathcal{I}_g; \mathbb{Q})) \cong \text{H}_p(\text{Sp}_{2g}(\mathbb{Z}); \text{H}_1(\mathcal{I}_g; \mathbb{Q})) \quad \text{for } p + q \leq k.
\]

By the version of the Borel stability theorem with twisted coefficients [6], this would be true if the following folklore conjecture holds:

Conjecture 1.4. For each \(k\), there exists some \(G_k\) such that for \(g \geq G_k\), the homology group \(\text{H}_k(\mathcal{I}_g; \mathbb{Q})\) is finite-dimensional and the action of \(\text{Sp}_{2g}(\mathbb{Z})\) on it extends to a rational representation of the algebraic group \(\text{Sp}_{2g}(\mathbb{Q})\).

Johnson’s aforementioned work on \(H_1(\mathcal{I}_g)\) shows that this holds for \(k = 1\) with \(G_1 = 3\), but it is open for all \(k \geq 2\). One can view Theorem A as evidence for Conjecture 1.4.

1.11. Automorphism groups of free groups.

For a free group \(F_n\), its automorphism group \(\text{Aut}(F_n)\) shares many features with \(\text{Mod}^{b,p}_{\ell,\mathbb{Q}}\), so its also natural to hope that something like Theorem A holds for \(\text{Aut}(F_n)\). A deep theorem of Galatius [29] says that

\[
\text{H}_k(\text{Aut}(F_n); \mathbb{Q}) = 0 \quad \text{for } n \gg k,
\]

so the natural conjecture is that in a stable range, the rational homology of at least the level-\(\ell\) subgroup of \(\text{Aut}(F_n)\) vanishes. For \(k = 1\), this is known to hold. Indeed, in a remarkable recent paper that builds on work of Kaluba–Nowak–Ozawa [41], Kaluba–Kielak–Nowak [42] proved that \(\text{Aut}(F_n)\) has Kazhdan’s Property (T) for \(n \geq 5\). In that range, this implies in particular that \(H_1(\Gamma; \mathbb{Q}) = 0\) for all finite-index subgroups \(\Gamma\) of \(\text{Aut}(F_n)\) (as was conjectured for the mapping class group by Ivanov; c.f. §1.9). For \(k = 2\), Day–Putman [19, Theorem D] proved that the rational \(H_2\) of the level-\(\ell\) subgroup of \(\text{Aut}(F_n)\) is 0. We expect that the techniques used to prove Theorem A could be useful for extending this to the higher homology groups.

1.12. Sketch of proof.

We now sketch the proof of Theorem A, focusing for simplicity on the key case of \(\text{Mod}^{b,1}_{\ell,\mathbb{Q}}\). The starting point is the following basic fact about group homology, which strengthens the observation at the start of §1.8 above. Let \(G\) be a finite-index normal subgroup of a group \(\Gamma\). Using the transfer map (see, e.g., [11, §III.9]), one can show that

\[
H_k(\Gamma; \mathbb{Q}) = (H_k(\Gamma; \mathbb{Q}))^{\Gamma},
\]

where \(\Gamma\) denotes the coinvariants\(^{14}\) of the action of \(\Gamma\) on \(H_k(G; \mathbb{Q})\) induced by the conjugation action of \(\Gamma\) on \(G\). Thus \(H_k(G; \mathbb{Q}) \cong H_k(\Gamma; \mathbb{Q})\) precisely when \(\Gamma\) acts trivially on \(H_k(G; \mathbb{Q})\).

\(^{12}\)This was proved earlier for specific finite-index subgroups by Satoh [71] and Ershov–He [23].

\(^{13}\)It is still not known if the mapping class group has Kazhdan’s Property (T).

\(^{14}\)The action of \(\Gamma\) on \(H_k(G; \mathbb{Q})\) factors through the finite group \(Q = \Gamma/G\), and the coinvariants can alternatively be described as \(H_0(Q; H_k(G; \mathbb{Q}))\). This points the way to an alternate proof of (1.2): since \(Q\) is a finite group, it has no rational homology in positive degrees, so the Hochschild–Serre spectral sequence of the extension

\[
1 \longrightarrow G \longrightarrow \Gamma \longrightarrow Q \longrightarrow 1
\]

degenerates to show that \(H_k(\Gamma; \mathbb{Q}) \cong H_0(Q; H_k(G; \mathbb{Q}))\).
Applying this to the finite-index normal subgroup \(\text{Mod}_g^1(\ell) \) of \(\text{Mod}_g^1 \), we see that the following are equivalent:

- \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \cong H_k(\text{Mod}_g^1; \mathbb{Q}) \).
- \(\text{Mod}_g^1 \) acts trivially on \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \).

We check the second condition for \(g \gg k \). Since \(\text{Mod}_g^1 \) is generated by Dehn twists \(T_\gamma \) about nonseparating simple closed curves \(\gamma \), it is enough to prove that these \(T_\gamma \) act trivially on \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \). Embed \(\Sigma_{g-1}^1 \) into \(\Sigma_g^1 \) as follows:

Since \(T_\gamma \) commutes with mapping classes supported on \(\Sigma_{g-1}^1 \), it acts trivially on the image of \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \) in \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \). We deduce that it is enough to prove the following weaker version of Theorem A:

Theorem A'. Let \(g \geq 0 \) and \(\ell \geq 2 \). Then the map \(H_k(\text{Mod}_{g-1}^1(\ell); \mathbb{Q}) \to H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \) induced by the above inclusion \(\Sigma_{g-1}^1 \hookrightarrow \Sigma_g^1 \) is a surjection if \(g \geq 2k^2 + 7k + 2 \).

This resembles a homological stability theorem (or at least the surjective half of one), and it is natural to try to use the well-developed homological stability machine (see, e.g., [67]) to prove it. However, you immediately run into a fundamental problem: the input to this machine is an action of \(\text{Mod}_g^1(\ell) \) on a highly-connected simplicial complex \(X \), and one of the basic properties you need is that \(\text{Mod}_g^1(\ell) \) acts transitively on the vertices. If you use one of the simplicial complexes used to prove homological stability for \(\text{Mod}_g^1 \), this fails.\(^{15}\)

However, the machine does give a weaker conclusion: rather than saying that a single \(H_k(\text{Mod}_{g-1}^1(\ell); \mathbb{Q}) \) surjects onto \(H_k(\text{Mod}_g^1(\ell); \mathbb{Q}) \), it implies that if you take the direct sum over all embeddings of \(\Sigma_{g-1}^1 \) into \(\Sigma_g^1 \), then you do get a surjective map:\(^{16}\)

\[
\bigoplus_{\Sigma_{g-1}^1 \hookrightarrow \Sigma_g^1} H_k(\text{Mod}_{g-1}^1(\ell); \mathbb{Q}) \twoheadrightarrow H_k(\text{Mod}_g^1(\ell); \mathbb{Q}).
\]

It is therefore enough to show that each term in this direct sum has the same image. This requires an elaborate induction, and in particular requires proving not just Theorem A', but also a twisted analogue of Theorem A' with coefficients in certain rather complicated coefficient systems (tensor powers of the standard representation and Prym representations; see §1.13 and §1.14 below).

Remark 1.5. The above outline resembles the proof of the case \(k = 2 \) of Theorem A proved by the author long ago in [58]. Two new developments since then allowed us to prove the general case:

- The author’s work on twisted homological stability in [62], which provides a flexible tool for incorporating twisted coefficients into homological stability proofs.\(^{17}\)

\(^{15}\)And this cannot be easily avoided since the homological stability machine naturally gives theorems about integral homology, while Theorem A' only holds rationally.

\(^{16}\)In fact, you can take the direct sum over orbit representatives of the action of \(\text{Mod}_g^1(\ell) \) on the set of such embeddings. Note that if we were working with \(\text{Mod}_g^1 \) instead of \(\text{Mod}_g^1(\ell) \), then the “change of coordinates” principle from [24, §1.3.2] would show that there is a single such orbit.

\(^{17}\)There is an earlier approach to this due to Dwyer [20], but it seems hard to use his work in our proof.
• The author’s work on stability properties of “partial Torelli groups” in [61], which forms the basis for the elaborate induction discussed above as well as the simplicial complexes used in this paper.

1.13. Standard representation. The general twisted version of Theorem A that we will prove is a little technical, so we close this introduction by stating two special cases of it that we think are of independent interest. The first involves representations built from $H_1(\Sigma_{g,p}^b; \mathbb{Q})$:

Theorem B. Let $g, p, b \geq 0$ and $\ell \geq 2$. Then for $r \geq 0$, the map

$$H_k\left(\text{Mod}_{g,p}^b(\ell); H_1\left(\Sigma_{g,p}^b; \mathbb{Q}\right)^{\otimes_r}\right) \to H_k\left(\text{Mod}_{g,p}^b; H_1\left(\Sigma_{g,p}^b; \mathbb{Q}\right)^{\otimes_r}\right)$$

is an isomorphism if $g \geq 2(k + r)^2 + 7k + 6r + 2$.

Note that for $r = 0$ this reduces to Theorem A. In particular, setting $r = 0$ we get the bound $g \geq 2k^2 + 7k + 2$ from that theorem. We will also prove a version of Theorem B with coefficients in $H_1(\Sigma_g; \mathbb{Q})^{\otimes_r}$ rather than $H_1(\Sigma_{g,p}^b; \mathbb{Q})^{\otimes_r}$. See Theorem E in §10.

1.14. Prym representations. The other representation we need to handle is the Prym representation, which is defined as follows. Assume that $p + b \geq 1$. Let $\pi: S \to \Sigma_{g,p}^b$ be the regular cover with deck group $H_1(\Sigma_g; \mathbb{Z}/\ell)$ coming from the group homomorphism

$$\pi_1(\Sigma_{g,p}^b) \to H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \to H_1(\Sigma_g; \mathbb{Z}/\ell),$$

where the second map glues discs to all the boundary components and fills in all the punctures. Since $\text{Mod}_{g,p}^b(\ell)$ acts trivially on $H_1(\Sigma_g; \mathbb{Z}/\ell)$ and $p + b \geq 1$, covering space theory allows us to lift elements of $\text{Mod}_{g,p}^1(\ell)$ to mapping classes of S fixing the punctures and boundary components pointwise.\(^{18}\) This gives us an action of $\text{Mod}_{g,p}^b(\ell)$ on $\mathcal{M}_{g,p}^b(\ell; \mathbb{Q}) := H_1(S; \mathbb{Q})$. These representations are called Prym representations. They were first studied by Looijenga [44], who (essentially) determined their image. The map $\pi: S \to \Sigma_{g,p}^b$ induces a map\(^{19}\) from $\mathcal{M}_{g,p}^b(\ell; \mathbb{Q})$ to $\mathcal{M}_{g,p}^b(\ell; \mathbb{Q}) = H_1(\Sigma_{g,p}^b; \mathbb{Q})$. Our result is as follows. Note that our bound here is the same as in the case $r = 1$ of Theorem B:

Theorem C. Let $g, p, b \geq 0$ and $\ell \geq 2$ be such that $p + b \geq 1$. Then the map

$$H_k\left(\text{Mod}_{g,p}^b(\ell); \mathcal{M}_{g,p}^b(\ell; \mathbb{Q})\right) \to H_k\left(\text{Mod}_{g,p}^b; \mathcal{M}_{g,p}^b(\ell; \mathbb{Q})\right)$$

is an isomorphism if $g \geq 2(k + 1)^2 + 7k + 8$.

Remark 1.6. We proved the case $k = 1$ and $(b, p) = (1, 0)$ of this by a brute force calculation in [57, Theorem C], which allowed us to prove the case $k = 2$ of Theorem A in [58]. One of the main insights of the present paper is that one can simultaneously prove Theorems A and C with almost no calculations.

Remark 1.7. The result [57, Theorem B] might appear to say that Theorem C is false for $\text{Mod}_{g,1}(\ell)$. However, the Prym representation covered by [57, Theorem B] is slightly different from the one in Theorem C since it involves the homology of the $H_1(\Sigma_g; \mathbb{Z}/\ell)$-cover $S \to \Sigma_g$ rather than the cover $S \to \Sigma_{g,1}$.

\(^{18}\)This requires $p + d \geq 1$ to ensure that our lift is well-defined; otherwise, it would only be well-defined up to the action of the deck group. We could lift the whole mapping class group, but then we could only ensure that a single boundary component or puncture was fixed.

\(^{19}\)Using a bit of covering space theory, one can identify $\mathcal{M}_{g,p}^b(\ell; \mathbb{Q}) = H_1(\Sigma_{g,p}^b; \mathbb{Q})$ with the $H_1(\Sigma_g; \mathbb{Z}/\ell)$-coinvariants of $\mathcal{M}_{g,p}^b(\ell; \mathbb{Q})$.
Remark 1.8. In fact, what we need is something similar to Theorem C for tensor powers of the Prym representations. Unfortunately, the naive analogue of Theorem C for higher tensor powers of the Prym representations is false even for H_0, and formulating the correct version is a bit subtle. See Theorem D in §9 for details.

1.15. Outline of paper. We start in §2 by discussing some basic group-theoretic properties of the group $\text{Mod}_g^b(\ell)$. We then turn to a discussion of the twisted homological stability machine from [62]. This is contained in two sections: §3 is devoted to basic facts about simplicial complexes and their homology, and §4 isolates the part of the machine that we need. The input to this machine is a simplicial complex equipped with a “coefficient system”. In §5, we introduce the simplicial complex we will use (the “complex of tethered H-orthogonal tori”), and in §6 we discuss the Prym representations and show how to incorporate them into a coefficient system on the complex of tethered H-orthogonal tori. The action of $\text{Mod}_g^b(\ell)$ on the Prym representation preserves a bilinear form called the Reidemeister pairing, and §7 develops its basic properties. We discuss the author’s results from [61] on the partial Torelli groups in §8. Finally, the proofs of our main theorems are in §9. For technical reasons, these proofs do not work for closed surfaces, so we conclude with §10, which shows how to deduce our results for $\text{Mod}_g(\ell)$ from our results for $\text{Mod}_g^b(\ell)$ with $b \geq 1$.

1.16. Acknowledgments. I would like to thank Tom Church, Dan Margalit, and Xiyan Zhong for helpful comments on previous drafts of this paper.

2. Basic properties of the level-ℓ subgroup

We start by discussing some basic facts about the mapping class group and its subgroups.

2.1. Birman exact sequence I: mapping class group. One of our basic tools will be the Birman exact sequence, which was introduced by Birman [3] in her thesis. See [24, §4.2] for a textbook reference. Fix a puncture x_0 of $\Sigma_{g,p+1}^b$. Let $\phi: \text{Mod}_{g,p+1}^b \rightarrow \text{Mod}_{g,p}^b$ be the surjective homomorphism obtained by filling in x_0. Except in some degenerate cases, the kernel of ϕ is the point-pushing subgroup $\text{PP}_{x_0}(\Sigma_{g,p})$. Elements of $\text{PP}_{x_0}(\Sigma_{g,p})$ push the puncture x_0 around the surface. Keeping track of the path traced out by x_0 gives an isomorphism

$$\text{PP}_{x_0}(\Sigma_{g,p}^b) \cong \pi_1(\Sigma_{g,p}^b, x_0).$$

To keep our notation from being unmanageable, we will often omit the basepoint and just write $\pi_1(\Sigma_{g,p}^b)$. This is all summarized in the following theorem:

Theorem 2.1 (Birman exact sequence for punctures, [3]). Fix some $g, p, b \geq 0$ such that $\pi_1(\Sigma_{g,p}^b)$ is nonabelian, and let x_0 be a puncture of $\Sigma_{g,p+1}^b$. There is then a short exact sequence

$$1 \rightarrow \text{PP}_{x_0}(\Sigma_{g,p}^b) \rightarrow \text{Mod}_{g,p+1}^b \xrightarrow{\phi} \text{Mod}_{g,p}^b \rightarrow 1,$$

where $\text{PP}_{x_0}(\Sigma_{g,p}^b) \cong \pi_1(\Sigma_{g,p}^b)$.

The following lemma describes the effect of $\text{PP}_{x_0}(\Sigma_{g,p}^b)$ on $H_1(\Sigma_{g,p+1}^b)$:

20 Recall that H_0 calculates the coinvariants. The $\text{Mod}_{g,1}^b$-coinvariants of $\delta_{g,1}(\mathbb{Q})^\otimes 2$ are \mathbb{Q}. This is exhibited by the algebraic intersection pairing map $\delta_{g,1}(\mathbb{Q})^\otimes 2 \rightarrow \mathbb{Q}$. However, using the Reidemeister pairing described below in §7, one can construct a $\text{Mod}_{g,1}(\ell)$-invariant surjective map $\delta_{g,1}(\ell; \mathbb{Q})^\otimes 2 \rightarrow \mathbb{Q}[H]$, where $H = H_1(\Sigma_{g,1}; \mathbb{Z}/\ell)$, so the $\text{Mod}_{g,1}(\ell)$-coinvariants of $\delta_{g,1}(\ell; \mathbb{Q})^\otimes 2$ are much larger than 1-dimensional. In fact, these coinvariants are exactly $\mathbb{Q}[H]$. [\footnote{\text{\textcopyright} 2019 American Mathematical Society.}]
Lemma 2.2. Fix some $g, p, b \geq 0$ such that $\pi_1(\Sigma^{b}_{g, p})$ is nonabelian, and let x_0 be a puncture of $\Sigma^{b}_{g, p+1}$. Let k be a commutative ring. Let $\rho_1 : H_1(\Sigma^{b}_{g, p+1}; k) \to H_1(\Sigma^{b}_{g, p}; k)$ be the map that fills in x_0 and let $\rho_2 : PP_{x_0}(\Sigma^{b}_{g, p}) \to H_1(\Sigma^{b}_{g, p}; k)$ be the composition
\[
PP_{x_0}(\Sigma^{b}_{g, p}) \cong \pi_1(\Sigma^{b}_{g, p}) \to H_1(\Sigma^{b}_{g, p}; k).
\]
Finally, let
\[
\omega : H_1(\Sigma^{b}_{g, p}; k) \times H_1(\Sigma^{b}_{g, p}; k) \to k
\]
be the algebraic intersection pairing and let ζ be the homology class of a loop around x_0, oriented such that the surface is to its left. Then for $\gamma \in PP_{x_0}(\Sigma^{b}_{g, p})$ and $z \in H_1(\Sigma^{b}_{g, p+1}; k)$, we have
\[
\gamma(z) = z + \omega(\rho_1(z), \rho_2(\gamma)) \cdot \zeta.
\]
Proof. It is enough to check this on $\gamma \in PP_{x_0}(\Sigma^{b}_{g, p}) \cong \pi_1(\Sigma^{b}_{g, p})$ and $z \in H_1(\Sigma^{b}_{g, p+1}; k)$ that can be represented by simple closed curves. For these, it is immediate from the following picture:

Here we have represented $z \in H_1(\Sigma^{b}_{g, p+1}; k)$ by a cycle in $\Sigma^{b}_{g, p+1}$ that intersects γ transversely in the obvious sense. □

Next, fix a boundary component ∂ of $\Sigma^{b+1}_{g, p}$. Gluing a punctured disc to ∂ and extending mapping classes over it by the identity, we get a homomorphism $\psi : Mod^{b+1}_{g, p} \to Mod^{b}_{g, p+1}$. The following folklore result shows that except in degenerate cases the kernel of ψ is the infinite cyclic subgroup generated by T_{∂}:

Proposition 2.3 ([24, Proposition 3.19]). Fix some $g, p, b \geq 0$ such that $\pi_1(\Sigma^{b+1}_{g, p})$ is nonabelian, and let ∂ be a boundary component of $\Sigma^{b+1}_{g, p}$. Then there is a central extension
\[
1 \to \mathbb{Z} \to Mod^{b+1}_{g, p} \xrightarrow{\psi} Mod^{b}_{g, p+1} \to 1,
\]
where the central \mathbb{Z} is generated by the Dehn twist T_{∂}.

2.2. Partial level-ℓ subgroups. Our proofs will use results about the “partial Torelli groups” introduced by the author in [61]. To avoid technicalities, we will only discuss the special cases of these results needed for our work.\footnote{Unfortunately, the proofs in [61] do not simplify much if you restrict to these cases. We will later discuss how to relate the definition we give here to the one in [61].}

A subgroup $H < H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell)$ is a symplectic subgroup if the algebraic intersection pairing
\[
\omega : H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell) \times H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell) \to \mathbb{Z}/\ell
\]
restricts to a nondegenerate pairing on H. Such an H is of the form $H \cong (\mathbb{Z}/\ell)^{2h}$ for some $h \geq 0$ called its genus. We remark that if $p + b \geq 2$ then the algebraic intersection pairing on $H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell)$ is degenerate, so in that case $H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell)$ is not a symplectic subgroup of itself. For a symplectic subgroup H of $H_1(\Sigma^{b}_{g, p}; \mathbb{Z}/\ell)$, the associated partial level-ℓ subgroup, denoted $Mod^{b}_{g, p}(H)$, is the group of all $f \in Mod^{b}_{g, p}$ such that $f(x) = x$ for all $x \in H$.

Example 2.4. If $H = 0$, then $Mod^{b}_{g, p}(H) = Mod^{b}_{g, p}$.
Example 2.5. If \(H \) is a genus-\(g \) symplectic subgroup of \(H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \), then \(\text{Mod}^b_{g,p}(H) = \text{Mod}^b_{g,p}(\ell) \). The point here is that \(\text{Mod}^b_{g,p} \) automatically acts trivially on the subgroup \(\mathfrak{B} \cong (\mathbb{Z}/\ell)^{p+b-1} \) of \(H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \) generated by loops surrounding the punctures and boundary components,\(^{22} \) and \(H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) = \mathfrak{B} \oplus H \). Thus acting trivially on \(H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \) is equivalent to acting trivially on its subgroup \(H \). □

2.3. Conventions about symplectic subgroups. Let \(H \) be a symplectic subgroup of \(H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \). We will often need to relate \(\text{Mod}^b_{g,p}(H) \) to the partial level-\(\ell \) subgroup on other surfaces. Technically, the symplectic subgroup on the other surface is different from \(H \); however, in all the situations we care about there is a canonical way of identifying them. Our convention then is that we will use the same letter \(H \) for both of these subgroups. Here are two examples of what we mean:

- If \(\iota: \Sigma_{g,p}^b \hookrightarrow \Sigma_{g',p'}^b \) is an embedding, then the kernel of the map \(\iota_*: H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \to H_1(\Sigma_{g',p'}^b; \mathbb{Z}/\ell) \) is contained in the subgroup generated by loops surrounding boundary components and punctures. It follows that \(\ker(\iota_*) \cap H = 0 \), so \(\iota_* \) maps \(H \) isomorphically to a symplectic subgroup of \(H_1(\Sigma_{g',p'}^b; \mathbb{Z}/\ell) \) that we will also call \(H \).

- With this convention, as long as \(\iota \) takes punctures to either points or punctures we have a map \(\text{Mod}^b_{g,p}(H) \to \text{Mod}^b_{g',p'}(H) \) that extends mapping classes on \(\Sigma_{g,p}^b \) over \(\Sigma_{g',p'}^b \).

We will only use this convention when it is clear what it means, but it will greatly simplify our notation.

2.4. Birman exact sequence II: partial level-\(\ell \) subgroups. A version of the Birman exact sequence for the groups \(\text{Mod}^b_{g,p}(\ell) \) was proved by Brendle, Broaddus, and the author in\(^{23} \) [9, Theorem 3.1], building on work of the author for the Torelli group in [54]. For the partial level-\(\ell \) subgroups, the appropriate theorem is as follows. The statement of this theorem uses the conventions from §2.3.

Theorem 2.6. Fix some \(g, p, b \geq 0 \) such that \(\pi_1(\Sigma_{g,p}^b) \) is nonabelian, and let \(x_0 \) be a puncture of \(\Sigma_{g,p+1}^b \). Let \(\ell \geq 2 \) and let \(H \) be a symplectic subgroup of \(H_1(\Sigma_{g,p+1}^b; \mathbb{Z}/\ell) \). There is then a short exact sequence

\[
1 \to \text{PP}_{x_0}(\Sigma_{g,p}^b; H) \to \text{Mod}^b_{g,p+1}(H) \to \text{Mod}^b_{g,p}(H) \to 1,
\]

where \(\text{PP}_{x_0}(\Sigma_{g,p}^b, H) \) is as follows:

- If \(p = b = 0 \), then \(\text{PP}_{x_0}(\Sigma_{g,p}^b, H) = \text{PP}_{x_0}(\Sigma_{g,p}^b) \cong \pi_1(\Sigma_{g,p}^b) \).

- If \(p + b \geq 1 \), then \(\text{PP}_{x_0}(\Sigma_{g,p}^b, H) \) is the kernel of the composition

\[
\text{PP}_{x_0}(\Sigma_{g,p}^b) \cong \pi_1(\Sigma_{g,p}^b) \to H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) = H \oplus H^1_{\text{proj}} H.
\]

\(^{22}\)We have \(\mathfrak{B} \cong (\mathbb{Z}/\ell)^{p+b-1} \) and not \((\mathbb{Z}/\ell)^{p+b} \) since if you orient them correctly, the sum of the homology classes of all the loops surrounding the punctures and boundary components is zero.

\(^{23}\)The reference [9] concerns surfaces without boundary components, but this has little effect on the proof.
Here H^\perp is the orthogonal complement of H with respect to the algebraic intersection pairing.

Proof. The proof is nearly identical to that of [9, Theorem 3.1], so we will just sketch it. Letting

$$PP_{x_0}(\Sigma_{g,p}^b, H) = PP_{x_0}(\Sigma_{g,p}^b) \cap \text{Mod}_{g,p+1}^b(H),$$

it is easy to see that the Birman exact sequence

$$1 \to PP_{x_0}(\Sigma_{g,p}^b) \to \text{Mod}_{g,p+1}^b \to \text{Mod}_{g,p}^b \to 1$$

from Theorem 2.1 restricts to a short exact sequence

$$1 \to PP_{x_0}(\Sigma_{g,p}^b, H) \to \text{Mod}_{g,p+1}^b(H) \to \text{Mod}_{g,p}^b(H) \to 1.$$

The nontrivial thing is to identify $PP_{x_0}(\Sigma_{g,p}^b, H)$, which follows\(^{24}\) from Lemma 2.2. \(\square\)

Remark 2.7. If H is a genus-g symplectic subgroup of $H_1(\Sigma_{g,p}^n; \mathbb{Z}/\ell)$ and thus $\text{Mod}_{g,p}^b(H) = \text{Mod}_{g,p}^b(\ell)$ (see Example 2.5), then we will write $PP_{x_0}(\Sigma_{g,p}^b, \ell)$ for $PP_{x_0}(\Sigma_{g,p}^b, H)$. Theorem 2.6 thus gives an exact sequence

$$1 \to PP_{x_0}(\Sigma_{g,p}^b, \ell) \to \text{Mod}_{g,p+1}^b(\ell) \to \text{Mod}_{g,p}^b(\ell) \to 1$$

with $PP_{x_0}(\Sigma_{g,p}^b, \ell)$ the kernel of the map

$$PP_{x_0}(\Sigma_{g,p}^b) \cong \pi_1(\Sigma_{g,p}^b) \to H_1(\Sigma_{g,p}^b; \mathbb{Z}/\ell) \to H_1(\Sigma_g; \mathbb{Z}/\ell).$$

Since Dehn twists about boundary components always lie in $\text{Mod}_{g,p+1}^b(H)$, Proposition 2.3 immediately implies the following:

Proposition 2.8. Fix some $g, p, b \geq 0$ such that $\pi_1(\Sigma_{g,p}^{b+1})$ is nonabelian, and let ∂ be a boundary component of $\Sigma_{g,p}^{b+1}$. Let $\ell \geq 2$ and let H be a symplectic subgroup of $H_1(\Sigma_{g,p}^{b+1}; \mathbb{Z}/\ell)$. Then there is a central extension

$$1 \to \mathbb{Z} \to \text{Mod}_{g,p+1}^b(H) \to \text{Mod}_{g,p+1}^b(H) \to 1,$$

where the central \mathbb{Z} is generated by the Dehn twist T_γ.

Remark 2.9. Again, taking H to be a genus-g symplectic subgroup we get a central extension

$$1 \to \mathbb{Z} \to \text{Mod}_{g,p+1}^b(\ell) \to \text{Mod}_{g,p+1}^b(\ell) \to 1.$$ \(\square\)

2.5. Generating the partial level-ℓ subgroups.

The following lemma describes the difference between the level-ℓ subgroup and the partial level-ℓ subgroup. We remark that the lemma is true for all surfaces $\Sigma_{g,p}^b$, but we will only need the case Σ_1^1, for which the proof is a bit easier.

Lemma 2.10. Fix some $g \geq 2$. Let $\ell \geq 2$ and let H be a symplectic subgroup of $H_1(\Sigma_1^1; \mathbb{Z}/\ell)$. Then $\text{Mod}_{g}^1(H)$ is generated by $\text{Mod}_{g}^1(\ell)$ along with the set of all Dehn twists T_γ such that\(^{25}\) $[\gamma] \in H^\perp$. In fact, such T_γ act on H^\perp, and it is enough to take any set of such T_γ that map to a generating set for $\text{Sp}(H^\perp)$.

\(^{24}\)The reason there is a difference between the cases $p = b = 0$ and $p + b \geq 1$ is that if ζ the homology class of a loop surrounding x_0, then $\zeta = 0$ if $p = b = 0$, while $\zeta \neq 0$ if $p + b \geq 1$.

\(^{25}\)Here we are abusing notation - to define $[\gamma] \in H_1(\Sigma_1^1; \mathbb{Z}/\ell)$, we must first orient γ. Changing this orientation replaces $[\gamma]$ by $-[\gamma]$, and thus does not affect whether $[\gamma] \in H^\perp$. We will make similar abuses of notation throughout the paper.
Proof. Let $\text{Sp}_{2g}(\mathbb{Z}/\ell, H)$ be the subgroup of $\text{Sp}_{2g}(\mathbb{Z}/\ell)$ consisting of elements that fix H pointwise. If H has genus h, then

$$\text{Sp}_{2g}(\mathbb{Z}/\ell, H) \cong \text{Sp}(H^\perp) \cong \text{Sp}_{2(g-h)}(\mathbb{Z}/\ell).$$

The short exact sequence

$$1 \longrightarrow \text{Mod}_g^1(\ell) \longrightarrow \text{Mod}_g^1 \longrightarrow \text{Sp}_{2g}(\mathbb{Z}/\ell) \longrightarrow 1$$

restricts to an exact sequence of the form

$$1 \longrightarrow \text{Mod}_g^1(\ell) \longrightarrow \text{Mod}_g^1(H) \longrightarrow \text{Sp}(H^\perp).$$

Dehn twists T_γ such that $[\gamma] \in H^\perp$ map to symplectic transvections in $\text{Sp}(H^\perp) \cong \text{Sp}_{2(g-h)}(\mathbb{Z}/\ell)$. Moreover, for every $v \in H^\perp$ that is primitive\(^{26}\) there exists an oriented simple closed curve γ on Σ_g^1 with $[\gamma] = v$; see\(^{27}\) [24, Proposition 6.2]. Symplectic transvections about such elements generate\(^{28}\) $\text{Sp}(H^\perp) \cong \text{Sp}_{2(g-h)}(\mathbb{Z}/\ell)$. We conclude that the map $\text{Mod}_g^1(H) \rightarrow \text{Sp}(H^\perp)$ is surjective, and moreover that $\text{Mod}_g^1(H)$ is generated by $\text{Mod}_g^1(\ell)$ along with the set of all Dehn twists T_γ such that $[\gamma] \in H^\perp$, as desired. \qed

Remark 2.11. In Lemma 2.10, we can take

$$S = \{T_{\alpha_1}, \ldots, T_{\alpha_{g-h}}, T_{\beta_1}, \ldots, T_{\beta_{g-h}}, T_{\gamma_1}, \ldots, T_{\gamma_{g-h-1}}\},$$

where the α_i and β_i and γ_i are as follows:

![Diagram](image)

Here H consists of all elements of homology orthogonal to the curves about whose twists are in S, so H is supported on the handles on the left side of the figure that have no S-curves around them. This is an immediate consequence of the fact that Mod_{g-h} surjects onto $\text{Sp}_{2(g-h)}(\mathbb{Z}/\ell)$ and the fact that twists about the curves in the following figure generate Mod_{g-h}:

![Diagram](image)

See [24, §4.4]. \qed

\(^{26}\)That is, such that there does not exist some $w \in H^\perp$ and a non-unit $\lambda \in \mathbb{Z}/\ell$ with $v = \lambda w$.

\(^{27}\)This reference actually proves that primitive elements of $H_1(\Sigma_g^1) \cong \mathbb{Z}^{2g}$ can be represented by simple closed curves. All primitive elements of $H_1(\Sigma_g^1; \mathbb{Z}/\ell) \cong (\mathbb{Z}/\ell)^{2g}$ can be lifted to primitive elements of $H_1(\Sigma_g^1)$, so this implies what we need.

\(^{28}\)One quick way to see this is to note that these are the images of Dehn twists, which generate the mapping class group. Now use the fact that the mapping class group surjects onto the symplectic group.
2.6. **Subsurface stabilizers.** Let $j : \Sigma^2_g \hookrightarrow \Sigma^1_{g+1}$ be the following embedding:

There is an induced map $j_* : \text{Mod}^2_g \to \text{Mod}^1_{g+1}$ that extends mapping classes on Σ^2_g to Σ^1_{g+1} by the identity. Define

$$\text{Mod}^2_g(\ell) = \{ f \in \text{Mod}^2_g \mid j_*(f) \in \text{Mod}^1_{g+1}(\ell) \}.$$

We have $\text{Mod}^2_g(\ell) \subset \text{Mod}^1_g(\ell)$, but it is not the case that $\text{Mod}^2_g(\ell) = \text{Mod}^1_g(\ell)$. For instance, if ∂ is one of the boundary components of Σ^2_g then $T_\partial \in \text{Mod}^2_g(\ell)$ but $T_\partial \notin \text{Mod}^1_g(\ell)$.

Lemma 2.12. Let $g \geq 0$ and $\ell \geq 2$, and let ∂ be a boundary component of Σ^2_g. Then for all $f \in \text{Mod}^2_g(\ell)$, there exists some $n \in \mathbb{Z}$ such that $T_\partial^{-n}f \in \text{Mod}^1_g(\ell)$.

Proof. Let $S \cong \Sigma^1_g$ and α be as in the following figure:

Identify $H_1(S; \mathbb{Z}/\ell) \cong (\mathbb{Z}/\ell)^2g$ with its image in $H_1(\Sigma^1_{g+1}; \mathbb{Z}/\ell)$. Since $H_1(S; \mathbb{Z}/\ell)$ also injects into $H_1(\Sigma^2_g; \mathbb{Z}/\ell)$, our assumption that $f \in \text{Mod}^2_g(\ell)$ implies that f acts trivially on $H_1(S; \mathbb{Z}/\ell)$. Since f fixes the boundary component ∂, it also acts trivially on $[\partial]$. It follows that f takes $[\alpha]$ to an element of $H_1(\Sigma^1_{g+1}; \mathbb{Z}/\ell)$ that is orthogonal to $H_1(S; \mathbb{Z}/\ell)$ and has algebraic intersection number 1 with $[\partial]$. This implies that $f([\alpha]) = [\alpha] + n[\partial]$ for some $n \in \mathbb{Z}$. We deduce that $T_\partial^{-n}f$ fixes $[\alpha]$ as well as $[\partial]$ and $H_1(S; \mathbb{Z}/\ell)$. Since these elements generate $H_1(\Sigma^1_{g+1}; \mathbb{Z}/\ell)$, we conclude that $T_\partial^{-n}f \in \text{Mod}^1_g(\ell)$. \qed

Corollary 2.13. Let $g \geq 1$ and $\ell \geq 2$, and let ∂ be a boundary component of Σ^2_g. Let V be a \mathbb{Q}-vector space equipped with an action of $\text{Mod}^2_g(\ell)$ such that T_∂ acts trivially on V. Then

$$H_k(\text{Mod}^2_g(\ell); V) \cong H_k(\text{Mod}^1_g(\ell); V) \text{ for all } k \geq 0.$$

The proof of this corollary uses the following standard lemma, which follows from the existence of the transfer map and will be used many times in this paper.

Lemma 2.14 (Transfer map lemma, see, e.g., [11, II.3.9]). Let G be a finite-index subgroup of Γ. For a field k of characteristic 0, let V be a k-vector space equipped with an action of Γ. Then for all k, the map $H_k(G; V) \to H_k(\Gamma; V)$ is surjective. If G is also a normal subgroup of Γ, then Γ acts on $H_k(G; V)$ and $H_k(\Gamma; V) = H_k(G; V)_\Gamma$, where the subscript means we are taking the Γ-coinvariants.29

Proof of Corollary 2.13. Since $T_\partial \in \text{Mod}^2_g(\ell)$ is central and T_∂^ℓ is the smallest power of T_∂ lying in $\text{Mod}^2_g(\ell)$, Lemma 2.12 implies that $\text{Mod}^2_g(\ell)$ is a finite-index normal subgroup of $\text{Mod}^1_g(\ell)$.

29The action of Γ on $H_k(G; V)$ factors through $Q = \Gamma/G$, and sometimes it will be more convenient to write this as $H_k(G; V)_Q$.

Remark

3.2

Remark

These differ from ordinary simplicial complexes in two ways:

−−−→
forward link

Cohen–Macaulay of dimension

\(n \)

τ

of

σ

p

instance, its vertices need not be distinct. Given a

for

\[\sigma \]

Cohen–Macaulay complexes.

3.2.

and use this to order vertices in each simplex. However, a group

G

simplicial complex

X

□

not all semisimplicial sets are ordered simplicial complexes. Indeed, while to all

p

Ordered simplicial complexes.

3.1.

the easier category of “ordered simplicial complexes”.

3. Ordered simplicial complexes and coefficient systems

As we described in §1.12, one of our main tools is the homological stability machine. We
describe the parts of that machine we need in the next section §4. This section is devoted to
some background material needed to state the main results of [62]. We will not need to be
as general as [62], so instead of stating things in terms of semisimplicial sets we will work in
the easier category of “ordered simplicial complexes”.

3.1. Ordered simplicial complexes. An ordered simplicial complex is a CW complex \(\mathbb{X} \)
whose cells are simplices such that the following hold:

- The vertices \(\mathbb{X}^0 \) are an arbitrary discrete set.
- For \(p \geq 0 \), the set \(\mathbb{X}^p \) of \(p \)-simplices consists of certain ordered sequences \(\sigma = [v_0, \ldots, v_p] \), with the \(v_i \) distinct vertices. The faces of \(\sigma \) are obtained by deleting some of the \(v_i \), so for instance the codimension-1 faces are of the form \([v_0, \ldots, \hat{v}_i, \ldots, v_p] \).

These differ from ordinary simplicial complexes in two ways:

- The vertices making up a simplex have an order.
- There can be up to \((p + 1)! \) simplices of dimension \(p \) with the same set of vertices, corresponding to different orderings. For instance, there might be distinct edges \([v_0, v_1] \) and \([v_1, v_0] \) between vertices \(v_0 \) and \(v_1 \).

A group \(G \) acting on \(\mathbb{X} \) is required to respect the ordering of the vertices on a simplex, so if
\(\sigma = [v_0, \ldots, v_p] \) is a \(p \)-simplex and \(g \in G \), then \(g\sigma = [gv_0, \ldots, gv_p] \).

Remark 3.1. Each ordered simplicial complex is a semisimplicial set (see, e.g., [26]). However,
not all semisimplicial sets are ordered simplicial complexes. Indeed, while to all \(p \)-simplices
of a semisimplicial set there corresponds an ordered sequence of vertices, these vertices need
not be distinct and do not determine the simplex.

Remark 3.2. Every simplicial complex \(X \) can be endowed with the structure of an ordered
simplicial complex \(\mathbb{X} \). For instance, one can choose a total order on the set of vertices of \(X \) and use this to order vertices in each simplex. However, a group \(G \) acting on \(\mathbb{X} \) might not act
on \(\mathbb{X} \) since the action might not respect the ordering on the vertices.

3.2. Cohen–Macaulay complexes. Let \(\mathbb{X} \) be an ordered simplicial complex. As notation,
if \(\sigma = [v_0, \ldots, v_p] \) and \(\tau = [w_0, \ldots, w_q] \) are ordered sequences of vertices, we will write \(\sigma \cdot \tau \)
for \([v_0, \ldots, v_p, w_0, \ldots, w_q] \). Of course, \(\sigma \cdot \tau \) need not be a simplex even if \(\sigma \) and \(\tau \) are; for
instance, its vertices need not be distinct. Given a \(p \)-simplex \(\sigma \) of \(\mathbb{X} \), the forward link of
\(\sigma \), denoted \(\text{Link}^\mathbb{X}(\sigma) \), is the ordered simplex complex whose \(q \)-simplices are \(q \)-simplices
\(\tau \) of \(\mathbb{X} \) such that \(\sigma \cdot \tau \) is a \((p + q + 1)\)-simplex of \(\mathbb{X} \). We will say that \(\mathbb{X} \) is weakly forward
Cohen–Macaulay of dimension \(n \) if \(\mathbb{X} \) is \((n - 1)\)-connected and for all \(p \)-simplices \(\sigma \) of \(\mathbb{X} \), the
forward link \(\text{Link}^\mathbb{X}(\sigma) \) is \((n - p - 2)\)-connected.

\[\text{This reference calls semisimplicial sets } \Delta \text{-sets.} \]
3.3. Coefficient systems. Let \(k \) be a commutative ring. Our next goal is to define coefficient systems on ordered simplicial complexes \(X \), which informally are natural associations of \(k \)-modules to each simplex. Let \(\text{Simp}(X) \) be the poset of simplices of \(X \) and let \(\tilde{\text{Simp}}(X) \) be the poset obtained by adjoining an initial object \([\]\) to \(\text{Simp}(X) \). We will call \([\]\) the \((-1)\)-simplex of \(X \).

A coefficient system over \(k \) on an ordered simplicial complex \(X \) is a contravariant functor \(\mathcal{F} \) from \(\text{Simp}(X) \) to the category of \(k \)-modules. We will frequently omit the reference to \(k \) and just talk about coefficient systems on \(X \). Unpacking this, \(\mathcal{F} \) consists of the following data:

- For each simplex \(\sigma \) of \(X \), a \(k \)-module \(\mathcal{F}(\sigma) \).
- For each simplex \(\sigma \) and each face \(\sigma' \) of \(\sigma \), a \(k \)-module morphism \(\mathcal{F}(\sigma) \to \mathcal{F}(\sigma') \).

These must satisfy the evident compatibility conditions. Similarly, an augmented coefficient system on \(X \) is a contravariant functor \(\mathcal{F} \) from \(\tilde{\text{Simp}}(X) \) to the category of \(k \)-modules. The collection of coefficient systems (resp. augmented coefficient systems) over \(k \) on \(X \) forms an abelian category whose morphisms are natural transformations.

Notation 3.3. For a simplex \([v_0, \ldots, v_p]\), we will write \(\mathcal{F}[v_0, \ldots, v_p] \) rather than the technically correct but ugly \(\mathcal{F}([v_0, \ldots, v_p]) \). In particular, the value of \(\mathcal{F} \) on the \((-1)\)-simplex \([\]\) will be written as \(\mathcal{F}[\] \).

Example 3.4. We can define a constant coefficient system \(\mathbb{k} \) on \(X \) with \(\mathbb{k}(\sigma) = k \) for all simplices \(\sigma \). This can be extended to an augmented coefficient system by setting \(\mathbb{k}[\] = k \) for the \((-1)\)-simplex \([\]\).

3.4. Homology. Let \(X \) be an ordered simplicial complex and let \(\mathcal{F} \) be a coefficient system on \(X \). Define the simplicial chain complex of \(X \) with coefficients in \(\mathcal{F} \) to be the chain complex \(C_\bullet(X; \mathcal{F}) \) defined as follows:

- For \(p \geq 0 \), we have
 \[
 C_p(X; \mathcal{F}) = \bigoplus_{\sigma \in \mathcal{X}^p} \mathcal{F}(\sigma).
 \]

- The boundary map \(d : C_p(X; \mathcal{F}) \to C_{p-1}(X; \mathcal{F}) \) is \(d = \sum_{i=0}^{p} (-1)^i d_i \), where the map \(d_i : C_p(X; \mathcal{F}) \to C_{p-1}(X; \mathcal{F}) \) is as follows. Consider \(\sigma \in \mathcal{X}^p \). Write \(\sigma = [v_0, \ldots, v_p] \), and let \(\sigma_i = [v_0, \ldots, \hat{v}_i, \ldots, v_p] \). Then on the \(\mathcal{F}(\sigma) \) factor of \(C_n(X; \mathcal{F}) \), the map \(d_i \) is
 \[
 \mathcal{F}(\sigma) \to \mathcal{F}(\sigma_i) \to \bigoplus_{\sigma' \in \mathcal{X}^{p-1}} \mathcal{F}(\sigma') = C_{p-1}(X; \mathcal{F}).
 \]

Define

\[
H_k(X; \mathcal{F}) = H_k(C_\bullet(X; \mathcal{F})).
\]

For an augmented coefficient system \(\mathcal{F} \) on \(X \), define \(\tilde{C}_\bullet(X; \mathcal{F}) \) to be the augmented chain complex defined just like we did above but with \(\tilde{C}_{-1}(X; \mathcal{F}) = \mathcal{F}[\] \) and define

\[
\tilde{H}_k(X; \mathcal{F}) = H_k(\tilde{C}_\bullet(X; \mathcal{F})).
\]

Example 3.5. For the constant coefficient system \(\mathbb{k} \), the homology groups \(H_k(X; \mathbb{k}) \) and \(\tilde{H}_k(X; \mathbb{k}) \) agree with the usual simplicial homology groups of \(X \).

Remark 3.6. With our definition, \(\tilde{H}_{-1}(X; \mathcal{F}) \) is a quotient of \(\mathcal{F}[\] \). This quotient can sometimes be nonzero. It vanishes precisely when the map

\[
\bigoplus_{v \in \mathcal{X}^0} \mathcal{F}(v) \to \mathcal{F}[\]
\]

is surjective.
3.5. **Equivariant coefficient systems.** Let X be an ordered simplicial complex and let G be a group acting on X. Consider an augmented coefficient system F on X. We want to equip F with an “action” of G that is compatible with the G-action on X. For simplicity, we will restrict ourselves to coefficient systems F such that for all $\sigma, \sigma' \in \text{Simp}(X)$ with $\sigma' \subset \sigma$, the map $F(\sigma) \to F(\sigma')$ is injective. We will call such augmented coefficient systems injective augmented coefficient systems. Letting $[\cdot]$ be the (-1)-simplex, for all $\sigma \in \text{Simp}(X)$ the map $F(\sigma) \to F[\cdot]$ is injective, so we can regard $F(\sigma)$ as a k-submodule of $F[\cdot]$.

A G-equivariant injective augmented coefficient system on X is an injective augmented coefficient system F along with an action of G on $F[\cdot]$ such that for all $\sigma \in \text{Simp}(X)$, we have

$$gF(\sigma) = F(g \cdot \sigma) \quad \text{for all } g \in G.$$

Here we are regarding $F(\sigma)$ as a k-submodule of $F[\cdot]$, so $gF(\sigma)$ is the image of $F(\sigma)$ under the action of g on $F[\cdot]$. Letting G_σ be the stabilizer of σ, this implies that the action of G on $F[\cdot]$ restricts to an action of G_σ on $F(\sigma)$.

Example 3.7. Let X be an ordered simplicial complex with vertex set $V = X^0$. For a set S, write $k[S]$ for the free k-module with basis S. We can then define an injective augmented coefficient system F on X via the formulas

$$F[v_0, \ldots, v_p] = k[V \setminus \{v_0, \ldots, v_p\}] \quad \text{and} \quad F[\cdot] = k[V].$$

If a group G acts on X, then its action on V induces an action on $F[\cdot]$, making F into a G-equivariant injective augmented coefficient system. \hfill \square

4. The stability machine

We now discuss some aspects of the homological stability machine with twisted coefficients, following the approach\(^{32}\) of [62].

4.1. Motivation

In fact, what we need is not the homological stability machine itself, but a result that encapsulates one part of how the inductive step in the machine works. The setup is as follows. Consider a group G acting on an ordered simplicial complex X. The goal is to relate the homology of G to the homology of stabilizers of simplices of X. The most basic thing one might want is that $H_k(G)$ is "carried" on the vertex stabilizers in the sense that the map

$$(4.1) \quad \bigoplus_{v \in X^0} H_k(G_v) \to H_k(G)$$

is surjective. For $v \in X^0$ and $g \in G$, we have $gG_vg^{-1} = G_{gv}$, so since inner automorphisms act trivially on homology the images of $H_k(G_v)$ and $H_k(G_{gv})$ in $H_k(G)$ are the same. In particular, the above direct sum can actually be taken to be over representatives of the G-orbits of X^0. In a typical homological stability proof, the group G acts transitively on the vertices of X and there is a vertex v_0 such that G_{v_0} is the previous group in our sequence of groups. In that case, if (4.1) is surjective then the map $H_k(G_{v_0}) \to H_k(G)$ is surjective, which is one half of homological stability (the other half is injective stability).

\(^{31}\)This avoids the complicated definition in terms of natural transformations from [62].

\(^{32}\)There is an earlier approach to homological stability with twisted coefficients due to Dwyer [20], but it seems hard to use it to prove our theorems.
4.2. Fragment of machine. In our situation, the group G will not act transitively on the vertices of X. Moreover, we want to incorporate twisted coefficients, which we do using a G-equivariant coefficient system on X. The result we need is as follows:

Proposition 4.1. Let G be a group acting on an ordered simplicial complex X and let M be a G-equivariant augmented coefficient system on X. For some $k \geq 0$, assume that the following hold:

(i) We have $\tilde{H}_i(X; M) = 0$ for $-1 \leq i \leq k - 1$.

(ii) We have $\tilde{H}_i(X/G) = 0$ for $-1 \leq i \leq k$.

(iii) Let σ be a simplex of X. Then for $i \geq 1$ the map

$$H_{k-i}(G\sigma; M(\sigma)) \rightarrow H_{k-i}(G; M[\)]$$

is an isomorphism if $i - 1 \leq \dim(\sigma) \leq i + 1$.

Then the map

$$\bigoplus_{v \in X^0} H_k(G v; M(v)) \rightarrow H_k(G; M[\])$$

is a surjection.

Proof. This can be proved using the spectral sequence [62, Theorem 5.5] exactly like [62, Theorem 5.7].

4.3. Vanishing theorem. For Proposition 4.1 to be useful, we need a way to verify its first hypothesis, which says that $\tilde{H}_k(X; M) = 0$ in some range. The paper [62] gives a criterion for this. Letting X be an ordered simplicial complex, it applies to augmented coefficient systems F on X that are polynomial of degree $d \geq -1$. This is defined inductively in d as follows:

- A coefficient system F is polynomial of degree -1 if $F(\sigma) = 0$ for all simplices σ. In particular, $F[\] = 0$ for the (-1)-simplex $[\]$.

- A coefficient system F is polynomial of degree $d \geq 0$ if it satisfies the following two conditions:
 - The coefficient system F is injective in the sense of §3.5. Recall that this means that if σ is a simplex and σ' is a face of σ, then the map $F(\sigma) \rightarrow F(\sigma')$ is injective.
 - Let w be a vertex of X. Let D_wF be the coefficient system on the forward link $\text{Link}_X(w)$ defined by the formula

$$D_wF(\sigma) = \frac{F(\sigma)}{\text{Im}(F(w \cdot \sigma) \rightarrow F(\sigma))} \text{ for a simplex } \sigma \text{ of } \text{Link}_X(w).$$

Then D_wF must be polynomial of degree $d - 1$.

Example 4.2. It is easy to see that a coefficient system F is polynomial of degree 0 if and only if it is constant.

Example 4.3 (c.f. Example 3.4). Let X be an ordered simplicial complex with vertex set $V = X^0$. For a set S, write $k[S]$ for the free k-module with basis S. We can then define an augmented coefficient system F on X via the formulas

$$F[v_0, \ldots, v_p] = k[V \setminus \{v_0, \ldots, v_p\}] \text{ and } F[\] = k[V].$$

The reference [62] defines what it means to be polynomial of degree d up to dimension e. What we define here corresponds to $e = \infty$.

33 The reference [62] defines what it means to be polynomial of degree d up to dimension e. What we define here corresponds to $e = \infty$.

We claim that F is polynomial of degree 1. Since F is injective, for all $w \in V$ we must prove that $D_w F$ is polynomial of degree 0, i.e., constant. For a simplex $[v_0, \ldots, v_p]$ of the forward link of w, we have

$$D_w F[v_0, \ldots, v_p] = \frac{k[V \setminus \{v_0, \ldots, v_p]\}}{k[V \setminus \{w, v_0, \ldots, v_p\}]} \cong k[w] \cong k.$$

Thus $D_w F \cong k$, as desired. \qed

The vanishing theorem from \cite{62} is then as follows:

\textbf{Theorem 4.4 (Vanishing theorem, \cite[Theorem 6.3]{62}). For some $N \geq -1$ and $d \geq 0$, let X be an ordered simplicial complex that is weakly forward Cohen–Macaulay of dimension $N + d + 1$. Let F be an augmented coefficient system on X that is polynomial of degree d. Then $\bar H_i(X; F) = 0$ for $-1 \leq i \leq N$.}

4.4. Strong polynomiality

Let X be an ordered simplicial complex. Our next goal (accomplished below in \S 4.7 after two sections of preliminaries) is to study tensor products of polynomial augmented coefficient systems on X. What we would like to prove is that if F and G are polynomial of degrees $d \geq 0$ and $e \geq 0$, then $F \otimes G$ is polynomial of degree $d + e$. For this to be true, we need some additional hypotheses, the most important of which is as follows.

An augmented coefficient system F is strongly polynomial of degree $d \geq -1$ if it satisfies the following inductive definition:

- It is strongly polynomial of degree -1 if $F(\sigma) = 0$ for all simplices σ.
- It is strongly polynomial of degree $d \geq 0$ if it satisfies the following two conditions:
 - The coefficient system F is injective in the sense of \S 3.5.
 - Let $\tau = [w_0, \ldots, w_q]$ be a simplex of X. Set $\tau' = [w_0, \ldots, w_{q-1}]$, interpreted as the empty (-1)-simplex if $q = 0$. Let $D_\tau F$ be the coefficient system on the forward link $\text{Link}_X(\tau)$ defined by the formula
 $$D_\tau F(\sigma) = \frac{F(\tau' \cdot \sigma)}{\text{Im} (F(\tau' \cdot \sigma) \to F(\tau' \cdot \sigma))} \quad \text{for a simplex } \sigma \text{ of } \text{Link}_X(\tau).$$

Then $D_\tau F$ must be strongly polynomial of degree $d - 1$.

\textbf{Remark 4.5.} This is stronger than simply being polynomial, whose definition only involves D_τ for 0-dimensional simplices $\tau = [w]$. \qed

4.5. Insertion functors

Let F be an augmented coefficient system on an ordered simplicial complex X. For a simplex τ of X, let $A_\tau F$ be the augmented coefficient system on the forward link $L = \text{Link}_X(\tau)$ defined via the formula

$$A_\tau F(\sigma) = F(\tau \cdot \sigma) \quad \text{for a simplex } \sigma \text{ of } L.$$

Write $\tau = [w_0, \ldots, w_q]$, and let $\tau' = [w_0, \ldots, w_{q-1}]$. If F is injective, we have a short exact sequence

$$0 \to A_\tau F \to (A_{\tau'} F)|_L \to D_\tau F \to 0$$

of augmented coefficient systems on L. The following lemma implies that if F is strongly polynomial of degree d, then so are $A_\tau F$ and $(A_{\tau'} F)|_L$. This can fail if F is only polynomial.

\textbf{Lemma 4.6.} Let X be an ordered simplicial complex and let F be an augmented coefficient system on X that is strongly polynomial of degree d. The following hold:

(i) For all subcomplexes Y of X, the coefficient system $F|_Y$ is strongly polynomial of degree d.

(ii) Let τ be a simplex of X and let $L = \text{Link}_X(\tau)$. Then $A_\tau F$ is strongly polynomial of degree d.

Proof. For (i), in [62, Lemma 6.3] it is proved that if F is assumed merely to be polynomial of degree d, then so is $F|_Y$. The same proof works for strong polynomiality.

For (ii), since F is injective, so is $A_\tau F$. Also, if κ is a simplex of L, then $D_\kappa A_\tau F = D_\tau \kappa F$. Since F is strongly polynomial of degree d, this is strongly polynomial of degree $(d - 1)$. Together, these two observations imply that $A_\tau F$ is strongly polynomial of degree d. \qed

4.6. Filtrations of coefficient systems. It is clear that the collection of augmented coefficient systems that are strongly polynomial is closed under direct sums. More generally, we have the following. To make its statement easier to parse, we only state it for strongly polynomial coefficient systems, but it also holds for polynomial ones with a similar proof.

Lemma 4.7. Let X be an ordered simplicial complex and let F be an augmented coefficient system on X. Assume that F has a filtration $F = F_r \supset F_{r-1} \supset \cdots \supset F_0 = 0$ such that F_i/F_{i+1} is strongly polynomial of degree d for all $1 \leq i \leq r$. Then F is strongly polynomial of degree d.

Proof. The proof is by induction on d. The base case $d = -1$ is clear, so assume that $d \geq 0$ and that the lemma is true for coefficient systems of degree d. Using another induction on the length of a filtration, we see that it is enough to prove that if

$$0 \to K \to F \to Q \to 0$$

is a short exact sequence of augmented coefficient systems such that K and Q are strongly polynomial of degree d, then F is strongly polynomial of degree d.

To see that F is injective, let σ be a simplex and σ' be a face of σ. We then have a commutative diagram

$$
\begin{array}{cccccc}
0 & \to & K(\sigma) & \to & F(\sigma) & \to & Q(\sigma) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
0 & \to & K(\sigma') & \to & F(\sigma') & \to & Q(\sigma') & \to & 0
\end{array}
$$

with exact rows. The maps $K(\sigma) \to K(\sigma')$ and $Q(\sigma) \to Q(\sigma')$ are injective by assumption, so by the five-lemma $F(\sigma) \to F(\sigma')$ is also injective, as desired.

Now consider a simplex $\tau = [w_0, \ldots, w_q]$ of X. Set $\tau' = [w_0, \ldots, w_{q-1}]$. We know that $D_\tau K$ and $D_\tau Q$ are polynomial of degree $d - 1$, and we must prove that $D_\tau F$ is as well. For
a simplex σ of $\overrightarrow{\text{Link}}_\mathcal{X}(\tau)$, we have a commutative diagram

\[
\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & \mathcal{K}(\tau \cdot \sigma) & \mathcal{F}(\tau \cdot \sigma) & Q(\tau \cdot \sigma) & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & \mathcal{K}(\tau' \cdot \sigma) & \mathcal{F}(\tau' \cdot \sigma) & Q(\tau' \cdot \sigma) & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & D_\tau \mathcal{K}(\sigma) & D_\tau \mathcal{F}(\sigma) & D_\tau \mathcal{Q}(\sigma) & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow & \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

The columns are exact since \mathcal{K} and \mathcal{F} and \mathcal{Q} are injective, and the first two rows are also exact by assumption. A quick diagram chase\footnote{Or, alternatively, an application of the snake lemma.} shows that the third row is also exact. This implies that we have a short exact sequence

\[
0 \rightarrow D_\tau \mathcal{K} \rightarrow D_\tau \mathcal{F} \rightarrow D_\tau \mathcal{Q} \rightarrow 0
\]

of augmented coefficient systems. Since $D_\tau \mathcal{K}$ and $D_\tau \mathcal{Q}$ are strongly polynomial of degree $d - 1$, our inductive hypothesis implies that $D_\tau \mathcal{F}$ is as well, as desired. \hfill \square

4.7. Tensor products of coefficient systems

Using Lemma 4.7, we will prove the following. We will apply it with k a field, in which case its flatness assumptions are automatic.

Lemma 4.8. Let \mathcal{X} be an ordered simplicial complex and let \mathcal{F} and \mathcal{G} be augmented coefficient systems on \mathcal{X} over a commutative ring k. Assume the following hold:

- For all simplices σ of \mathcal{X}, the k-modules $\mathcal{F}(\sigma)$ and $\mathcal{G}(\sigma)$ are flat.
- The augmented coefficient systems \mathcal{F} and \mathcal{G} are strongly polynomial of degrees $d \geq 0$ and $e \geq 0$, respectively.

Then $\mathcal{F} \otimes \mathcal{G}$ is strongly polynomial of degree $d + e$.

Proof. The proof will be by induction on $d + e$. The base case is $d + e = 0$, in which case our assumptions $d \geq 0$ and $e \geq 0$ imply that $d = e = 0$. In other words, both \mathcal{F} and \mathcal{G} are strongly polynomial of degree 0, i.e., constant. Their tensor product $\mathcal{F} \otimes \mathcal{G}$ is thus obviously also constant, as desired.

Assume now that $d + e \geq 1$ and that the lemma is true whenever $d + e$ is smaller. We first prove that $\mathcal{F} \otimes \mathcal{G}$ is an injective augmented coefficient system. Let σ be a simplex and let σ' be a face of σ. The map $(\mathcal{F} \otimes \mathcal{G})(\sigma) \rightarrow (\mathcal{F} \otimes \mathcal{G})(\sigma')$ can be factored as

\[
(\mathcal{F} \otimes \mathcal{G})(\sigma) = \mathcal{F}(\sigma) \otimes \mathcal{G}(\sigma) \rightarrow \mathcal{F}(\sigma') \otimes \mathcal{G}(\sigma) \rightarrow \mathcal{F}(\sigma') \otimes \mathcal{G}(\sigma') = (\mathcal{F} \otimes \mathcal{G})(\sigma').
\]

The first arrow is injective since $\mathcal{G}(\sigma)$ is flat and the second arrow is injective since $\mathcal{F}(\sigma')$ is flat. It follows that the map $(\mathcal{F} \otimes \mathcal{G})(\sigma) \rightarrow (\mathcal{F} \otimes \mathcal{G})(\sigma')$ is injective, as desired.

Now consider a simplex $\tau = [w_0, \ldots, w_q]$ of \mathcal{X}. Set $\tau' = [w_0, \ldots, w_{q-1}]$. We must prove that the augmented coefficient system $D_{\tau'}(\mathcal{F} \otimes \mathcal{G})$ on $\mathcal{L} = \overrightarrow{\text{Link}}_{\mathcal{X}}(\tau)$ is polynomial of degree $d + e - 1$. Using the notation from §4.5, we have short exact sequences of augmented coefficient systems

\[
0 \rightarrow A_{\tau'} \mathcal{F} \rightarrow (A_{\tau'} \mathcal{F})|_{\mathcal{L}} \rightarrow D_{\tau'} \mathcal{F} \rightarrow 0
\]
and
\[0 \to A_\tau G \to (A_\tau G)|_L \to D_\tau G \to 0 \]
on \L. By Lemma 4.6, the augmented coefficient systems \(A_\tau F \) and \((A_\tau F)|_L\) (resp. \(A_\tau G \) and \((A_\tau G)|_L\)) are strongly polynomial of degree \(d \) (resp. \(e \)). Using our flatness assumptions, we have a filtration
\[0 \subset (A_\tau F) \otimes (A_\tau G) \subset (A_\tau F)|_L \otimes (A_\tau G) \subset (A_\tau F)|_L \otimes (A_\tau G)|_L \]
of coefficient systems. The associated graded of this filtration consists of the following:

- \((A_\tau F) \otimes (A_\tau G)\). Since \(A_\tau F \) is strongly polynomial of degree \(d \) and \(A_\tau G \) is strongly polynomial of degree \(e \), we cannot apply our inductive hypothesis to this (but we will soon quotient it out, so this will not matter).
- \((D_\tau F) \otimes (A_\tau G)\). Since \(D_\tau F \) is strongly polynomial of degree \((d - 1)\) and \(A_\tau G \) is strongly polynomial of degree \(e \), our inductive hypothesis says that this is strongly polynomial of degree \(d + e - 1 \).
- \((A_\tau F)|_L \otimes (D_\tau G)\). Since \((A_\tau F)|_L\) is strongly polynomial of degree \(d \) and \(D_\tau G \) is strongly polynomial of degree \(e - 1 \), our inductive hypothesis says that this is strongly polynomial of degree \(d + e - 1 \).

From this, we see that
\[D_\tau (F \otimes G) = ((A_\tau F)|_L \otimes (A_\tau G)|_L) / ((A_\tau F) \otimes (A_\tau G)) \]
has a filtration whose associated graded terms are strongly polynomial of degree \(d + e - 1 \). By Lemma 4.7, we deduce that \(D_\tau (F \otimes G) \) is strongly polynomial of degree \(d + e - 1 \), as desired. \(\square\)

5. The complex of tethered tori

In this section, we introduce an ordered simplicial complex upon which \(\text{Mod}^1_g(\ell) \) acts and study its basic properties.\(^{35}\) In the next section, we will introduce a \(\text{Mod}^1_g(\ell) \)-equivariant coefficient system on it and prove it is strongly polynomial.

5.1. Tori and tethered tori. Let \(\tau(\Sigma^1_g) \) be the result of gluing \([0, 1] \) to \(\Sigma^1_g \) by identifying \(1 \in [0, 1] \) with a point of \(\partial \Sigma^1_g \). The subset \([0, 1] \subset \tau(\Sigma^1_g)\) will be called the tether and the point \(0 \in [0, 1] \subset \tau(\Sigma^1_g) \) will be called the initial point of the tether. For an open interval \(I \subset \partial \Sigma^1_g \), an \(I \)-tethered torus in \(\Sigma^1_g \) is an embedding \(\iota: \tau(\Sigma^1_g) \to \Sigma^1_g \) taking the initial point of the tether to a point of \(I \) such that the restriction of \(\iota \) to \(\Sigma^1_g \) is orientation-preserving:

We will always consider \(I \)-tethered tori up to isotopy.\(^{36}\) An \(I \)-tethered torus \(\iota: \tau(\Sigma^1_g) \to \Sigma^1_g \) is said to be orthogonal to a symplectic subgroup \(H \subset H_1(\Sigma^1_g; \mathbb{Z}/\ell) \) if all elements of the image of
\[H_1(\Sigma^1_g; \mathbb{Z}/\ell) \xrightarrow{\cong} H_1(\tau(\Sigma^1_g); \mathbb{Z}/\ell) \xrightarrow{\iota_*} H_1(\Sigma^1_g; \mathbb{Z}/\ell) \]
are orthogonal to \(H \) under the algebraic intersection pairing.

\(^{35}\)Everything we discuss in this section also has analogues for \(\text{Mod}^k_{g,p}(\ell) \) with \(b \geq 1 \), but we only need the case of \(\text{Mod}^1_g(\ell) \) and restricting to this simplifies some of the proofs.

\(^{36}\)These are isotopies through \(I \)-tethered tori, so the initial point of the tether can move within \(I \).
5.2. Complex of tethered tori. Fix a symplectic subgroup $H \subset H_1(\Sigma_{g}^1; \mathbb{Z}/\ell)$ and an open interval $I \subset \partial \Sigma_{g}^1$. The complex of I-tethered H-orthogonal tori in Σ_{g}^1, denoted $\mathbb{T}_g(I, H)$, is the ordered simplicial complex whose p-simplices are ordered sequences $[\iota_0, \ldots, \iota_p]$ as follows:

- Each ι_i is the isotopy class of an I-tethered torus that is orthogonal to H.
- The ι_i can be isotoped so as to be disjoint.
- The ι_i are ordered using the order in which their tethers leave I, which is oriented such that the surface is to its right.

For instance, a 2-simplex might look like this:

If $H = 0$, then we will sometimes omit it from our notation and simply write $\mathbb{T}_g(I)$. The complex $\mathbb{T}_g(I)$ was introduced by Hatcher–Vogtmann [37], who proved that it was $\frac{g-3}{2}$-connected. The author generalized this to $\mathbb{T}_g(I, H)$ as follows:

Theorem 5.1 ([61, Theorem 3.8]). Fix $g \geq 0$ and $\ell \geq 2$. Let I be an open interval in $\partial \Sigma_{g}^1$ and let H be a genus-h symplectic subgroup of $H_1(\Sigma_{g}^1; \mathbb{Z}/\ell)$. Then $\mathbb{T}_g(I, H)$ is $\frac{g-(4h+3)}{2h+2}$-connected.

This has the following corollary:

Corollary 5.2. Fix $g \geq 0$ and $\ell \geq 2$. Let I be an open interval in $\partial \Sigma_{g}^1$ and let H be a genus-h symplectic subgroup of $H_1(\Sigma_{g}^1; \mathbb{Z}/\ell)$. Then $\mathbb{T}_g(I, H)$ is weakly forward Cohen–Macaulay of dimension $\frac{g-(4h+3)}{2h+2} + 1$.

Proof. Theorem 5.1 says that $\mathbb{T}_g(I, H)$ is $\frac{g-(4h+3)}{2h+2}$-connected. Let $\sigma = [\iota_0, \ldots, \iota_p]$ be a p-simplex and let L be the forward link of σ. As in the following figure, let S be the result of deleting the interiors of the $\iota_i(\Sigma_{g}^1)$ from Σ_{g}^1 and then cutting open the resulting surface along the tethers:

We thus have $S \cong \Sigma_{g-p-1}^1$, and $H_1(S; \mathbb{Z}/\ell)$ can be identified with a subgroup of $H_1(\Sigma_{g}^1; \mathbb{Z}/\ell)$ containing H. Identify S with Σ_{g-p-1}^1 and H with a subgroup of $H_1(\Sigma_{g-p-1}^1; \mathbb{Z}/\ell)$. Letting $J \subset \partial \Sigma_{g-p-1}^1$ be the interval indicated in the above figure, the forward link L is isomorphic to $\mathbb{T}_{g-p-1}(J, H)$, see here:

It thus follows from Theorem 5.1 that L is

$$\frac{(g - p - 1) - (4h + 3)}{2h + 2} = \frac{g - (4h + 3)}{2h + 2} - \frac{p}{2h + 2} \geq \frac{g - (4h + 3)}{2h + 2} - p - 1$$
connected, as desired. \(\square\)

5.3. Realizing symplectic bases. We next describe the quotient of \(\mathbb{T}_g^1(I, H)\) by \(\text{Mod}_g^1(\ell)\), which requires some preliminaries. A symplectic basis of \(H_1(\Sigma_g; \mathbb{Z}/\ell)\) is a set of elements \(\{a_1, b_1, \ldots, a_g, b_g\}\) of \(H_1(\Sigma_g; \mathbb{Z}/\ell)\) such that
\[
\omega(a_i, a_j) = \omega(b_i, b_j) = 0 \quad \text{and} \quad \omega(a_i, b_j) = \delta_{ij} \quad \text{for} \ 1 \leq i, j \leq g.
\]
This implies that the set \(\{a_1, b_1, \ldots, a_g, b_g\}\) is a basis of the free \(\mathbb{Z}/\ell\)-module \(H_1(\Sigma_g; \mathbb{Z}/\ell)\).

A geometric realization of a symplectic basis \(\{a_1, b_1, \ldots, a_g, b_g\}\) is a collection of oriented simple closed curves \(\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}\) on \(\Sigma_g^1\) satisfying
\[
[a_i] = a_i \quad \text{and} \quad [\beta_i] = b_i \quad \text{for} \ 1 \leq i \leq g
\]
such that the curves \(\{\alpha_1, \beta_1, \ldots, \alpha_g, \beta_g\}\) are all pairwise disjoint except that each \(\alpha_i\) intersects \(\beta_i\) exactly once:

Geometric realizations always exist:

Lemma 5.3. Fix some \(g \geq 0\) and \(\ell \geq 2\). Then every symplectic basis \(\{a_1, b_1, \ldots, a_g, b_g\}\) of \(H_1(\Sigma_g^1; \mathbb{Z}/\ell)\) has a geometric realization.

Proof. A similar statement was proved in \([54, \text{Lemma A.3}]\) for symplectic bases of \(H_1(\Sigma_g; \mathbb{Z}) \cong \mathbb{Z}^{2g}\), and the same proof works for \(H_1(\Sigma_g^1; \mathbb{Z}/\ell)\). \(\square\)

5.4. Identifying the quotient. Let \(V\) be a free \(\mathbb{Z}/\ell\)-module equipped with a bilinear pairing \(\omega: V \times V \to \mathbb{Z}/\ell\). Define \(\mathbb{S}(V)\) to be the ordered simplicial complex whose \((p-1)\)-simplices are ordered tuples \([\{a_1, b_1\}, \ldots, \{a_p, b_p\}]\) with \(a_i, b_j \in V\) such that
\[
\omega(a_i, a_j) = \omega(b_i, b_j) = 0 \quad \text{and} \quad \omega(a_i, b_j) = \delta_{ij} \quad \text{for} \ 1 \leq i, j \leq p.
\]
For a subgroup \(H\) of \(V\), let \(H^\perp\) denote the subgroup of \(V\) consisting of all \(v \in V\) such that \(\omega(v, x) = 0\) for all \(x \in H\). Of course, the main example of this is \(V = H_1(\Sigma_g^1; \mathbb{Z}/\ell)\) with the algebraic intersection pairing. We have the following.

Lemma 5.4. Fix some \(g \geq 0\) and \(\ell \geq 2\). Let \(I\) be an open interval in \(\partial \Sigma_g^1\) and let \(H\) be a symplectic subgroup of \(H_1(\Sigma_g^1; \mathbb{Z}/\ell)\). Then \(\mathbb{T}_g^1(I, H) / \text{Mod}_g^1(\ell) \cong \mathbb{S}(H^\perp)\).

Proof. Fix simple closed oriented curves \(A\) and \(B\) in \(\Sigma_g^1\) that intersect once with a positive sign. For an \(I\)-tethered torus \(\iota: \tau(\Sigma_g^1) \to \Sigma_g^1\) that is orthogonal to \(H\), we have oriented simple closed curves \(\iota(A)\) and \(\iota(B)\), and the tuple \([[[\iota(A)], [\iota(B)]]], \ldots, ([\iota_p(A)], [\iota_p(B)])]\) of mod-\(\ell\) homology classes is a vertex of \(\mathbb{S}(H^\perp)\). Define a map of ordered simplicial complexes \(\Psi: \mathbb{T}_g^1(I, H) \to \mathbb{S}(H^\perp)\) as follows. Consider a simplex \([\iota_1, \ldots, \iota_p]\) of \(\mathbb{T}_g^1(I, H)\). We then define
\[
\Psi([\iota_1, \ldots, \iota_p]) = [[[\iota_1(A)], [\iota_1(B)]], \ldots, ([\iota_p(A)], [\iota_p(B)])].
\]
The map \(\Psi\) is \(\text{Mod}_g^1(\ell)\)-invariant, and to prove that the resulting map
\[
\mathbb{T}_g^1(I, H) / \text{Mod}_g^1(\ell) \to \mathbb{S}(H^\perp)
\]
is an isomorphism it is enough to prove the following two facts.

Claim 1. For all simplices \(\sigma\) of \(\mathbb{S}(H^\perp)\), there exists a simplex \(\tau\) of \(\mathbb{T}_g^1(I, H)\) with \(\Psi(\tau) = \sigma\).
Write \(\sigma = [(a_1, b_1), \ldots, (a_p, b_p)] \). The set \(\{a_1, b_1, \ldots, a_p, b_p\} \) can be extended to a symplectic basis for \(H_1(\Sigma_g^1; \mathbb{Z}/\ell) \), and Lemma 5.3 implies that this symplectic basis has a geometric realization. Throwing away some of the curves in this geometric realization, we find simple closed oriented curves \(\{\alpha_1, \beta_1, \ldots, \alpha_p, \beta_p\} \) on \(\Sigma^1_g \) satisfying

\[
[a_i] = a_i \quad \text{and} \quad [\beta_i] = b_i \quad \text{for} \quad 1 \leq i \leq p
\]
such that the curves \(\{\alpha_1, \beta_1, \ldots, \alpha_p, \beta_p\} \) are all pairwise disjoint except that each \(\alpha_i \) intersects \(\beta_i \) exactly once. As in the following figure, we can then find a simplex \(\tau = \{\iota_1, \ldots, \iota_p\} \) of \(\mathbb{T}_g^1(I) \) such that \(\iota_i(A) = \alpha_i \) and \(\iota_i(B) = \beta_i \) for \(1 \leq i \leq p \):

Since the \(a_i \) and \(b_i \) all lie in \(H_1^1 \), the simplex \(\tau \) lies in \(\mathbb{T}_g^1(I, H) \), and by construction we have \(\Psi(\tau) = \sigma \).

Claim 2. For all simplices \(\tau_1 \) and \(\tau_2 \) of \(\mathbb{T}_g^1(I, H) \) such that \(\Psi(\tau_1) = \Psi(\tau_2) \), there exists some \(f \in \text{Mod}_g^1(\ell) \) such that \(f(\tau_1) = \tau_2 \).

For \(r = 1, 2 \) let \(\tau_r = [\iota_r^1, \ldots, \iota_r^p] \). Write

\[
\Psi(\tau_1) = \Psi(\tau_2) = [(a_1, b_1), \ldots, (a_p, b_p)]
\]

We can extend \(\{a_1, b_1, \ldots, a_p, b_p\} \) to a symplectic basis \(\{a_1, b_1, \ldots, a_g, b_g\} \) for \(H_1(\Sigma_g^1; \mathbb{Z}/\ell) \). Let \(S_r \) be the result of deleting the interiors of the \(\iota_r^i(\Sigma_g^1) \) from \(\Sigma_g^1 \) and then cutting open the resulting surface along the tethers:

We thus have \(S_r \cong \Sigma_g^{1-p-1} \). Identifying \(S_r \) with a subsurface of \(\Sigma_g^1 \) in the obvious way identifies \(H_1(S_r; \mathbb{Z}/\ell) \) with a subgroup of \(H_1(\Sigma_g^1; \mathbb{Z}/\ell) \), and \(\{a_{p+1}, b_{p+1}, \ldots, a_g, b_g\} \) is a symplectic basis for \(H_1(S_r; \mathbb{Z}/\ell) \). By Lemma 5.3, we can geometrically realize this with curves \(\{\alpha_{p+1}^r, \beta_{p+1}^r, \ldots, \alpha_g^r, \beta_g^r\} \) lying in \(S_r \). Using the “change of coordinates” principle from [24, §1.3.2], we can find some \(f \in \text{Mod}_g^1 \) with the following properties:

- \(f(\iota_1^i) = \iota_1^i \) for \(1 \leq i \leq p \). In particular, \(f \) fixes \(a_i \in H_1(\Sigma_g^1; \mathbb{Z}/\ell) \) and \(b_i \in H_1(\Sigma_g^1; \mathbb{Z}/\ell) \) for \(1 \leq i \leq p \).
- \(f(\alpha_1^i) = \alpha_2^i \) and \(f(\beta_1^i) = \beta_2^i \) for \(p + 1 \leq i \leq g \). In particular, \(f \) fixes \(a_i \in H_1(\Sigma_g^1; \mathbb{Z}/\ell) \) and \(b_i \in H_1(\Sigma_g^1; \mathbb{Z}/\ell) \) for \(p + 1 \leq i \leq g \).

The first of these properties implies that \(f(\tau_1) = \tau_2 \). Since \(f \) fixes the symplectic basis \(\{a_1, b_1, \ldots, a_g, b_g\} \) for \(H_1(\Sigma_g^1; \mathbb{Z}/\ell) \), it lies in \(\text{Mod}_g^1(\ell) \). The claim follows.

5.5. High connectivity of quotient

Building on work of Charney [15], Mirzaii–van der Kallen [50] proved the following:

Theorem 5.5 (Mirzaii–van der Kallen [50, Lemma 7.4]). Fix some \(g \geq 0 \) and \(\ell \geq 2 \). Let \(V = H_1(\Sigma_g^1; \mathbb{Z}/\ell) \). Then \(\mathbb{S}B(V) \) is \(\frac{g-5}{2} \)-connected.

This has the following corollary.
Corollary 5.6. Fix some $g \geq 0$ and $\ell \geq 2$. Let I be an open interval in $\partial \Sigma^1_g$ and let H be a genus-h symplectic subgroup of $H_1(\Sigma^1_g;\mathbb{Z}/\ell)$. Then $\mathbb{T}\mathbb{T}^1_g(I, H)/\text{Mod}^1_g(\ell)$ is $\frac{g-h-5}{2}$-connected.

Proof. Lemma 5.4 says that $\mathbb{T}\mathbb{T}^1_g(I, H)/\text{Mod}^1_g(\ell) \cong \mathbb{EB}(H^\perp)$, and $H^\perp \cong H_1(\Sigma^1_g;\mathbb{Z}/\ell)$. Theorem 5.5 thus implies that $\mathbb{T}\mathbb{T}^1_g(I, H)/\text{Mod}^1_g(\ell)$ is $\frac{g-h-5}{2}$-connected. \qed

6. Prym representations

We now discuss the definition and some basic properties of the Prym representations and show how to encode them by equivariant augmented coefficient systems on the tethered torus complexes $\mathbb{T}\mathbb{T}^1_g(I, H)$. Throughout this section, k is a commutative ring. Fix some $g \geq 1$ and $\ell \geq 2$, and let $^\mathbb{D} = H_1(\Sigma^1_g;\mathbb{Z}/\ell) = H_1(\Sigma^1_g;\mathbb{Z}/\ell) \cong (\mathbb{Z}/\ell)^{2g}$.

6.1. Surfaces with one boundary component, definition. We start with surfaces Σ^1_g with one boundary component. In this case, the Prym representation is defined as follows. Let $S_0 \to \Sigma^1_g$ be the finite regular cover corresponding to the homomorphism $\pi_1(\Sigma^1_g) \to \mathbb{D}$. The deck group of this cover is \mathbb{D}. By definition, the Prym representation with coefficients in k is

$$\mathcal{S}_g^1(\ell; k) = H_1(S_0; k).$$

The level-ℓ mapping class group $\text{Mod}^1_g(\ell)$ acts on $\mathcal{S}_g^1(\ell; k)$ via the action on homology of lifts of mapping classes on Σ^1_g to S_0 that fix ∂S_0 pointwise.

Remark 6.1. It is important that Σ^1_g has nonempty boundary. Otherwise, due to basepoint issues there would not be a canonical way to lift elements of $\text{Mod}^1_g(\ell)$ to S_0. \qed

Remark 6.2. We could extend the action of $\text{Mod}^1_g(\ell)$ on $\mathcal{S}_g^1(\ell; k)$ to Mod^1_g since the cover $S_0 \to \Sigma^1_g$ is a characteristic cover. However, the lifts in that case would only fix a single component of ∂S_0. \qed

6.2. Partial Prym representation. It is not clear how to incorporate $\mathcal{S}_g^1(\ell; k)$ into an augmented coefficient system on $\mathbb{T}\mathbb{T}^1_g(I)$, and in any case it seems unlikely that any such coefficient system would be polynomial. To fix this, we restrict ourselves to the partial Prym representations, which are defined as follows. Let H be a symplectic subgroup of $H_1(\Sigma^1_g;\mathbb{Z}/\ell)$. Recall from §2.2 that the associated partial level-ℓ subgroup, denoted $\text{Mod}^1_g(H)$, is the group of all $f \in \text{Mod}^1_g$ such that $f(x) = x$ for all $x \in H$. Let $S_H \to \Sigma^1_g$ be the finite regular cover corresponding to the homomorphism

$$\pi_1(\Sigma^1_g) \to H_1(\Sigma^1_g) = H \oplus H^\perp \xrightarrow{\text{proj}} H.$$

The deck group of this cover is H. Setting $\mathcal{S}_g^1(H; k) = H_1(S_H; k)$, just like for $\mathcal{S}_g^1(\ell; k)$ we can define an action of $\text{Mod}^1_g(H)$ on $\mathcal{S}_g^1(H; k)$ by lifting mapping classes to S_H. We will call $\mathcal{S}_g^1(H; k)$ a partial Prym representation.

37Here \mathbb{D} stands for “deck group”.

38Since the target of this homomorphism is abelian, there is no need to specify a basepoint of $\pi_1(\Sigma^1_g)$; however, if the reader prefers to be careful about basepoints then they should fix one on $\partial \Sigma^1_g$.

39That is, it corresponds to a subgroup of $\pi_1(\Sigma^1_g)$ that is preserved by all automorphisms.

40In §6.6, we will explain how to relate the partial Prym representations to the Prym representation.

41Unlike for $\mathcal{S}_g^1(\ell; k)$, this action cannot be extended to Mod^1_g since this is not a characteristic cover.
6.3. **Coefficient system.** Continue to let \(H \) be a symplectic subgroup of \(H_1(\Sigma^1_g; \mathbb{Z}/\ell) \), and let \(\tau: S_H \to \Sigma^1_g \) be the regular cover discussed above. Fix an open interval \(I \) in \(\partial \Sigma^1_g \), and consider a simplex \(\sigma = [t_0, \ldots, t_\ell] \) of \(\mathbb{T}\Sigma^1_g(I, H) \). Set

\[
X_\sigma = \Sigma^1_g \setminus \text{Nbhd} \left(\partial \Sigma^1_g \cup \text{Im} \,(t_0) \cup \cdots \cup \text{Im} \,(t_\ell) \right),
\]

where \(\text{Nbhd}(\cdot) \) denotes an open regular neighborhood of the indicated subset of \(\Sigma^1_g \). See here:

We thus have \(X_\sigma \cong \Sigma^1_g \setminus \text{Nbhd}(\partial \Sigma^1_g) \). Since \(\sigma \) is a simplex of \(\mathbb{T}\Sigma^1_g(I, H) \), the map \(\pi_1(\Sigma^1_g) \to H \) used to define \(\pi: S_H \to \Sigma^1_g \) restricts to a surjective map \(\pi_1(X_\sigma) \to H \). It follows that \(\bar{X}_\sigma = \pi^{-1}(X_\sigma) \) is a connected submanifold of \(S_H \) and \(\bar{X}_\sigma \to X_\sigma \) is a finite regular \(H \)-cover. Define an augmented coefficient system \(\mathcal{H}^1_g(H; k) \) on \(\mathbb{T}\Sigma^1_g(I, H) \) via the formula

\[
\mathcal{H}^1_g(H; k)(\sigma) = H_1(\bar{X}_\sigma; k).
\]

Our convention is that if \(\sigma = [\] \) is the \((-1)\)-simplex, then \(X_\sigma = \Sigma^1_g \setminus \text{Nbhd}(\partial \Sigma^1_g) \), so

\[
\mathcal{H}^1_g(H; k)\,[\] = H_1(X_\sigma; k) \cong H_1(S_H; k) = \Sigma^1_g(H; k).
\]

Our main result about this coefficient system is that it is strongly polynomial of degree 1 (see §4.4 for the definition of a strongly polynomial coefficient system):

Lemma 6.3. Let \(g \geq 0 \) and \(\ell \geq 2 \). Fix a symplectic subgroup \(H \) of \(H_1(\Sigma^1_g; \mathbb{Z}/\ell) \) and an open interval \(I \) in \(\partial \Sigma^1_g \). Then for all commutative rings \(k \) the augmented coefficient system \(\mathcal{H}^1_g(H; k) \) on \(\mathbb{T}\Sigma^1_g(I, H) \) is strongly polynomial of degree 1.

Proof. It is immediate from the definitions that \(\mathcal{H}^1_g(H; k) \) is injective. The other condition in the definition of being strongly polynomial of degree 1 is as follows. Let \(\sigma = [t_0, \ldots, t_\ell] \) be a simplex of \(\mathcal{T}\Sigma^1_g(I, H) \). Set \(\tau' = [t_0, \ldots, t_{\ell-1}] \), and let \(D_\tau \mathcal{H}^1_g(H; k) \) be the coefficient system on the forward link \(\mathbb{L} = \text{Lin}^k_{\mathbb{T}\Sigma^1_g(I, H)}(\tau) \) defined by the formula

\[
D_\tau \mathcal{H}^1_g(H; k)(\sigma) = \mathcal{H}^1_g(H; k)(\tau' \cdot \sigma) / \text{Im} \left(\mathcal{H}^1_g(H; k)(\tau \cdot \sigma) \rightarrow \mathcal{H}^1_g(H; k)(\tau' \cdot \sigma) \right)
\]

for a simplex \(\sigma \) of \(\mathbb{L} \).

We must prove that \(D_\tau \mathcal{H}^1_g(H; k) \) is strongly polynomial of degree 0, i.e., constant. Expanding out the above formula for \(D_\tau \mathcal{H}^1_g(H; k)(\sigma) \), we see that

\[
D_\tau \mathcal{H}^1_g(H; k)(\sigma) = \frac{H_1(\bar{X}_{\tau', \sigma}; k)}{\text{Im} \left(H_1(\bar{X}_{\tau, \sigma}; k) \rightarrow H_1(\bar{X}_{\tau', \sigma}; k) \right)}.
\]

Letting \(\tau: S_H \to \Sigma^1_g \) be the regular cover used to define \(\mathcal{H}^1_g(H; k) \), it is immediate that this is isomorphic to

\[
H_1 \left(\pi^{-1}(\text{Im}(t_\ell)); k \right).
\]

Note that the subspace of \(S_H \) we are taking \(H_1 \) of here is the disjoint union of \(|H| \) copies of a tethered torus \(\tau(\Sigma^1_g) \), and its homology injects into \(H_1(S_H; k) \). That \(D_\tau \mathcal{H}^1_g(H; k) \) is constant follows. \qed
6.4. General surfaces, definition. Our next goal is to relate $\mathcal{H}^b_{g,k}(\ell;\mathbb{R})$ and $\mathcal{H}^b_{g,k}(H;\mathbb{R})$. For later use, we put these results in a broader context. Throughout the rest of this section, fix some $g,b,p \geq 0$ and $\ell \geq 2$ with $b+p \geq 1$. Let $S_D \to \Sigma^b_{g,p}$ be the regular cover with deck group $D = H_1(\Sigma g; \mathbb{Z}/\ell)$ corresponding to the group homomorphism

$$\pi_1(\Sigma^b_{g,p}) \to H_1(\Sigma^b_{g,p}; \mathbb{Z}/\ell) \to H_1(\Sigma g; \mathbb{Z}/\ell) = D,$$

where the second map fills in the punctures and glues discs to the boundary components. Define $\mathcal{H}^b_{g,p}(\ell;k) = H_1(S_D;k)$. The group $\text{Mod}^b_{g,p}(\ell)$ acts on $\mathcal{H}^b_{g,p}(\ell;k)$ as before.

Remark 6.4. At the level of homology, there is no difference between boundary components and punctures, so $\mathcal{H}^b_{g,p}(\ell;k) \cong \mathcal{H}^b_{g,p+b}(\ell;k)$. □

6.5. Decomposition. We now specialize k to the field \mathbb{C} of complex numbers. Our goal is to decompose $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ into subrepresentations and show that each of these subrepresentations appears in $\mathcal{H}^b_{g,p}(H;\mathbb{C})$ for an appropriate symplectic subgroup H of $H_1(\Sigma^b_{g,p}; \mathbb{Z}/\ell)$.

The vector space $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ has actions of the following groups:

- The group $D \cong (\mathbb{Z}/\ell)^{2g}$, which acts on S_D as the group of deck transformations.
- The group $\text{Mod}^b_{g,p}(\ell)$, which acts via the action obtained by lifting diffeomorphisms of $\Sigma^b_{g,p}$ to diffeomorphisms of S_D fixing all boundary components and punctures.

These two actions commute, so the action of $\text{Mod}^b_{g,p}$ on $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ preserves the D-isotypic components of $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$.

Since $D \cong (\mathbb{Z}/\ell)^{2g}$ is a finite abelian group, its irreducible \mathbb{C}-representations are all 1-dimensional and in bijection with characters $\chi: D \to \mathbb{C}^\times$. Letting \hat{D} be the abelian group of characters of D, the irreducible representation corresponding to $\chi \in \hat{D}$ is a 1-dimensional \mathbb{C}-vector space $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ with the action

$$d \cdot \vec{v} = \chi(d)\vec{v} \quad \text{for all } \vec{v} \in \mathcal{H}^b_{g,p}(\ell;\mathbb{C}) \text{ and } d \in D.$$

Let $\mathcal{H}^b_{g,p}(\chi)$ be the $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$-isotypic component of $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$. By definition, this is the set of all $\vec{w} \in \mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ such that $d \cdot \vec{w} = \chi(d)\vec{w}$ for all $d \in D$. The action of $\text{Mod}^b_{g,p}(\ell)$ on $\mathcal{H}^b_{g,p}(\ell;\mathbb{C})$ preserves $\mathcal{H}^b_{g,p}(\chi)$, and we have a direct sum decomposition

$$\mathcal{H}^b_{g,p}(\ell;\mathbb{C}) = \bigoplus_{\chi \in \hat{D}} \mathcal{H}^b_{g,p}(\chi)$$

of representations of $\text{Mod}^b_{g,p}(\ell)$.

6.6. Intermediate covers. Let H be a symplectic subgroup of $H_1(\Sigma^b_{g,p}; \mathbb{Z}/\ell)$, and let $S_H \to \Sigma^b_{g,p}$ be the cover corresponding to the surjective homomorphism

$$\pi_1(\Sigma^b_{g,p}) \to H_1(\Sigma^b_{g,p}; \mathbb{Z}/\ell) = H \oplus H^\perp \to H.$$

Since the homology classes of loops surrounding boundary components and punctures lie in H^\perp, this map factors through D, so this cover lies between S_D and $\Sigma^b_{g,p}$ in the sense that we have a factorization

$$S_D \to S_H \to \Sigma^b_{g,p}.$$

43 The purpose of working over \mathbb{C} is that the irreducible representations of a finite abelian group over \mathbb{C} are very simple. Our ultimate results will be over \mathbb{Q} and we could stick to that field, but at the cost of having to do more complicated representation theory.

44 This is where we use the fact that $p+b \geq 1$, so there is a fixed basepoint. Otherwise, our lifts would only be defined up to the action of the deck group.
Define $\mathcal{H}_{g,p}^b(H;\mathbb{C}) = H_1(S_H;\mathbb{C})$. The partial mod-\(\ell\) subgroup $\text{Mod}_{g,p}^b(H)$ acts on $\mathcal{H}_{g,p}^b(H;\mathbb{C})$ as before. The deck group of $S_H \to \mathcal{H}_{g,p}^b$ is H, so again $\mathcal{H}_{g,p}^b(H;\mathbb{C})$ decomposes into a direct sum of H-isotypic components, indexed by elements of the dual group \hat{H} of characters.

The map $\pi_1(\mathcal{H}_{g,p}^b) \to H$ factors through \mathcal{D}, so we have a surjection $\mathcal{D} \to H$. This induces an inclusion $\hat{H} \hookrightarrow \hat{\mathcal{D}}$, and we will identify \hat{H} with its image in $\hat{\mathcal{D}}$. An element of $\hat{\mathcal{D}}$ lying in \hat{H} is said to be compatible with H. We then have the following:

Lemma 6.5. Fix $g,p,b \geq 0$ and $\ell \geq 2$ with $p + b \geq 1$. Let H be a symplectic subgroup of $H_1(\mathcal{H}_{g,p}^b;\mathbb{Z}/\ell)$. Then for all $\chi \in \hat{\mathcal{D}}$ that are compatible with H, the \mathbb{C}_χ-isotypic component of $\mathcal{H}_{g,p}^b(H;\mathbb{C})$ is naturally isomorphic\(^{45}\) to $\mathcal{H}_{g,p}^b(\chi)$, so in particular

$$\mathcal{H}_{g,p}^b(H;\mathbb{C}) = \bigoplus_{\chi \in \hat{H}} \mathcal{H}_{g,p}^b(\chi).$$

Before proving Lemma 6.5, we highlight one special case of it:

Example 6.6. Let the notation be as in Lemma 6.5, and let 1 be the trivial character of \mathcal{D}. Then $\mathcal{H}_{g,p}^b(1;\mathbb{C}) = H_1(\mathcal{H}_{g,p}^b;\mathbb{C}) = \mathcal{H}_{g,p}^b(\mathbb{C})$. \square

Proof of Lemma 6.5. Let K be the kernel of the quotient map $\mathcal{D} \to H$, so $S_H = \mathcal{D}/K$. A standard property of group actions (see, e.g., [8, Theorem III.2.4] or [63, Proposition 1.1]) says that if a finite group G acts smoothly on a compact smooth manifold with boundary\(^{46}\) X, then the G-coinvariants of the action of G on $H_k(X;\mathbb{C})$ are $H_k(X/G;\mathbb{C})$. Applying this to the action of K on \mathcal{D}, we deduce\(^{47}\) that

$$\mathcal{H}_{g,p}^b(H;\mathbb{C}) = H_1(S_H;\mathbb{C}) = H_1(S_\mathcal{D};\mathbb{C})_K = \mathcal{H}_{g,p}^b(\ell;\mathbb{C})_K,$$

where the subscripts indicate that we are taking the K-coinvariants.

Applying this to the decomposition

$$\mathcal{H}_{g,p}^b(\ell;\mathbb{C}) = \bigoplus_{\chi \in \hat{\mathcal{D}}} \mathcal{H}_{g,p}^b(\chi),$$

we deduce that

$$\mathcal{H}_{g,p}^b(H;\mathbb{C}) = \bigoplus_{\chi \in \hat{\mathcal{D}}} \mathcal{H}_{g,p}^b(\chi)_K.$$

We claim that for $\chi \in \hat{\mathcal{D}}$ we have

$$\mathcal{H}_{g,p}^b(\chi)_K = \begin{cases} \mathcal{H}_{g,p}^b(\chi) & \text{if } \chi \in \hat{H}, \\ 0 & \text{if } \chi \notin \hat{H}. \end{cases}$$

For $k \in K$, the element k acts on $\mathcal{H}_{g,p}^b(\chi)$ as multiplication by $\chi(k)$. If this is ever not 1, then taking the K-coinvariants of $\mathcal{H}_{g,p}^b(\chi)$ reduces it to 0. Otherwise, if it is always 1 then taking the K-coinvariants of $\mathcal{H}_{g,p}^b(\chi)$ does not change it. Since \hat{H} is precisely the subgroup of $\hat{\mathcal{D}}$ consisting of characters that are identically 1 on K, the claim follows.

We conclude that

$$\mathcal{H}_{g,p}^b(H;\mathbb{C}) = \bigoplus_{\chi \in \hat{H}} \mathcal{H}_{g,p}^b(\chi).$$

\(^{45}\)The meaning of “natural” here is that the covering map $\mathcal{D} \to S_H$ takes $\mathcal{H}_{g,p}^b(\chi)$ isomorphically to the \mathbb{C}_χ-isotypic component of $\mathcal{H}_{g,p}^b(H;\mathbb{C})$. In particular, the isomorphism is $\text{Mod}_{g,p}^b(\ell)$-equivariant.

\(^{46}\)Or, more generally, a compact simplicial complex.

\(^{47}\)Strictly speaking, this does not apply if $p \geq 1$ since then $\mathcal{H}_{g,p}^b$ is not compact. However, replacing each puncture with a boundary component does not change the homology groups of the surface or the group action, so we can assume without loss of generality that $p = 0$.
It is immediate from the above that for \(\chi \in \widehat{H} \), the action of \(\mathcal{D} \) on \(S_{g,p}^b(\chi) \) factors through \(H = \mathcal{D}/K \) and that for \(h \in H \) and \(\bar{v} \in \delta_{g,p}^b(\chi) \) we have \(h \cdot \bar{v} = \chi(h)\bar{v} \). We conclude that this is exactly the decomposition into \(H \)-isotypic components, as desired. \(\square \)

Corollary 6.7. Fix \(g, p, b \geq 0 \) and \(\ell \geq 2 \) with \(p + b \geq 1 \). Let \(H \) be a symplectic subgroup of \(H_1(\Sigma_{g,p}; \mathbb{Z}/\ell) \) and let \(\chi \in \widehat{H} \). If \(\chi \) is compatible with \(H \), then the action of \(\text{Mod}_{g,p}^b(\ell) \) on \(S_{g,p}^b(\chi) \) extends to an action of \(\text{Mod}_{g,p}^b(H) \).

Proof. Immediate. \(\square \)

6.7. Deleting punctures
The following relates \(S_{g,p+1}^b(\chi) \) and \(S_{g,p}^b(\chi) \). It uses the convention from \(\S 2.3 \).

Lemma 6.8. Fix \(g, b, p \geq 0 \) and \(\ell \geq 2 \) with \(p + b \geq 1 \). Let \(H \) be a symplectic subgroup of \(H_1(\Sigma_{g,p}; \mathbb{Z}/\ell) \) and let \(\chi \in \widehat{H} \). Let \(x_0 \) be a puncture of \(\Sigma_{g,p+1}^b \). We then have a short exact sequence

\[
0 \rightarrow C \rightarrow S_{g,p+1}^b(\chi) \rightarrow S_{g,p}^b(\chi) \rightarrow 0
\]

of \(\text{Mod}_{g,p+1}^b(H) \)-representations. Here \(C \) is the trivial representation and \(\text{Mod}_{g,p+1}^b(H) \) acts on \(S_{g,p}^b(\chi) \) via the homomorphism \(\text{Mod}_{g,p+1}^b(H) \rightarrow \text{Mod}_{g,p}^b(H) \) that deletes \(x_0 \).

Proof. Let \(S_H \) and \(S_H' \) be the covers used to define \(S_{g,p+1}^b(H; \mathbb{C}) \) and \(S_{g,p}^b(H; \mathbb{C}) \), respectively. Let \(P \) be the set of punctures of \(S_H \) that project to \(x_0 \), so \(S_H' \) is obtained from \(S_H \) by deleting all the punctures in \(P \). Since \(b + p \geq 1 \), deleting all the punctures in \(P \) does not yield a closed surface. Letting \(\mathbb{C}[P] \) be the set of formal \(\mathbb{C} \)-linear combinations of elements of \(P \), we therefore get an injection \(\mathbb{C}[P] \hookrightarrow H_1(S_H; \mathbb{C}) \) taking \(p \in P \) to the homology class of a loop surrounding \(p \) with the rest of the surface to its left. This fits into a short exact sequence

\[
0 \rightarrow \mathbb{C}[P] \rightarrow H_1(S_H; \mathbb{C}) \rightarrow H_1(S_H'; \mathbb{C}) \rightarrow 0.
\]

The deck group \(H \) acts simply transitively on \(P \), so as a representation of \(H \) we have \(\mathbb{C}[P] \cong \mathbb{C}[H] \). It follows that the \(\mathbb{C}_\chi \)-isotypic component of \(\mathbb{C}[P] \) is 1-dimensional. Taking \(\mathbb{C}_\chi \)-isotypic components in (6.1), we therefore get a short exact sequence

\[
0 \rightarrow C \rightarrow S_{g,p+1}^b(\chi) \rightarrow S_{g,p}^b(\chi) \rightarrow 0
\]

of \(\text{Mod}_{g,p+1}^b(H) \)-representations. That the actions of \(\text{Mod}_{g,p+1}^b(H) \) on the kernel and cokernel are as described in the lemma is immediate. \(\square \)

6.8. Homological representations
Let \(\chi = (\chi_1, \ldots, \chi_r) \) be an \(r \)-tuple of elements of \(\widehat{D} \). We define the associated homological representation of \(\text{Mod}_{g,p}^b(\ell) \) to be

\[
\delta_{g,p}^b(\chi) = \delta_{g,p}^b(\chi_1) \otimes \cdots \otimes \delta_{g,p}^b(\chi_r).
\]

The number \(r \) is the size of \(\delta_{g,p}^b(\chi) \). If \(H \) is a symplectic subgroup of \(H_1(\Sigma_{g,p}; \mathbb{Z}/\ell) \) and each \(\chi_i \) is compatible with \(H \), then we will say that \(\delta_{g,p}^b(\chi) \) is compatible with \(H \). By Corollary 6.7, this implies that the action of \(\text{Mod}_{g,p}^b(\ell) \) on \(\delta_{g,p}^b(\chi) \) extends to an action of \(\text{Mod}_{g,p}^b(H) \). This is a stronger statement if \(H \) is smaller, and the following lemma will allow us to bound how large of an \(H \) we must take:

Lemma 6.9. Fix \(g, p, b \geq 0 \) and \(\ell \geq 2 \) with \(p + b \geq 1 \), and let \(\delta_{g,p}^b(\chi) \) be a homological representation of \(\text{Mod}_{g,p}^b(\ell) \) of size \(r \) that is compatible with a symplectic subgroup \(H \) of \(H_1(\Sigma_{g,p}; \mathbb{Z}/\ell) \). Then there exists a symplectic subgroup \(H' \) of \(H_1(\Sigma_{g,p}; \mathbb{Z}/\ell) \) of genus at most \(r \) with \(H' \subset H \) such that \(\delta_{g,p}^b(\chi) \) is compatible with \(H' \).
Proof. Let h be the genus of H. If $h \leq r$ then there is nothing to prove, so assume that $h > r$. Write

$$\delta^b_{g,p,0}(x) = \delta^b_{g,p}(x_0) \otimes \cdots \otimes \delta^b_{g,p}(x_r).$$

For $1 \leq i \leq r$, let $C_i \subset \mathbb{C}^\times$ be the image of x_i, so C_i is a possibly trivial finite cyclic group. Set $A = C_1 \oplus \cdots \oplus C_r$, and let $\mu : H \to A$ be $\mu = x_1 \oplus \cdots \oplus x_r$. Thus A is an abelian group of rank at most r. By [61, Lemma 3.5], we can find a genus $h - r$ symplectic subgroup U of H such that μ vanishes on U. Let $H' \subseteq H$ be the orthogonal complement of U in H, so H' is a genus r symplectic subspace of H such that each χ_i factors through the projection of H to H'. This implies that $\delta^b_{g,p}(x)$ is compatible with H', as desired. \hfill \square

7. The Reidemeister pairing and the point-pushing subgroup

This section describes an important bilinear pairing on the Prym representation. It goes back to work of Reidemeister [68, 69], and has since appeared in many places. Fix some $g,b,p \geq 0$ with $b + p \geq 1$.

7.1. Reidemeister pairing. Let \mathbf{k} be a commutative ring, let H be a symplectic subgroup of $H_1(\Sigma_{g,p},\mathbb{Z}/\ell)$, and let $\omega_H(-,-)$ be the algebraic intersection pairing on $\delta^b_{g,p}(H;\mathbf{k}) = \mathbb{H}(S_H;\mathbf{k})$. The group H acts on $\delta^b_{g,p}(H;\mathbf{k})$ via its action on S_H by deck transformations. The Reidemeister pairing on $\delta^b_{g,p}(H;\mathbf{k})$ is the map

$$\omega^R_{\mathbf{k}} : \delta^b_{g,p}(H;\mathbf{k}) \times \delta^b_{g,p}(H;\mathbf{k}) \to \mathbf{k}[H]$$

defined by the formula

$$\omega^R_{\mathbf{k}}(x, y) = \sum_{d \in H} \omega_H(x, dy) d \quad \text{for all } x,y \in \delta^b_{g,p}(H;\mathbf{k}).$$

Remark 7.1. We will not need it, but the Reidemeister pairing is natural in the following sense. If H' is another symplectic subgroup of $H_1(\Sigma_{g,p};\mathbb{Z}/\ell)$ with $H' < H$, then we have a projection $\pi : H \to H'$ and a covering map $f : S_H \to S_{H'}$. These fit into a commutative diagram

$$\begin{array}{ccc}
\delta^b_{g,p}(H;\mathbf{k}) \times \delta^b_{g,p}(H;\mathbf{k}) & \xrightarrow{\omega^R_{\mathbf{k}}} & \mathbf{k}[H] \\
\downarrow f_* \times f_* & & \downarrow \pi \\
\delta^b_{g,p}(H';\mathbf{k}) \times \delta^b_{g,p}(H';\mathbf{k}) & \xrightarrow{\omega^R_{\mathbf{k}}} & \mathbf{k}[H']
\end{array} \quad \square$$

7.2. Point-pushing subgroup. The following lemma says that the Reidemeister pairing encodes the action of the point-pushing subgroup $PP_{x_0}(\Sigma^b_{g,p+1}, H) < \mathbb{Mod}^b_{g,p+1}(H)$ from Theorem 2.6 on $\delta^b_{g,p+1}(H;\mathbf{k})$. Its statement uses the conventions from §2.3.

Lemma 7.2. Fix some $g,p,b \geq 0$ such that $\pi_1(\Sigma^b_{g,p})$ is nonabelian, and let x_0 be a puncture of $\Sigma^b_{g,p+1}$.

Let $\ell \geq 2$ and H be a genus-r symplectic subgroup of $H_1(\Sigma^b_{g,p+1};\mathbb{Z}/\ell)$. For a commutative ring \mathbf{k}, let $\rho_1 : \delta^b_{g,p+1}(H;\mathbf{k}) \to \delta^b_{g,p}(H;\mathbf{k})$ be the map induced by filling in x_0 and $\rho_2 : PP_{x_0}(\Sigma^b_{g,p}, H) \to \delta^b_{g,p}(H;\mathbf{k})$ be the composition

$$PP_{x_0}(\Sigma^b_{g,p}, H) \cong \pi_1(S^b_H) \to \delta^b_{g,p}(H;\mathbf{k}),$$

By definition, the rank of an abelian group is the minimal cardinality of a generating set for it.

48This reference is about maps to abelian groups of symplectic \mathbb{Z}-modules \mathbb{Z}^{2h} rather than $H = (\mathbb{Z}/\ell)^{2h}$, but the same proof works in our situation. Alternatively, apply it to the composition $\mathbb{Z}^{2h} \to (\mathbb{Z}/\ell)^{2h} \to A$ and then map the resulting symplectic subspace of \mathbb{Z}^{2h} to $(\mathbb{Z}/\ell)^{2h}$.

49
where \(S'_H \rightarrow \Sigma^b_{g,p} \) is the cover used to define \(\hat{S}^b_{g,p}(H;\kappa) \). Finally, let \(\zeta \) be the homology class of a loop around the puncture of \(S \) where \(\gamma \). Let \(T \) with the following two properties:

These two conditions ensure that \(T \) comes from simultaneously pushing all the punctures projecting to \(x_0 \) around paths in \(S'_H \). These punctures and paths are all \(H \)-orbits of the basepoint puncture and the lift of \(\gamma \) to that basepoint puncture. The lemma is thus immediate from Lemma 2.2.

\[\square \]

Remark 7.3. For \(\chi \in \hat{H} \), the action of \(\text{Mod}^b_{g,p+1}(H) \) on \(\hat{S}^b_{g,p+1}(H;\mathbb{C}) \) preserves the subspace \(\hat{S}^b_{g,p+1}(\chi) \). It thus follows from Lemma 7.2 that for all \(x, y \in \hat{S}^b_{g,p}(H;\mathbb{C}) \) with \(x \in \hat{S}^b_{g,p}(\chi) \), the element \(\omega^\mathbb{R}_H(x, y) \in \mathbb{C}[H] \) lies in the \(\mathbb{C}_\chi \)-isotypic subspace of \(\mathbb{C}[H] \). It is enlightening to prove this directly.

\[\square \]

7.3. **Point-pushing coinvariants.** We next study the action of the point-pushing subgroup \(\text{PP}_{x_0}(\Sigma^b_{g,p}, H) \) from Theorem 2.6 on tensor powers of \(\hat{S}^b_{g,p+1}(H;\kappa) \). In the following lemma, the subscript indicates that we are taking coinvariants. The statement uses the conventions from §2.3

Lemma 7.4. Fix some \(g, p, b \geq 0 \) such that \(\pi_1(\Sigma^b_{g,p}) \) is nonabelian and \(p + b \geq 1 \), and let \(x_0 \) be a puncture of \(\Sigma^b_{g,p+1} \). Let \(\ell \geq 2 \) and let \(H \) be a genus-\(h \) symplectic subgroup of \(H_1(\Sigma^b_{g,p+1};\mathbb{Z}/\ell) \). Let \(r \geq 1 \) be such that \(g \geq h + r \). Then for all finite-index subgroups \(G \) of \(\text{PP}_{x_0}(\Sigma^b_{g,p}, H) \) and all fields \(\kappa \) of characteristic 0, we have

\[
\left(\hat{S}^b_{g,p+1}(H;\kappa)^\otimes r \right)_G \cong \hat{S}^b_{g,p}(H;\kappa)^\otimes r.
\]

Proof. It is enough to prove this for \(\kappa = \mathbb{Q} \). The general result can be obtained from this by tensoring with a general field of characteristic 0. Let \(\rho_1^{\otimes r} : \hat{S}^b_{g,p+1}(H;\mathbb{Q}) \otimes \hat{S}^b_{g,p}(H;\mathbb{Q}) \) be the map induced by filling in \(x_0 \). The map \(\rho_1^{\otimes r} : \hat{S}^b_{g,p+1}(H;\mathbb{Q}) \otimes \hat{S}^b_{g,p}(H;\mathbb{Q}) \) is surjective and factors through the \(G \)-coinvariants. What we must show is that all elements of the kernel of \(\rho_1^{\otimes r} \) die in the \(G \)-coinvariants. We divide the proof of this into three steps.

Step 1. We find generators for the kernel of \(\rho_1^{\otimes r} : \hat{S}^b_{g,p+1}(H;\mathbb{Q}) \otimes \hat{S}^b_{g,p}(H;\mathbb{Q}) \).

This requires carefully constructing the relevant covers. Let \(T \) be a subsurface of \(\Sigma^b_{g,p+1} \) with the following two properties:

- \(T \cong \Sigma_{h,p}^{b+1} \) and does not contain the puncture \(x_0 \), and
- \(H \) is contained in the image of the map \(H_1(T;\mathbb{Z}/\ell) \rightarrow H_1(\Sigma^b_{g,p+1};\mathbb{Z}/\ell) \).

These two conditions ensure that \(T' = \Sigma^b_{g,p+1} \setminus \text{Int}(T) \) satisfies \(T' \cong \Sigma_{g-h,1}^1 \); see here, which depicts the surface \(\Sigma^b_{g,p+1} = \Sigma^2_{7,4} \) with \(h = 4 \):

As in that figure, let \(T'' \) be a subsurface of \(T' \) with \(T'' \cong \Sigma^1_{g-h} \).

\[\text{Later on we will define a map } \rho_2. \]
Let \(\pi: S_H \to \Sigma^b_{g,p+1} \) be the cover used to define \(\mathcal{S}^b_{g,p+1}(H) \), and let \(\widetilde{T} = \pi^{-1}(T) \) and \(\widetilde{T}' = \pi^{-1}(T') \). Both \(\widetilde{T} \to T \) and \(\widetilde{T}' \to T' \) are finite regular covers with deck group \(H \). The second condition above implies that \(\widetilde{T} \) is connected and that \(\widetilde{T}' \) is the disjoint union of \(\{ H \} \) components each of which projects homeomorphically to \(T' \). Letting \(\widetilde{T}_0' \) be one of these components, we have\(^{51} \)

\[
\widetilde{T}' = \bigcup_{d \in H} d \widetilde{T}_0'.
\]

Let \(\widetilde{T}_0'' \) be the component of \(\pi^{-1}(T'') \) lying in \(\widetilde{T}_0' \). Both \(H_1(\widetilde{T}; \mathbb{Q}) \) and \(H_1(\widetilde{T}_0''; \mathbb{Q}) \) inject into \(H_1(S_H; \mathbb{Q}) \), and

\[
\mathcal{S}^b_{g,p+1}(H; \mathbb{Q}) = H_1(S_H; \mathbb{Q}) = H_1(\widetilde{T}; \mathbb{Q}) \oplus \bigoplus_{d \in H} d H_1(\widetilde{T}_0''; \mathbb{Q}).
\]

It follows that \(\mathcal{S}^b_{g,p+1}(H; \mathbb{Q})^{\otimes r} \) is generated by elements of the form \(\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r \), where each \(\tilde{v}_i \) lies in either \(H_1(\widetilde{T}; \mathbb{Q}) \) or in \(d H_1(\widetilde{T}_0''; \mathbb{Q}) \) for some \(d \in H \).

Let \(\zeta \) be the homology class of a loop around the puncture in \(\widetilde{T}_0' \), oriented such that the surface lies to its left. Note that \(\zeta \in H_1(\widetilde{T}; \mathbb{Q}) \); indeed, \(\zeta \) is homologous to one of the boundary components of \(\widetilde{T} \). More generally, for \(d \in H \) we have \(d \zeta \in H_1(\widetilde{T}; \mathbb{Q}) \). To construct the cover \(S'_{H} \to \Sigma^b_{g,p} \) used to define \(\mathcal{S}^b_{g,p}(H; \mathbb{Q}) \), you delete the puncture lying in \(d \widetilde{T}_0'' \) for each \(d \in H \). It follows that the kernel of

\[
\rho_1: \mathcal{S}^b_{g,p+1}(H; \mathbb{Q}) = H_1(S_H; \mathbb{Q}) \to H_1(S'_H; \mathbb{Q}) = \mathcal{S}^b_{g,p}(H; \mathbb{Q})
\]

is generated by the \(d \zeta \) for \(d \in H \). Taking the \(r \)th tensor power, we deduce that the kernel of the map \(\rho_1^{\otimes r}: \mathcal{S}^b_{g,p+1}(H; \mathbb{Q})^{\otimes r} \to \mathcal{S}^b_{g,p}(H; \mathbb{Q})^{\otimes r} \) is generated by elements of the form \(\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r \), where the \(\tilde{v}_i \) satisfy the following:

- Each \(\tilde{v}_i \) lies in either \(H_1(\widetilde{T}; \mathbb{Q}) \) or in \(d H_1(\widetilde{T}_0''; \mathbb{Q}) \) for some \(d \in H \).
- At least one of the \(\tilde{v}_i \) equals \(d_0 \zeta \) for some \(d_0 \in H \).

To prove the lemma, we must show that such elements die in the \(G \)-coinvariants. To simplify our notation, we will deal with \(\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r \) as above such that \(\tilde{v}_i = d_0 \zeta \) for some \(d_0 \in H \). The case where some other \(\tilde{v}_i \) is of this form can be handled similarly.

Step 2. Consider \(\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r \in \mathcal{S}^b_{g,p+1}(H; \mathbb{Q})^{\otimes r} \) such that the following hold:

- Each \(\tilde{v}_i \) lies in either \(H_1(\widetilde{T}; \mathbb{Q}) \) or in \(d H_1(\widetilde{T}_0''; \mathbb{Q}) \) for some \(d \in H \).
- \(\tilde{v}_1 = d_0 \zeta \) for some \(d_0 \in H \).

Let \(\omega_H^b(-,-) \) be the Reidemeister pairing on \(\mathcal{S}^b_{g,p}(H; \mathbb{Q}) \). We construct elements \(\tilde{a}, \tilde{b} \in \mathcal{S}^b_{g,p+1}(H; \mathbb{Q}) \) such that the following hold.\(^{52} \)

- Both \(\tilde{a} \) and \(\tilde{b} \) lie in \(\mathcal{S}^b_{g,p+1}(H; \mathbb{Z}) \).
- \(\omega_H^b(\rho_1(\tilde{a}), \rho_1(\tilde{b})) = 1 \).
- \(\omega_H^b(\rho_1(\tilde{v}_i), \rho_1(\tilde{b})) = 0 \) for \(2 \leq i \leq r \).

Let \(\omega_H^b(-,-) \) be the algebraic intersection pairing on \(\mathcal{S}^b_{g,p+1}(H; \mathbb{Q}) \). The second and third conditions on the \(\tilde{a} \) and \(\tilde{b} \) are equivalent to the following:

\(^{51}\) Here the reader should think that the \(d \) used to denote elements of \(H \) stands for “deck group”.

\(^{52}\) The point of doing this is to use Lemma 7.2, which describes the action of the point-pushing subgroup in terms of the Reidemeister pairing.
We prove that the first condition implies that we can pick the map that lies in some \tilde{H} that lie in some H-translate of $H_1(T''_0; \mathbb{Q})$. We thus have $s \leq r - 1$. Recalling that $T''_0 \cong T'' \cong \Sigma^1_{g-h}$, we can find a subsurface $\tilde{T''_0}$ of T''_0 such that the following hold.

- Each \tilde{w}_i lies in $H_1(\tilde{T''_0}; \mathbb{Q})$.
- $\tilde{T''_0} \cong \Sigma^1_s$.

Since $g \geq h + r$, we have $g - h \geq r > s$.

Since T''_0 has genus $g - h$ and $\tilde{T''_0}$ has genus s and $g - h > s$, we can find $\tilde{a} \in H_1(\tilde{T''_0}; \mathbb{Z})$ and $\tilde{b} \in H_1(\tilde{T''_0}; \mathbb{Z})$ with the following two properties:

- $\omega_H(\tilde{a}, \tilde{b}) = 1$.
- For all $z \in H_1(\tilde{T''_0}; \mathbb{Q})$ we have $\omega(z, \tilde{b}) = 0$. In particular, $\omega(\rho(\tilde{w}_i), \tilde{b}) = 0$ for all $1 \leq i \leq s$.

See here:

Recalling that $\tilde{v}_i = d_i \tilde{w}_i$ for $2 \leq i \leq r$, the second condition above implies that $\omega_H(\tilde{v}_i, d\tilde{b}) = 0$ for all $d \in H$ and $2 \leq i \leq r$, as desired.

Step 3. Consider $\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r \in \mathfrak{S}^b_{g,p+1}(H; \mathbb{Q})^\otimes r$ such that the following hold:

- Each \tilde{v}_i lies in either $H_1(\tilde{T}; \mathbb{Q})$ or in $d H_1(\tilde{T''_0}; \mathbb{Q})$ for some $d \in H$.
- $\tilde{v}_1 = d_0 \zeta$ for some $d_0 \in H$.

We prove that $\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r$ dies in the G-coinvariants.

Recall that G is a finite-index subgroup of $\text{PP}_{x_0}(\Sigma^b_{g,p}; H)$. By the previous step, we can find $\tilde{a}, \tilde{b} \in \mathfrak{S}^b_{g,p+1}(H; \mathbb{Q})$ such that the following hold:

- Both \tilde{a} and \tilde{b} lie in $\mathfrak{S}^b_{g,p+1}(H; \mathbb{Z})$.
- $\omega^0_H(\rho_1(\tilde{a}), \rho_1(\tilde{b})) = 1$.
- $\omega^0_H(\rho_1(\tilde{v}_i), \rho_1(\tilde{b})) = 0$ for $2 \leq i \leq r$.

The first condition implies that we can pick $\gamma \in \text{PP}_{x_0}(\Sigma^b_{g,p}; H)$ that projects to $\rho_1(\tilde{b})$ under the map

$$\rho_2: \text{PP}_{x_0}(\Sigma^b_{g,p}; H) \cong \pi_1(S'_H) \longrightarrow H_1(S'_H; \mathbb{Q}) = \mathfrak{S}^b_{g,p}(H; \mathbb{Q}),$$

53 This is standard. One source that explicitly proves something equivalent is [61, Proposition 3.4]. We remark that this is where we use the fact that we are working over \mathbb{Q} and not a general field of characteristic 0.

54 We can also ensure that $\omega(z, \tilde{a}) = 0$, but this will not be needed.
where the \cong uses the basepoint on S'_{H} that is surrounded by the loop in whose homology class $\zeta \in \mathcal{N}_{g,p+1}(H; \mathbb{Q})$ is. Define

$$\kappa = (d_0 \tilde{a}) \otimes \tilde{v}_2 \otimes \cdots \otimes \tilde{v}_r \in \mathcal{N}_{g,p+1}(H; \mathbb{Q})^\otimes r.$$

Using Lemma 7.2, we have

$$\gamma (\kappa) = \gamma (d_0 \tilde{a}) \otimes \gamma (\tilde{v}_2) \otimes \cdots \otimes \gamma (\tilde{v}_r)$$

$$= (d_0 \tilde{a} + \omega_{H}^\partial (\rho_1 (d_0 \tilde{a}), \rho_2 (\gamma))) \tilde{v}_2 + \omega_{H}^\partial (\rho_1 (\tilde{v}_2), \rho_2 (\gamma))) \otimes \cdots \otimes (\tilde{v}_r + \omega_{H}^\partial (\rho_1 (\tilde{v}_r), \rho_2 (\gamma)))$$

$$= (d_0 \tilde{a} + d_0 \zeta) \otimes \tilde{v}_2 \otimes \cdots \otimes \tilde{v}_r.$$

Iterating this, we see that for all $m \geq 1$ we have

$$\gamma^m (\kappa) = (d_0 \tilde{a} + md_0 \zeta) \otimes \tilde{v}_2 \otimes \cdots \otimes \tilde{v}_r,$$

and thus

$$\gamma^m (\kappa) - \kappa = m (d_0 \zeta) \otimes \tilde{v}_2 \otimes \cdots \otimes \tilde{v}_r = m \tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r.$$

Since G is a finite-index subgroup of $\text{PP}_{x_0}(\mathcal{N}_{g,p}, H)$, we can pick $m \geq 1$ such that $\gamma^m \in G$. It follows that $m \tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r$ and hence $\tilde{v}_1 \otimes \cdots \otimes \tilde{v}_r$ dies in the G-coinvariants, as desired.

This has the following corollary:

Corollary 7.5. Fix some $g, p, b \geq 0$ such that $\pi_1(\mathcal{N}_{g,p})$ is nonabelian and $p + b \geq 1$, and let x_0 be a puncture of $\mathcal{N}_{g,p+1}$. Let $\ell \geq 2$ and let $\mathcal{N}_{g,p+1}(\chi)$ be a homological representation of $\text{Mod}_{g,p+1}(\ell)$ of size r that is compatible with a genus-h symplectic subgroup H of $H_1(\mathcal{N}_{g,p+1}; \mathbb{Z}/\ell)$. Assume that $g \geq h + r$. Then for all finite-index subgroups G of $\text{PP}_{x_0}(\mathcal{N}_{g,p}, H)$, we have

$$\left(\mathcal{N}_{g,p+1}(\chi)\right)_G \cong \mathcal{N}_{g,p}(\chi).$$

Proof. Lemma 6.5 implies that $\mathcal{N}_{g,p+1}(\chi)$ is a direct summand of $\mathcal{N}_{g,p+1}(H; \mathbb{C})^\otimes r$. This reduces the corollary to Lemma 7.4.

8. Stability for the Partial Mod-ℓ Subgroups

In [61], the author proved a homological stability theorem that applies to the partial level-ℓ subgroups. In this section, we explain how to generalize this to incorporate tensor powers of the partial Prym representations. Our theorem is as follows. Its statement uses the conventions from §2.3.

Theorem 8.1. Let $\iota : \mathcal{N}_{g} \to \mathcal{N}_{g}'$ be an orientation-preserving embedding between surfaces with nonempty boundary. For some $\ell \geq 2$, let H be a genus-h symplectic subgroup of $H_1(\mathcal{N}_{g}; \mathbb{Z}/\ell)$. Fix some $k, r \geq 0$, and assume that $g \geq (2h + 2)(k + r) + (4h + 2)$. Then for all commutative rings k the induced map

$$H_k(\text{Mod}_{g}^b(H); \mathcal{N}_{g}(H; k)^\otimes r) \to H_k(\text{Mod}_{g}'^b(H); \mathcal{N}_{g}'(H; k)^\otimes r)$$

is an isomorphism.

Proof. For $r = 0$, this just asserts that the map

$$H_k(\text{Mod}_{g}^b(H); k) \to H_k(\text{Mod}_{g}'^b(H); k)$$

is an isomorphism if $g \geq (2h + 2)k + (4h + 2)$, which is a special case of [61, Theorem F]. To connect our notation to that of [61, Theorem F], we make the following remarks:
• First, the statement of [61, Theorem F] involves partitions \(P \) and \(P' \) of the components of \(\partial \Sigma^b_g \) and \(\partial \Sigma^b_{g'} \), respectively. Our result corresponds to the partition where all components of the boundary lie in a single partition element. With this convention, the map \((\Sigma^b_g, P) \to (\Sigma^b_{g'}, P')\) is a "\(PSurf \)-morphism", and the fact that \(\Sigma^b_{g'} \) has nonempty boundary implies that it is "partition bijective". Every time we refer to something in [61] in this proof, we implicitly use this choice of partition.

• The statement of [61, Theorem F] also refers to an \(A \)-homology marking \(\mu : H^1(\Sigma^b_g) \to A \). With the choice of partition from the previous bullet point, we have \(H^1(\Sigma^b_g, \partial \Sigma^b_g) \). Our marking has \(A = H \), and is the homomorphism \(\mu : H_1(\Sigma^b_g, \partial \Sigma^b_g) \to H \) that equals the composition

\[
H_1(\Sigma^b_g, \partial \Sigma^b_g) \cong H_1(\Sigma^b_g) \longrightarrow H_1(\Sigma^b_g; \mathbb{Z}/\ell) = H \oplus H^{-1} \xrightarrow{proj} H.
\]

Here the first map comes from Poincaré duality. With this marking, in the notation of [61, Theorem F] we have

\[
\mathcal{I}(\Sigma^b_g, P, \mu) = \text{Mod}^b_g(H).
\]

The marking \(\mu' \) on \(\Sigma^b_{g'} \) in [61, Theorem F] is defined similarly. The fact that \(H \) is a symplectic subgroup implies that our marking is "supported on a symplectic subsurface".

When \(r \geq 1 \), our theorem can be proven by following the proof of [61, Theorem F] word-for-word, substituting the twisted homological theorem [62, Theorem 5.2] for the ordinary homological stability theorem, which appears as [61, Theorem 3.1].

We briefly discuss some of the details of this. We remark that the proof structure here is inspired by a beautiful approach to homological stability for the whole mapping class group due to Hatcher–Vogtmann [37]. The proof of [61, Theorem F] has two parts. The first appears in [61, §5.2-5.4]. These sections reduce the proof to what are called "double boundary stabilizations", i.e., where the map \(\Sigma^b_g \to \Sigma^b_{g'} \) is as pictured here:

This reduction does not use the homological stability machine, and no changes are needed for the twisted version of it.

The double boundary stabilizations are handled in [61, §6.8] using the homological stability machine. This requires a semisimplicial set \(^{55}\) called the "complex of order-preserving double-tethered vanishing loops". We refer to [61, §6] for the lengthy definition of this. The changes that need to be made here are as follows:

• As we said, the twisted homological stability theorem [62, Theorem 5.2] should be substituted for the ordinary homological stability theorem [61, Theorem 3.1].

• This requires constructing \(\text{Mod}^b_g(H) \)-equivariant augmented coefficient systems \(\mathcal{M}^b_g(H; \mathbb{k}) \) on the complex of order-preserving double-tethered vanishing loops with

\[
\mathcal{M}^b_g(H; \mathbb{k})[\cdot] = \mathcal{S}^b_g(H; \mathbb{k}).
\]

The definition of \(\mathcal{M}^b_g(H) \) is identical to the definition of the coefficient system \(\mathcal{H}^1_g(H; \mathbb{k}) \) we discussed in §6.3, and the proof that it is strongly polynomial of degree

\(^{55}\)Actually, in the language of §3 it is an ordered simplicial complex
1 is essentially identical to the proof of Lemma 6.3. Using Lemma 4.8, its tensor power $\mathcal{M}_b^g(H; k)\otimes r$ is strongly polynomial of degree r.

- This allows you to apply Theorem 4.4 above (which is [62, Theorem 6.3]) to $\mathcal{M}_b^g(H; k)\otimes r$ and deduce that the homology of the complex of order-preserving double-tethered vanishing loops with coefficients in $\mathcal{M}_b^g(H; k)\otimes r$ vanishes in a range. The needed Cohen–Macaulay result is [61, Theorem 6.13].

- This verifies the one condition of [62, Theorem 5.2] that is different from [61, Theorem 3.1]. The remainder of the proof in [61, §6.8] needs no changes. □

9. Proof of main theorem for non-closed surfaces

We finally turn to proving our main theorems. The following will be our main result, at least for non-closed surfaces:

Theorem D. Let $g, p, b \geq 0$ and $\ell \geq 2$ be such that $p + b \geq 1$. Let $\mathcal{S}^{b}_{g,p}(\chi)$ be a size-r homological representation of $\text{Mod}^b_{g,p}(\ell)$ and let H be a symplectic subgroup of $H_1(\Sigma^b_{g,p}(\ell); \mathbb{Z}/\ell)$ that is compatible with $\mathcal{S}^{b}_{g,p}(\chi)$. Assume that $g \geq 2(k + r)^2 + 7k + 6r + 2$. Then the map

$$H_k \left(\text{Mod}^b_{g,p}(\ell) ; \mathcal{S}^{b}_{g,p}(\chi) \right) \to H_k \left(\text{Mod}^b_{g,p}(H) ; \mathcal{S}^{b}_{g,p}(\chi) \right)$$

induced by the inclusion $\text{Mod}^b_{g,p}(\ell) \to \text{Mod}^b_{g,p}(H)$ is an isomorphism.

This implies Theorems A and B for non-closed surfaces in the following way:

- A size-0 homological representation of $\text{Mod}^b_{g,p}(\ell)$ is simply the trivial representation \mathbb{C}. This is compatible with the symplectic subgroup $H = 0$, for which $\text{Mod}^b_{g,p}(H) = \text{Mod}^b_{g,p}$. Theorem D thus says that the map

$$H_k \left(\text{Mod}^b_{g,p}(\ell) ; \mathbb{C} \right) \to H_k \left(\text{Mod}^b_{g,p} ; \mathbb{C} \right)$$

is an isomorphism for $g \geq 2k^2 + 7k + 2$. The universal coefficients theorem now implies that this is also true with \mathbb{C} replaced by \mathbb{Q}, which is exactly Theorem A.

- Letting $V = H_1(\Sigma^b_{g,p} ; \mathbb{C})$, the tensor power $V^{\otimes r}$ is a size-r homological representation that is compatible with $H = 0$ (see Example 6.6). Theorem D thus says that the map

$$H_k \left(\text{Mod}^b_{g,p}(\ell) ; V^{\otimes r} \right) \to H_k \left(\text{Mod}^b_{g,p} ; V^{\otimes r} \right)$$

is an isomorphism for $g \geq 2(k + r)^2 + 7k + 6r + 2$. The universal coefficients theorem now implies that this is also true with the \mathbb{C} in $V = H_1(\Sigma^b_{g,p} ; \mathbb{C})$ replaced by \mathbb{Q}, which is exactly Theorem B.

We remark that Theorem C will be a consequence of part of our proof, and we will point out when this happens in a footnote (see the footnote on the paragraph right before Claim 3.2).

Proof of Theorem D. We divide the proof into four steps. Since the proof is organized around several interlocking inductions, we had to write it in a certain order to make sure it was clear that the reasoning was not circular. However, some of the intermediate steps might seem unmotivated upon first reading. We thus suggest reading the steps in the following order. Step 1 sets up the induction, so it should be read first. The final Step 4 is the main step whose proof was sketched in §1.12, and we suggest reading it next. Doing this will motivate Step 3, whose proof depends on a calculation in Step 2. It is in Step 2 that it becomes essential to work with general homological representations, even though ultimately

56 We will deal with closed surfaces later in §10.
we are most interested in the trivial one. We remark that throughout the proof, we will constantly use the conventions regarding symplectic subspaces from §2.3.

Step 1. We show that as an inductive hypothesis we can assume the following:

(a) \(r \geq 0 \) and \(k \geq 1 \).
(b) We have already proved the theorem for \(H_i \) for all \(i < k \).
(c) For \(H_k \), we have already proved the theorem for all homological representations of size less than \(r \). This is vacuous if \(r = 0 \).

We also show that when proving the theorem for \(H_k \) and homological representations of size \(r \), we can make the following simplifying assumptions:

(†) Our surface \(\Sigma_{g,p}^b \) with \(p + b \geq 1 \) has \(p = 0 \).
(††) Our symplectic subgroup \(H \) has genus at most \(r \).

The first thing we do to set up our induction is prove the following, which establishes that for any \(H_k \) we can assume (††).

Claim 1.1. For some \(k \geq 0 \), assume that for \(H_k \) the theorem is true for size-\(r \) homological representations \(\bar{\mathcal{M}}_{g,\rho,\chi} \) and symplectic subgroups \(H \) of \(H_1(\Sigma_g^b; \mathbb{Z}/\ell) \) of genus at most \(r \) that are compatible with \(\bar{\mathcal{M}}_{g,\rho,\chi} \). Then it is true in general.

Proof of claim. Assume that \(\bar{\mathcal{M}}_{g,\rho,\chi} \) is a size-\(r \) homological representation of \(\text{Mod}^b_\rho(\ell) \) that is compatible with a symplectic subgroup \(H \) of \(H_1(\Sigma_g^b; \mathbb{Z}/\ell) \). By Lemma 6.9, we can find a genus at most \(r \) symplectic subgroup \(H' \) of \(H_1(\Sigma_g^b; \mathbb{Z}/\ell) \) with \(H' < H \) that is compatible with \(\bar{\mathcal{M}}_{g,\rho,\chi} \). The group \(\text{Mod}^b_\rho(H) \) is a finite-index subgroup of \(\text{Mod}^b_\rho(H') \), so by the transfer map lemma (Lemma 2.14) we see that each map in

\[
H_k(\text{Mod}^b_\rho(H); \bar{\mathcal{M}}_{g,\rho,\chi}) \to H_k(\text{Mod}^b_\rho(H'); \bar{\mathcal{M}}_{g,\rho,\chi})
\]

is a surjection. If we can prove that \(H_k(\text{Mod}^b_\rho(H); \bar{\mathcal{M}}_{g,\rho,\chi}) \to H_k(\text{Mod}^b_\rho(H'); \bar{\mathcal{M}}_{g,\rho,\chi}) \) is an isomorphism, it will follow that \(H_k(\text{Mod}^b_\rho(H); \bar{\mathcal{M}}_{g,\rho,\chi}) \to H_k(\text{Mod}^b_\rho(H); \bar{\mathcal{M}}_{g,\rho,\chi}) \) is an isomorphism. The claim follows. \(\Box \)

We now start our induction. It will be by \(k \geq 0 \), and for a fixed \(k \) will be by induction on \(r \geq 0 \). To be able to assume (a)-(c) as an inductive hypothesis, we need to prove the theorem for \(k = 0 \) and general \(r \geq 0 \). In light of Claim 1.1, this requires proving the following.\(^{57}\)

Recall that for a group \(G \) acting on an abelian group \(M \), the group \(H_0(G; M) \) is isomorphic to the coinvariants \(M_G \).

Claim 1.2. Let \(\bar{\mathcal{M}}_{g,\rho,\chi} \) be a size-\(r \) homological representation of \(\text{Mod}^b_\rho(\ell) \) and let \(H \) be a symplectic subgroup of \(H_1(\Sigma_g^b; \mathbb{Z}/\ell) \) that is compatible with \(\bar{\mathcal{M}}_{g,\rho,\chi} \) and has genus at most \(r \). Assume that \(g \geq 2r^2 + 6r + 2 \). Then

\[
(\bar{\mathcal{M}}_{g,\rho,\chi})_{\text{Mod}^b_\rho(\ell)} \cong (\bar{\mathcal{M}}_{g,\rho,\chi})_{\text{Mod}^b_\rho(H)}.
\]

Proof of claim. If \(r = 0 \), then \(\bar{\mathcal{M}}_{g,\rho,\chi} \) is the trivial representation and there is nothing to prove. We can thus assume that \(r \geq 1 \), in which case our bound on \(g \) implies that \(g \geq \max(2r, 3) \), which is the bound we will actually use. Lemma 6.5 implies that \(\bar{\mathcal{M}}_{g,\rho,\chi} \) is a direct summand of \(\bar{\mathcal{M}}_{g,\rho,\chi}(H; \mathbb{C})^{\otimes r} \), so it is enough to prove that

\[
(\bar{\mathcal{M}}_{g,\rho,\chi}(H; \mathbb{C})^{\otimes r})_{\text{Mod}^b_\rho(\ell)} \cong (\bar{\mathcal{M}}_{g,\rho,\chi}(H; \mathbb{C})^{\otimes r})_{\text{Mod}^b_\rho(H)}.
\]

\(^{57}\)We could start our induction with the trivial case \(k = -1 \), which would avoid having to prove any base case at all. However, this would lead to worse bounds.
Since $\mathcal{S}_{g,p}(H;\mathbb{C}) \cong \mathcal{S}_{g,p+b}(H;\mathbb{C})$ (see Remark 6.4) and the action of $\Mod^b_{g,p}(H)$ on these representations factors through $\Mod_{g,p+b}(H)$, we can assume without loss of generality that $b = 0$, so since $b + p \geq 1$ we have $p \geq 1$.

Assume that $p \geq 2$, and let x_0 be one of the punctures. Since $g \geq \max(2r, 3)$, we have in particular that $g \geq r + r$. Since $r \geq 1$, Lemma 7.4 then implies that

$$\left(\mathcal{S}_{g,p}(H;\mathbb{C})^{\otimes r}\right)_{\PP x_0(\Sigma_{g,p-1},\ell)} \cong \mathcal{S}_{g,p-1}(H;\mathbb{C})^{\otimes r}.$$

This implies that

$$\left(\mathcal{S}_{g,p}(H;\mathbb{C})^{\otimes r}\right)_{\Mod_{g,p}(\ell)} \cong \left(\mathcal{S}_{g,p-1}(H;\mathbb{C})^{\otimes r}\right)_{\Mod_{g,p-1}(\ell)}.$$

A similar identity holds for $\Mod_{g,p}(H)$. Applying this repeatedly, we reduce ourselves to the case $p = 1$.

Let $S_H \to \Sigma_g$ be the regular cover with deck group H corresponding to the homomorphism

$$\pi_1(\Sigma_g) \longrightarrow H_1(\Sigma_g) = H \oplus H^1\to H.$$

Define $\mathcal{S}_g(H;\mathbb{C}) = H_1(S_H;\mathbb{C})$. What we would like to do is apply the above argument again and reduce ourselves to the case $p = 0$. However, there is a problem: the group $\Mod_g(H)$ does not act on $\mathcal{S}_g(H;\mathbb{C})$ since there is not a fixed basepoint to allow us to consistently choose a lift of a mapping class on Σ_g to S_H. This is related to the fact that Lemma 7.4 does not apply to the case $p = 0$, and also to the fact that by Theorem 2.6 we have

$$\PP x_0(\Sigma_g,\ell) = \PP x_0(\Sigma_g,H) = \pi_1(\Sigma_g).$$

However, let $K \triangleleft \pi_1(\Sigma_g)$ be the kernel of the map (9.1). The proof of Lemma 7.4 goes through without changes to show that

$$\left(\mathcal{S}_{g,1}(H;\mathbb{C})^{\otimes r}\right)_K \cong \mathcal{S}_g(H;\mathbb{C})^{\otimes r}. $$

The groups $\Gamma(\ell) = \Mod_{g,1}(\ell)/K$ and $\Gamma(H) = \Mod_{g,1}(H)/K$ thus act on $\mathcal{S}_g(H;\mathbb{C})$, and we are reduced to proving that

$$\left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_{\Gamma(\ell)} \cong \left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_{\Gamma(H)}.$$

Since $\PP x_0(\Sigma_g,\ell)/K \cong H$ and $\Mod_{g,1}(\ell)$ acts trivially on H, the Birman exact sequence for $\Mod_{g,1}(\ell)$ from Theorem 2.6 quotients down to a central extension

$$1 \to H \to \Gamma(\ell) \to \Mod_g(\ell) \to 1.$$

The action of the central subgroup H on $\mathcal{S}_g(H;\mathbb{C})$ come from the action of H on S_H as deck transformations. There is a similar exact sequence for $\Gamma(H)$.

Since $g \geq \max(2r, 3)$, we in particular have $g \geq 3$. In that case, Looijenga [44] proved that the action of $\Gamma(H)$ on $\mathcal{S}_g(H;\mathbb{C})$ comes from a representation of $\Gamma(H)$ into a connected semisimple \mathbb{R}-algebraic group G without compact factors, and the image of $\Gamma(H)$ in G is a lattice. The Borel density theorem [4] says that lattices in such Lie groups are Zariski dense, which implies that

$$\left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_{\Gamma(H)} \cong \left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_G.$$

The group $\Gamma(\ell)$ is a finite-index subgroup of $\Gamma(H)$, and thus its image in G is also a lattice and

$$\left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_{\Gamma(\ell)} \cong \left(\mathcal{S}_g(H;\mathbb{C})^{\otimes r}\right)_G.$$

The claim follows. □

We have now established our inductive hypotheses (a)-(c), and also showed that for H_k we can assume (††). It remains to prove that for H_k we can assume (†), which is as follows:
Claim 1.3. Assume that our inductive hypotheses (a)-(c) hold, and that for H_k the theorem is true for non-closed surfaces without punctures. Then for H_k it is true for general non-closed surfaces.

Proof of claim. The proof is by induction on the number p of punctures of our general non-closed surface. The base case $p = 0$ is trivial, so assume that for H_k the theorem is true for surfaces with p punctures. We will prove it for surfaces with $(p + 1)$ punctures as follows. Consider a size-r homological representation $\hat{\Phi}_{g,p+1}^{b}(\chi)$ and a symplectic subgroup H of $H_1(\Sigma_{g,p+1}^{b}; \mathbb{Z}/\ell)$ that is compatible with $\hat{\Phi}_{g,p+1}^{b}(\chi)$. Assume that $g \geq 2(k + r)^2 + 7k + 6r + 2$. Since $H_1(\Sigma_{g,p+1}^{b}; \mathbb{Z}/\ell) = H_1(\Sigma_{g,p+1}^{b}; \mathbb{Z}/\ell)$, we can identify H with a symplectic subgroup of $H_1(\Sigma_{g,p+1}^{b}; \mathbb{Z}/\ell)$. Using Proposition 2.8 and Remark 2.9, we have a commutative diagram of central extensions

$$
\begin{array}{c}
1 \longrightarrow \mathbb{Z} \longrightarrow \text{Mod}_{g,p+1}^b(\ell) \longrightarrow \text{Mod}_{g,p+1}^b(H) \longrightarrow 1
\end{array}
$$

whose central \mathbb{Z} is generated by the Dehn twist about a boundary component ∂ of $\Sigma_{g,p+1}^b$. We have $\hat{\Phi}_{g,p+1}^{b}(\chi) \cong \hat{\Phi}_{g,p}^{b}(\chi)$ (c.f. Remark 6.4), and T_{∂} acts trivially on $\hat{\Phi}_{g,p}^{b}(\chi)$. Let $V = \hat{\Phi}_{g,p+1}^{b}(\chi) = \hat{\Phi}_{g,p}^{b}(\chi)$. The two-row Hochschild–Serre spectral sequences associated to the short exact sequences in (9.2) turn into long exact Gysin sequences, and we have a map between these Gysin sequences containing the following. To save horizontal space we have

$$
\begin{array}{c}
H_{k-1}(\text{Mod}_{g,p+1}^b(\ell)) \rightarrow H_k(\text{Mod}_{g,p+1}^b(\ell)) \rightarrow H_k(\text{Mod}_{g,p+1}^b(H)) \rightarrow H_{k-2}(\text{Mod}_{g,p+1}^b(H)) \rightarrow H_{k-1}(\text{Mod}_{g,p+1}^b(H))
\end{array}
$$

Our inductive hypothesis (b) implies that f_1 and f_4 are isomorphisms, and our induction on p implies that f_2 is an isomorphism. The five-lemma now implies that f_3 is an isomorphism, as desired. \quad \square

Step 2. Make the inductive hypotheses (a)-(c) from Step 1. We study their consequences for the point-pushing subgroup.

Fix some $g \geq 0$ and $b \geq 1$ such that $\pi_1(\Sigma_{g,b}^b)$ is nonabelian, and let x_0 be the puncture of $\Sigma_{g,b}$, ℓ be a symplectic subgroup of $H_1(\Sigma_{g,b}; \mathbb{Z}/\ell)$. Theorem 2.6 gives a Birman exact sequence

$$
1 \longrightarrow \text{PP}_{x_0}(\Sigma_{g,b}^b; H) \longrightarrow \text{Mod}_{g,1}^b(H) \longrightarrow \text{Mod}_{g}^b(H) \longrightarrow 1.
$$

If U is a representation of $\text{Mod}_{g,1}^b(H)$, then the action of $\text{Mod}_{g,1}^b(H)$ on U along with the conjugation action of $\text{Mod}_{g,1}^b(H)$ on $\text{PP}_{x_0}(\Sigma_{g,b}^b; H)$ give an action of $\text{Mod}_{g,1}^b(H)$ on $\hat{U} = H_1(\text{PP}_{x_0}(\Sigma_{g,b}^b; H); U)$. Since inner automorphisms act trivially on homology (see, e.g., [11, Proposition III.8.1]), this descends to an action of $\text{Mod}_{g}^b(H)$ on \hat{U}. This action can be restricted to $\text{Mod}_{g}^b(\ell)$. Our goal in this step is to prove that our inductive hypotheses can be applied to show that under appropriate conditions, the map

$$
H_1(\text{Mod}_{g}^b(\ell); \hat{U}) \rightarrow H_1(\text{Mod}_{g}^b(H); \hat{U})
$$

is an isomorphism.

The representations we consider are a small generalization of the homological representations that are defined as follows. Say that a $\text{Mod}_{g,1}^b(\ell)$-representation U is an extended
homological representation of size r' if it can be written as $U = U_1 \otimes \cdots \otimes U_r$, where each U_i is either $\mathcal{S}_g^b(\chi_i)$ or $\mathcal{S}_g^b(\chi)$ for some character χ_i of $D = H_1(\Sigma_g; \mathbb{Z}/\ell)$. Here $\text{Mod}^b_{g,1}(\ell)$ acts on $\mathcal{S}_g^b(\chi)$ via the projection $\text{Mod}^b_{g,1}(\ell) \to \text{Mod}^b(\ell)$ that fills in the puncture x_0. The number s' of tensor factors of the form $\mathcal{S}_g^b(\chi)$ will be called the nonextended size of U. Thus $s' \leq r'$, with equality precisely when U is a normal homological representation. We say that U is compatible with our symplectic subspace H of $H_1(\Sigma_g; \mathbb{Z}/\ell)$ if each χ_i is compatible with H. This implies that the action of $\text{Mod}^b_{g,1}(\ell)$ on U extends to $\text{Mod}^b_{g,1}(H)$.

Our main result in this step is the following. We state it in terms of H_{r-1} rather than H_r since that will be how we use it in the next step, and this will make it easier to verify the genus bounds in its hypotheses. The numbers k and r in the statement of this claim are from the inductive hypotheses (a)-(c) from Step 1.

Claim 2.1. Let the notation be as above. Let U be an extended homological representation of size r' that is compatible with H. Fix some $0 \leq i \leq k$, and if $i = k$ then assume that $r' \leq r$. Define $\tilde{U} = H_1(\mathcal{P}P_{x_0}(\Sigma_g, H); U)$. Assume that $g \geq 2(i + r')^2 + 7i + 6r' + 1$, and also that $g \geq r' + h$ with h the genus of H. Then the map

$$H_{r-1}(\text{Mod}^b_g(\ell); \tilde{U}) \to H_{r-1}(\text{Mod}^b_g(H); \tilde{U})$$

is an isomorphism.

Proof of claim. Let s' be the nonextended size of U. The proof will be by induction on r', and for a fixed r' will be by induction on s'. The base case is r' arbitrary (subject to the conditions in the claim!) and $s' = 0$. In this case, the action of $\text{Mod}^b_{g,1}(H)$ on U factors through $\text{Mod}^b_g(H)$. It follows that the action on U of the kernel $\mathcal{P}P_{x_0}(\Sigma_g, H)$ of $\text{Mod}^b_{g,1}(H) \to \text{Mod}^b_g(H)$ is trivial, so

$$\tilde{U} = H_1(\mathcal{P}P_{x_0}(\Sigma_g, H); U) \cong H_1(\mathcal{P}P_{x_0}(\Sigma_g, H); \mathbb{C}) \otimes U \cong \mathcal{S}_g^b(H; \mathbb{C}) \otimes U.$$

Here we are using the fact from Theorem 2.6 that $\mathcal{P}P_{x_0}(\Sigma_g, H)$ is the kernel of the map

$$\pi_1(\Sigma_g, x_0) \to H_1(\Sigma_g) = H \oplus H_{-1} \text{ proj} H,$$

so it is the fundamental group of the cover S_H of Σ_g used to define $\mathcal{S}_g^b(H; \mathbb{C}) = H_1(S_H; \mathbb{C}).$ Using Lemma 6.5, the representation $\mathcal{S}_g^b(H; \mathbb{C}) \otimes U$ is a direct sum of homological representations of $\text{Mod}^b_g(H)$ of size $r' + 1$. Since $i \leq k$, we have $i - 1 \leq k$, so we can apply our inductive hypothesis (b) from Step 1 to deduce that the map

$$H_{r-1}(\text{Mod}^b_g(\ell); \mathcal{S}_g^b(H; \mathbb{C}) \otimes U) \to H_{r-1}(\text{Mod}^b_g(H); \mathcal{S}_g^b(H; \mathbb{C}) \otimes U)$$

is an isomorphism. Here we are using the fact that our genus assumption is

$$g \geq 2(i + r')^2 + 7i + 6r' + 1 = 2((i - 1) + (r' + 1))^2 + 7(i - 1) + 6(r' + 1) + 2.$$

We remark that this is the origin of the bound in this claim. This completes the proof of the base case.

We can now assume that $s' > 0$ and that the claim is true whenever either r' or s' is smaller. Reordering the tensor factors of U if necessary, we can write $U = U' \otimes \mathcal{S}^b_{g,1}(\chi)$ for some extended homological representation U' of size $r' - 1$ and nonextended size $s' - 1$ and some character χ that is compatible with H. Lemma 6.8 gives a short exact sequence

$$0 \to \mathbb{C} \to \mathcal{S}^b_{g,1}(\chi) \to \mathcal{S}^b_{g}(\chi) \to 0$$

of $\text{Mod}^b_{g,1}(H)$-representations. Define $U'' = U' \otimes \mathcal{S}^b_{g}(\chi)$, so U'' is an extended homological representation of size r' and nonextended size $s' - 1$. Tensoring our exact sequence with U',
we get a short exact sequence
\[(9.3) \quad 0 \to U' \to U \to U'' \to 0\]
of Mod\(_{g,1}^b(H)\)-representations. There is an associated long exact sequence in PP\(_{x_0}(\Sigma^b_g, H)\)-homology. Since PP\(_{x_0}(\Sigma^b_g, H)\) is a free group, this involves homology in degrees 0 and 1. As notation, let\(^{58}\)
\[
\hat{U} = H_1(PP_{x_0}(\Sigma^b_g, H); U), \quad \hat{U}' = H_1(PP_{x_0}(\Sigma^b_g, H); U'), \quad \hat{U}'' = H_1(PP_{x_0}(\Sigma^b_g, H); U'').
\]
and
\[
\overline{U} = H_0(PP_{x_0}(\Sigma^b_g, H); U), \quad \overline{U}' = H_0(PP_{x_0}(\Sigma^b_g, H); U'), \quad \overline{U}'' = H_0(PP_{x_0}(\Sigma^b_g, H); U'').
\]
The long exact sequence in PP\(_{x_0}(\Sigma^b_g, H)\)-homology associated to (9.3) is thus of the form
\[
0 \to \hat{U}' \to \hat{U} \to \hat{U}'' \to \overline{U}' \to \overline{U} \to \overline{U}'' \to 0.
\]
One of our genus assumptions is that \(g \geq h + r\) where \(h\) is the genus of \(H\). Thus Corollary \ref{corollary_7.5} implies\(^{59}\) that \(\overline{U} \cong \overline{U}''\). Letting \(Q\) be the image of the map \(\hat{U} \to \hat{U}''\), this implies that we have short exact sequences
\[(9.4) \quad 0 \to \hat{U}' \to \hat{U} \to Q \to 0\]
and
\[(9.5) \quad 0 \to Q \to \hat{U}'' \to \overline{U}' \to 0.\]
To simplify our notation, let \(M(\ell) = \text{Mod}^b_{g}(\ell)\) and \(M(H) = \text{Mod}^b_{g}(H)\). Our goal is to prove that the map
\[(9.6) \quad H_{i-1}(M(\ell); \hat{U}) \to H_{i-1}(M(H); \hat{U})
\]
is an isomorphism. Both (9.4) and (9.5) induce exact sequences in the homology of \(M(\ell)\) and \(M(H)\), and also a map between these long exact sequences.

For (9.5), this contains the segment
\[
\begin{array}{ccccccc}
H_i(M(\ell); \hat{U}'') & \to & H_i(M(\ell); \overline{U}') & \to & H_{i-1}(M(\ell); Q) & \to & H_{i-1}(M(\ell); \overline{U}'') \\
\downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 \\
H_i(M(H); \hat{U}'') & \to & H_i(M(H); \overline{U}') & \to & H_{i-1}(M(H); Q) & \to & H_{i-1}(M(H); \overline{U}'') \\
\end{array}
\]
We can understand the maps \(f_i\) as follows:
- The transfer map lemma (Lemma 2.14) implies that \(f_1\) is a surjection.
- By construction, \(U'\) is an extended homological representation of Mod\(_{g,1}^b(H)\) of size \(r' - 1\), so just like above we can use Corollary \ref{corollary_7.5} to see that \(\overline{U}'\) is a homological representation of Mod\(_{g}^b(H)\) of size \(r' - 1\). Recall that we are assuming that \(i \leq k\) and that if \(i = k\) then \(r' \leq r\) (so \(r' - 1 < r\)). We can therefore apply our inductive hypotheses (b) and (c) from Step 1 to see that \(f_2\) and \(f_3\) are isomorphisms.

\(^{58}\)This is just repeating our previous definition for \(\hat{U}\).

\(^{59}\)To apply this to extended homological representations, we factor out the extended part. For instance, if \(U = Z_{g}^b(\chi_1) \otimes Z_{g}^b(\chi_2) \otimes Z_{g,1}^b(\chi_3) \otimes Z_{g,1}^b(\chi_4)\), then we can use Corollary \ref{corollary_7.5} to see that \(U = U_{PP_{x_0}(\Sigma^b_g, H)}\) equals
\[
Z_{g}^b(\chi_1) \otimes Z_{g}^b(\chi_2) \otimes \left(Z_{g,1}^b(\chi_3) \otimes Z_{g,1}^b(\chi_4)\right)_{PP_{x_0}(\Sigma^b_g, H)} = Z_{g}^b(\chi_1) \otimes Z_{g}^b(\chi_2) \otimes Z_{g}^b(\chi_3) \otimes Z_{g}^b(\chi_4).
\]
Here we are using the fact that PP\(_{x_0}(\Sigma^b_g, H)\) acts trivially on the first two factors.
• By construction, U'' is an extended homological representation of size r' and nonextended size $s' - 1$. By our induction on the nonextended size, we see that f_4 is an isomorphism.

Applying the five-lemma, we deduce that f_3 is an isomorphism.

We now turn to the long exact sequences in $M(\ell)$ and $M(H)$ homology induced by (9.4). These contain

$$
\begin{align*}
H_i(M(\ell); Q) &\to H_{i-1}(M(\ell); \hat{U}') \to H_{i-1}(M(\ell); \hat{U}) \to H_{i-1}(M(\ell); Q) \to H_{i-2}(M(\ell); \hat{U}') \\
\downarrow f_6 &\quad \downarrow r &\quad \downarrow f_8 &\quad \downarrow f_9 &\quad \downarrow f_6 \\
H_i(M(H); Q) &\to H_{i-1}(M(H); \hat{U}') \to H_{i-1}(M(H); \hat{U}) \to H_{i-1}(M(H); Q) \to H_{i-2}(M(H); \hat{U}')
\end{align*}
$$

Note that the map f_3 here is the same as the one from the previous diagram. We can understand these new maps f_i as follows:

• The transfer map lemma (Lemma 2.14) implies that f_6 is a surjection.
• By construction, U' is an extended homological representation of $\text{Mod}^b_g(H)$ of size $r' - 1$, so by our induction on r' we see that the maps f_7 and f_9 are isomorphisms.
• We proved above that f_3 is an isomorphism.

Applying the five-lemma, we deduce that f_8 is an isomorphism. This is exactly the map (9.6) we were supposed to prove is an isomorphism, so this completes the proof of the claim. □

Step 3. Make the inductive hypotheses (a)-(c) from Step 1, and also make the simplifying assumptions (†) and (††) from that step. We prove that the map

$$
(9.7) \quad H_k \left(\text{Mod}_g^{b+1}(\ell); \mathcal{S}_g^{b+1}(\chi) \right) \to H_k \left(\text{Mod}_g^b(\ell); \mathcal{S}_g^b(\chi) \right)
$$

induced by gluing a disc to a boundary component ∂ of Σ_g^{b+1} is an isomorphism as long as $g \geq 2(k + r)^2 + 7k + 6r + 1$.

The simplifying assumption (††) from Step 1 says that H has genus at most r, and for use in the next step we will verify that (9.7) is an isomorphism under this assumption. However, we will need some of our initial calculations in this step to hold more generally when H has genus at most $r + 1$, so for the moment we only impose this weaker condition. At the very end we will re-impose the condition that the genus of H is at most r.

To simplify our notation, let $V = \mathcal{S}_g^{b+1}(\chi)$ and $W = \mathcal{S}_g^b(\chi)$. The map (9.7) fits into a commutative diagram

$$
\begin{array}{ccc}
H_k \left(\text{Mod}_g^{b+1}(\ell); V \right) &\longrightarrow& H_k \left(\text{Mod}_g^b(\ell); W \right) \\
\downarrow & & \downarrow \\
H_k \left(\text{Mod}_g^{b+1}(H); V \right) &\longrightarrow& H_k \left(\text{Mod}_g^b(H); W \right).
\end{array}
$$

By Lemma 6.5, the representations $V = \mathcal{S}_g^{b+1}(\chi)$ and $W = \mathcal{S}_g^b(\chi)$ are direct summands of $\mathcal{S}_g^{b+1}(H; \mathbb{C})^{\otimes r}$ and $\mathcal{S}_g^b(H; \mathbb{C})^{\otimes r}$, respectively. Since H has genus at most $r + 1$, Theorem 8.1 implies that the bottom horizontal map in (9.8) is an isomorphism if $g \geq (2r + 4)(k + r) + (4r + 6)$. We will derive that the top horizontal map is an isomorphism from this, which first requires verifying that our genus assumption $g \geq 2(k + r)^2 + 7k + 6r + 1$ implies that we are in the stable range $g \geq (2r + 4)(k + r) + (4r + 6)$ from Theorem 8.1:

$$
2(k + r)^2 + 7k + 6r + 1 = 2(k + r + 1)(k + r) + 5k + 4r + 1 \\
\geq 2(r + 2)(k + r) + 4r + (5k + 1) \\
\geq (2r + 4)(k + r) + 4r + 6.
$$

36Note that this is 1 less than the bound we are trying to prove for H_k.
Here both inequalities use the fact that \(k \geq 1\), which is our inductive hypothesis (a) from Step 1.

Since \(b \geq 1\), the maps \(\text{Mod}^{b+1}(\ell) \rightarrow \text{Mod}^b(\ell)\) and \(\text{Mod}^{b+1}(H) \rightarrow \text{Mod}^b(H)\) induced by gluing a disc to \(\partial\) split via maps induced by an embedding \(\Sigma_g \hookrightarrow \Sigma_g^{b+1}\) as follows:

\[
\begin{array}{c}
\chi^b \\
\Sigma_g^b \end{array} \xrightarrow{\gamma} \begin{array}{c}
\partial \\
\Sigma_g^{b+1} \end{array}
\]

A similar map gives a splitting of the map \(V \rightarrow W\) induced by gluing a disc to \(\partial\). These give compatible splitting of the top and bottom rows of (9.8), which in particular imply that they are surjections (as we already know for the bottom row). We thus must prove that the top row of (9.8) is an injection.

We can factor the horizontal maps in (9.8) as follows:

\[
\begin{array}{c}
H_k(\text{Mod}^{b+1}(\ell); V) \xrightarrow{\phi} H_k(\text{Mod}^b(\ell); V) \xrightarrow{\psi} H_k(\text{Mod}^b(\ell); W) \\
H_k(\text{Mod}^{b+1}(H); V) \xrightarrow{\bar{\phi}} H_k(\text{Mod}^b(H); V) \xrightarrow{\bar{\psi}} H_k(\text{Mod}^b(H); W).
\end{array}
\]

Here we are using the fact that \(V = \Sigma_g^{b+1}(\chi) = \Sigma_g^b(\chi)\) (see Remark 6.4). To prove that the top horizontal map in (9.8) is an injection, it is enough to prove that \(\ker(\phi) = 0\) and \(\ker(\psi) \cap \text{Im}(\phi) = 0\). We will derive this from the fact that \(\bar{\psi} \circ \bar{\phi}\) is an isomorphism (Theorem 8.1, as noted above), which implies in particular that \(\ker(\bar{\phi}) = 0\) and that \(\ker(\bar{\psi}) \cap \text{Im}(\bar{\phi}) = 0\). We start by showing that \(\ker(\bar{\phi}) = 0\):

Claim 3.1. \(\ker(\bar{\phi}) = 0\).

Proof of claim. Proposition 2.8 and Remark 2.9 give a commutative diagram of central extensions

\[
\begin{array}{c}
1 \xrightarrow{} \mathbb{Z} \xrightarrow{} \text{Mod}^{b+1}(\ell) \xrightarrow{} \text{Mod}^b(\ell) \xrightarrow{} 1 \\
| \quad | \quad | \quad |
\downarrow = \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
1 \xrightarrow{} \mathbb{Z} \xrightarrow{} \text{Mod}^{b+1}(H) \xrightarrow{} \text{Mod}^b(H) \xrightarrow{} 1
\end{array}
\]

(9.9)

where the central \(\mathbb{Z}\) is generated by the Dehn twist \(T_0\). Consider the two associated Hochschild–Serre spectral sequences with coefficients in \(V\) associated to the central extensions in (9.9). These spectral sequences have two potentially nonzero rows, so they encode long exact Gysin sequences. There is a map between these Gysin sequences, which contains the following:

\[
\begin{array}{c}
H_{k+1}(\text{Mod}^b(\ell); V) \xrightarrow{\phi^*} H_{k-1}(\text{Mod}^{b+1}(\ell); V) \rightarrow H_k(\text{Mod}^b(\ell); V) \xrightarrow{\phi^*} H_k(\text{Mod}^{b+1}(\ell); V) \\
H_{k+1}(\text{Mod}^b(H); V) \xrightarrow{\bar{\phi}^*} H_{k-1}(\text{Mod}^{b+1}(H); V) \rightarrow H_k(\text{Mod}^b(H); V) \xrightarrow{\bar{\phi}^*} H_k(\text{Mod}^{b+1}(H); V).
\end{array}
\]

To prove that \(\ker(\bar{\phi}) = 0\), it is enough to prove that \(\phi^*\) is a surjection. We know that \(\ker(\bar{\phi}) = 0\), so \(\phi^*\) is a surjection. Our inductive hypothesis (b) from Step 1 implies that \(\phi_2^*\) is an isomorphism, and using the transfer map lemma (Lemma 2.14) we see that \(\phi_1^*\) is a surjection. It follows that \(\phi^*\) is a surjection, as desired. \(\square\)
The proof that \(\text{ker}(\psi) \cap \text{Im}(\phi) = 0 \) is a little more complicated. A proof identical to the one in the above claim\(^{61}\) shows that the maps

\[
H_i(\text{Mod}_{g}^{b+1}(\ell); V) \to H_i(\text{Mod}_{g,1}^{b}(\ell); V) \quad \text{and} \quad H_i(\text{Mod}_{g}^{b+1}(H); V) \to H_i(\text{Mod}_{g,1}^{b}(H); V)
\]

are injections for \(0 \leq i \leq k \). It follows that up to degree \(k \), the Gysin sequences discussed in the proof of the above claim break up into short exact sequences. In particular, we have the following commutative diagram with exact rows:

\[
\begin{array}{c}
0 \to H_k(\text{Mod}_{g}^{b+1}(\ell); V) \xrightarrow{\phi} H_k(\text{Mod}_{g,1}^{b}(\ell); V) \xrightarrow{\mu} H_{k-2}(\text{Mod}_{g,1}^{b}(\ell); V) \to 0 \\
\downarrow & \downarrow & \downarrow & \cong \\
0 \to H_k(\text{Mod}_{g}^{b+1}(H); V) \xrightarrow{\phi} H_k(\text{Mod}_{g,1}^{b}(H); V) \xrightarrow{\mu} H_{k-2}(\text{Mod}_{g,1}^{b}(H); V) \to 0.
\end{array}
\]

(9.10)

Here the isomorphism on the right-most vertical arrow comes from our inductive hypothesis (b) from Step 1.

We know that \(\overline{\psi} \circ \overline{\phi} \) is an isomorphism, so

\[
H_k(\text{Mod}_{g,1}^{b}(H); V) = \text{Im}(\overline{\phi}) \oplus \text{ker}(\overline{\psi}).
\]

Combining this with the bottom exact sequence in (9.10), we see that the map

(9.11)

\[
\overline{\mu}|_{\ker(\overline{\psi})} : \ker(\overline{\psi}) \to H_{k-2}(\text{Mod}_{g,1}^{b}(H); V)
\]

is an isomorphism. To prove that \(\ker(\psi) \cap \text{Im}(\phi) = 0 \), it is enough to prove that the restriction of \(\mu \) to \(\ker(\psi) \) is also an isomorphism. To do that, since the right-hand vertical arrow in (9.10) is an isomorphism it is enough to prove that the map \(H_k(\text{Mod}_{g,1}^{b}(\ell); V) \to H_k(\text{Mod}_{g,1}^{b}(H); V) \) restricts to an isomorphism from \(\ker(\psi) \) to \(\ker(\overline{\psi}) \).

To do this, we must identify \(\ker(\psi) \) and \(\ker(\overline{\psi}) \). Let \(x_0 \) be the puncture of \(\Sigma_{g,1}^{b} \). In light of Remark 2.7, Theorem 2.6 gives a commutative diagram of Birman exact sequences

\[
1 \to \text{PP}_{x_0}(\Sigma_{g}^{b}, \ell) \to \text{Mod}_{g,1}^{b}(\ell) \to \text{Mod}_{g}^{b}(\ell) \to 1
\]

(9.12)

\[
1 \to \text{PP}_{x_0}(\Sigma_{g}^{b}, H) \to \text{Mod}_{g,1}^{b}(H) \to \text{Mod}_{g}^{b}(H) \to 1.
\]

Since \(b \geq 1 \), the maps \(\text{Mod}_{g,1}^{b}(\ell) \to \text{Mod}_{g}^{b}(\ell) \) and \(\text{Mod}_{g,1}^{b}(H) \to \text{Mod}_{g}^{b}(H) \) induced by filling in \(x_0 \) split via maps induced by an embedding \(\Sigma_{g}^{b} \hookrightarrow \Sigma_{g,1}^{b} \) as follows:

\[
\begin{array}{c}
\Sigma_{g}^{b} \quad \longmapsto \quad \Sigma_{g,1}^{b}
\end{array}
\]

\[
\begin{array}{c}
\bullet_{x_0}
\end{array}
\]

It follows that all differentials coming out of the bottom rows of the Hochschild–Serre spectral sequences with coefficients in \(V \) associated to the rows of (9.12) must vanish. Since \(\text{PP}_{x_0}(\Sigma_{g}^{b}, \ell) \) and \(\text{PP}_{x_0}(\Sigma_{g}^{b}, H) \) are subgroups of the free group \(\pi_1(\Sigma_{g}^{b}, x_0) \), these spectral sequence only have two potentially nonzero rows, so they degenerate at the \(E^2 \) page. For \(\text{Mod}_{g,1}^{b}(\ell) \), the two potentially nonzero rows of this spectral sequence are as follows:

- \(E^2_{p,0} = H_p(\text{Mod}_{g}^{b}(\ell); H_0(\text{PP}_{x_0}(\Sigma_{g}^{b}, \ell); V)) \). Recall that at the beginning of this step we imposed the condition that \(H \) has genus at most \(r + 1 \). Our genus assumptions imply that \(g \geq (r + 1) + r \), so Corollary 7.5 implies that

\[
H_0(\text{PP}_{x_0}(\Sigma_{g}^{b}, \ell); V) = \text{Sym}_{g,1}(\chi)_{\text{PP}_{x_0}(\Sigma_{g}^{b}, \ell)} \cong \text{Sym}_{g}^{b}(\chi) = W.
\]

\(^{61}\)One could also use induction here.
We conclude that \(E^2_{p_0} = H_p(\text{Mod}_g^b(\ell); W) \).

\(E^2_{p_1} = H_p(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V)) \).

A similar analysis holds for \(\text{Mod}_{g,1}^b(H) \). We conclude that our spectral sequences break up into short exact sequences, and in particular we have a map of short exact sequences

\[
0 \to H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V)) \to H_k(\text{Mod}_g^b(\ell); V) \xrightarrow{\Delta} H_k(\text{Mod}_g^b(\ell); W) \to 0
\]

\((9.13) \)

\[
0 \to H_{k-1}(\text{Mod}_g^b(H); H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V)) \to H_k(\text{Mod}_g^b(H); V) \xrightarrow{\Delta} H_k(\text{Mod}_g^b(H); W) \to 0.
\]

It follows that to prove that the map \(\ker(\psi) \to \ker(\overline{\psi}) \) is an isomorphism, we must prove that the map

\[
H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V)) \to H_{k-1}(\text{Mod}_g^b(H); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V))
\]

is an isomorphism.\(^{62}\) This map factors as the composition of the maps

\[
(9.14) \quad H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V)) \to H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V))
\]

and

\[
(9.15) \quad H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V)) \to H_{k-1}(\text{Mod}_g^b(H); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V)).
\]

Claim 2.1 says that \((9.15) \) is an isomorphism. This claim includes the assumption that \(g \) is at least the genus of \(H \) plus \(r \), which follows from the condition that the genus of \(H \) is at most \(r + 1 \) that we imposed at the beginning of this step. It therefore remains to prove that \((9.14) \) is an isomorphism. At this point in the proof, we re-impose the simplifying assumption \((\dagger\dagger) \), which says that the genus of \(H \) is at most \(r \). As we noted at the beginning, it is easy to verify this step in that case; however, we will use some of the above calculations for other symplectic subspaces of genus \(r + 1 \).

Claim 3.2. The map \((9.14) \) is an isomorphism.

Proof of claim. Let \(D = H_1(\Sigma_g; \mathbb{Z}/\ell) \). By Remark 2.7, we have a short exact sequence

\[
1 \to \text{PP}_{x_0}(\Sigma_g^b, \ell) \to \pi_1(\Sigma_g^b) \to D \to 1.
\]

\((9.16) \)

Regard \(H \) as a subspace of \(D \) via the map \(H_1(\Sigma_g^b; \mathbb{Z}/\ell) \to H_1(\Sigma_g; \mathbb{Z}/\ell) \), and let \(C \subset D \) be its orthogonal complement with respect to the algebraic intersection pairing on \(D \). By Theorem 2.6, the group \(\text{PP}_{x_0}(\Sigma_g^b, H) \) is the kernel of the map

\[
\pi_1(\Sigma_g^b) \to D = H \oplus C \xrightarrow{\text{proj}} H.
\]

Combining this with \((9.16) \), we get a short exact sequence

\[
1 \to \text{PP}_{x_0}(\Sigma_g^b, \ell) \to \text{PP}_{x_0}(\Sigma_g^b, H) \to C \to 1.
\]

The group \(\text{PP}_{x_0}(\Sigma_g^b, H) \) acts by conjugation on \(\text{PP}_{x_0}(\Sigma_g^b, \ell) \) and on \(V \) since \(V \) is compatible with \(H \). Since inner automorphisms act trivially on homology (see, e.g., [11, Proposition

\(^{62}\)This implies Theorem C as a special case. Indeed, consider the case where \(V \) is the trivial representation. We then have \(H_1(\text{PP}_{x_0}(\Sigma_g^b, \ell); V) \cong \delta^b_g(\ell; \mathbb{C}) \). Also, we can take \(H = 0 \), so \(\text{PP}_{x_0}(\Sigma_g^b, H) = \pi_1(\Sigma_g^b) \) and thus \(H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V) = \delta^b_g(\mathbb{C}) \). The fact that this map is an isomorphism thus becomes the fact that the map \(H_{k-1}(\text{Mod}_g^b(\ell); \delta^b_g(\ell; \mathbb{C})) \to H_{k-1}(\text{Mod}_g^b; \delta^b_g(\mathbb{C})) \) is an isomorphism. The universal coefficients theorem says this is also true with the \(\mathbb{C} \) replaced with a \(\mathbb{Q} \), which is exactly Theorem C in the special case that the surface has no punctures. The case where the surface has punctures can be derived from this exactly like we did in Claim 1.3.
III.8.1), this induces an action of the abelian group C on $H_1(PP_{x_0}(\Sigma_g^b, \ell); V)$. Using the transfer map lemma (Lemma 2.14), we deduce that

$$H_1(PP_{x_0}(\Sigma_g^b, \ell); V)_C = H_1(PP_{x_0}(\Sigma_g^b, H); V).$$

The group $\text{Mod}^b_g(\ell)$ also acts on $H_1(PP_{x_0}(\Sigma_g^b, \ell); V)$. Since $\text{Mod}^b_g(\ell)$ acts trivially on \mathcal{D}, the actions of $\text{Mod}^b_g(\ell)$ and C on $H_1(PP_{x_0}(\Sigma_g^b, \ell); V)$ commute. It follows that $\text{Mod}^b_g(\ell)$ preserves the decomposition of $H_1(PP_{x_0}(\Sigma_g^b, \ell); V)$ into C-isotypic components. Just like we talked about for the Prym representation in §6.5, the irreducible representations of the finite abelian group C are in bijection with characters $\chi \in \hat{C}$. For $\chi \in \hat{C}$, let U_χ denote the corresponding isotypic component of $H_1(PP_{x_0}(\Sigma_g^b, \ell); V)$. We thus have

$$H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H); V)) = \bigoplus_{\chi \in \hat{C}} H_{k-1}(\text{Mod}^b_g(\ell); U_\chi).$$

We now return to (9.17). Taking the C-coinvariants like in (9.17) kills exactly the U_χ such that χ is nontrivial (c.f. the proof of Lemma 6.5). Letting $1 \in \hat{C}$ denote the trivial character, we thus see from (9.17) and (18.19) that

$$H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H); V)) = H_{k-1}(\text{Mod}^b_g(\ell); U_1).$$

The map

$$H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, \ell); V)) \to H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H); V))$$

we are trying to prove is an isomorphism can therefore be identified with the projection

$$\bigoplus_{\chi \in \hat{C}} H_{k-1}(\text{Mod}^b_g(\ell); U_\chi) \to H_{k-1}(\text{Mod}^b_g(\ell); U_1).$$

Fixing some nontrivial $\chi \in \hat{C}$, we deduce that to prove the claim, it suffices to prove that $H_{k-1}(\text{Mod}^b_g(\ell); U_\chi) = 0$.

Recall that the genus of $H \subset H_1(\Sigma_{g,1}; \mathbb{Z}/\ell)$ is at most r. Let H' be a symplectic subspace of $H_1(\Sigma_{g,1}; \mathbb{Z}/\ell)$ of genus at most $r+1$ with the following two properties:

- $H \subset H'$. Regarding H' as a subgroup of \mathcal{D} and letting C' be its orthogonal complement, we thus have $C' \subset C$.
- The character $\chi': C' \to \mathbb{C}^*$ vanishes on C'.

Since the image of χ is a finite cyclic group, such an H' can be constructed using an argument similar to [61, Lemma 3.5]. We have $PP_{x_0}(\Sigma_g^b, H') \subset PP_{x_0}(\Sigma_g^b, H)$, and arguments identical to the one we gave above show that

$$H_1(PP_{x_0}(\Sigma_g^b, \ell); V)_{C'} = H_1(PP_{x_0}(\Sigma_g^b, H'); V).$$

Continuing just like above, we deduce that

$$H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H'); V) = \bigoplus_{\chi \in \hat{C}} H_{k-1}(\text{Mod}^b_g(\ell); U_\chi).$$

The map

$$H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H'); V) \to H_{k-1}(\text{Mod}^b_g(\ell); H_1(PP_{x_0}(\Sigma_g^b, H); V))$$

can thus be identified with the projection

$$\bigoplus_{\chi \in \hat{C}} H_{k-1}(\text{Mod}^b_g(\ell); U_\chi) \to H_{k-1}(\text{Mod}^b_g(\ell); U_1).$$
The summand $H_{k-1}(\text{Mod}_g^b(\ell); U_\chi)$ we are trying to prove is 0 thus appears in the kernel of (9.19).

To prove the claim, we are therefore reduced to proving that (9.19) is an isomorphism. We now return to the isomorphism (9.11) we constructed long ago. Its domain $\ker(\overline{\nu})$ can be identified with $H_{k-1}(\text{Mod}_g^b(H); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V))$ using (9.13), and using the isomorphism (9.15) we can identify this with $H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V))$. Using these identifications, the isomorphism (9.11) says that

$$H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, H); V)) \cong H_{k-2}(\text{Mod}_g^b(H); V).$$

We can also apply this to H' since we were careful at the beginning of this step to allow the genus to be at most $r + 1$ instead of just r, and we see that

$$H_{k-1}(\text{Mod}_g^b(\ell); H_1(\text{PP}_{x_0}(\Sigma_g^b, H'); V)) \cong H_{k-2}(\text{Mod}_g^b(H'); V).$$

Using these two natural isomorphisms, we can identify (9.19) with the map

$$H_{k-2}(\text{Mod}_g^b(H'); V) \rightarrow H_{k-2}(\text{Mod}_g^b(H); V).$$

But this is an isomorphism; indeed, using our inductive hypothesis (b) from Step 1 we see that both the first map and the composition in

$$H_{k-2}(\text{Mod}_g^b(\ell); V) \rightarrow H_{k-2}(\text{Mod}_g^b(H'); V) \rightarrow H_{k-2}(\text{Mod}_g^b(H); V)$$

are isomorphisms. This completes the proof of the claim. \(\square\)

Step 4. Make the inductive hypotheses (a)-(c) from Step 1, and also make the simplifying assumptions (i) and (ii) from that step. We prove that the map

$$H_k \left(\text{Mod}_g^b(\ell); \tilde{\delta}_g^b(\chi) \right) \rightarrow H_k \left(\text{Mod}_g^b(H); \tilde{\delta}_g^b(\chi) \right)$$

induced by the inclusion $\text{Mod}_g^b(\ell) \hookrightarrow \text{Mod}_g^b(H)$ is an isomorphism if $g \geq 2(k+r)^2 + 7k + 6r + 2$, completing our induction.

By Lemma 6.5, the $\text{Mod}_g^b(H)$-representation $\tilde{\delta}_g^b(\chi)$ is a direct summand of $\tilde{\delta}_g^b(H; \mathbb{C})^\otimes r$. It follows that it is enough to prove that the map

(9.20) $H_k \left(\text{Mod}_g^b(\ell); \tilde{\delta}_g^b(H; \mathbb{C})^\otimes r \right) \rightarrow H_k \left(\text{Mod}_g^b(H); \tilde{\delta}_g^b(H; \mathbb{C})^\otimes r \right)$

is an isomorphism. Step 3 implies that

$$H_k \left(\text{Mod}_g^b(\ell); \tilde{\delta}_g^b(H; \mathbb{C}) \right) \cong H_k \left(\text{Mod}_g^b(\ell); \tilde{\delta}_g^1(H; \mathbb{C}) \right).$$

Also, as we noted at the beginning of the proof of Step 3 our genus assumptions allow us to use Theorem 8.1 to deduce that

$$H_k \left(\text{Mod}_g^b(H); \tilde{\delta}_g^b(H; \mathbb{C}) \right) \cong H_k \left(\text{Mod}_g^b(H); \tilde{\delta}_g^1(H; \mathbb{C}) \right).$$

We conclude that it is enough to prove that (9.20) is an isomorphism when $b = 1$.

As we discussed in 1.12, the transfer map lemma (Lemma 2.14) implies that

$$H_k \left(\text{Mod}_g^1(H); \tilde{\delta}_g^1(H; \mathbb{C})^\otimes r \right) = \left(H_k \left(\text{Mod}_g^1(\ell); \tilde{\delta}_g^1(H; \mathbb{C})^\otimes r \right) \right)_{\text{Mod}_g^1(H)}.$$

This reduces us to showing that $\text{Mod}_g^1(H)$ acts trivially on $H_k(\text{Mod}_g^1(\ell); \tilde{\delta}_g^1(H; \mathbb{C})^\otimes r)$. Lemma 2.10 says that $\text{Mod}_g^1(H)$ is generated by $\text{Mod}_g^1(\ell)$ along with the set of all Dehn twists T_γ such that $[\gamma] \in H_1^{\perp}$. Since inner automorphisms act trivially on homology (see, e.g., [11, Proposition III.8.1]), this reduces us to showing that such T_γ act trivially.

Say that an embedding $\Sigma_{g-1} \hookrightarrow \Sigma_g^b$ is compatible with H-compatible if H is contained in the image of the induced map $H_1(\Sigma_{g-1}; \mathbb{Z}/\ell) \rightarrow H_1(\Sigma_g^1; \mathbb{Z}/\ell)$. Fix an H-compatible
embedding \(j_0 : \Sigma_{g-1} \hookrightarrow \Sigma_g \) such that \(\gamma \) is contained in the complement of the image of \(j_0 \):

Since \(T_\gamma \) commutes with mapping classes supported on \(\Sigma_{g-1} \), it acts trivially on the image of \(H_k(\text{Mod}_{g-1}(\ell); \mathcal{S}_{g-1}(H; \mathbb{C})^{\otimes r}) \) in \(H_k(\text{Mod}_g(\ell); \mathcal{S}_g(H; \mathbb{C})^{\otimes r}) \). It follows that it is enough to prove that the map

\[
(j_0)_* : H_k(\text{Mod}_{g-1}(\ell); \mathcal{S}_{g-1}(H; \mathbb{C})^{\otimes r}) \longrightarrow H_k(\text{Mod}_g(\ell); \mathcal{S}_g(H; \mathbb{C})^{\otimes r})
\]

is surjective. For this, it is enough to prove the following two facts:

- The map

\[
\bigoplus_{\Sigma_{g-1} \hookrightarrow \Sigma_g \atop H\text{-compatible}} H_k(\text{Mod}_{g-1}(\ell); \mathcal{S}_{g-1}(H; \mathbb{C})^{\otimes r}) \longrightarrow H_k(\text{Mod}_g(\ell); \mathcal{S}_g(H; \mathbb{C})^{\otimes r})
\]

is surjective.

- Let \(j_0 : \Sigma_{g-1} \hookrightarrow \Sigma_g \) and \(j_1 : \Sigma_{g-1} \hookrightarrow \Sigma_g \) be two \(H \)-compatible embeddings. Let

\[
(j_i)_* : H_k(\text{Mod}_{g-1}(\ell); \mathcal{S}_{g-1}(H; \mathbb{C})^{\otimes r}) \longrightarrow H_k(\text{Mod}_g(\ell); \mathcal{S}_g(H; \mathbb{C})^{\otimes r})
\]

be the induced map. Then the images of \((j_0)_* \) and \((j_1)_* \) are the same.

These two facts are the subject of the following two claims:

Claim 4.1. The map

\[
\bigoplus_{\Sigma_{g-1} \hookrightarrow \Sigma_g \atop H\text{-compatible}} H_k(\text{Mod}_{g-1}(\ell); \mathcal{S}_{g-1}(H; \mathbb{C})^{\otimes r}) \longrightarrow H_k(\text{Mod}_g(\ell); \mathcal{S}_g(H; \mathbb{C})^{\otimes r})
\]

is surjective.

Proof of claim. Let \(I \) be an open interval in \(\partial \Sigma_g \), and consider the complex \(T^1_{g,I}(I, H) \) of \(I \)-tethered \(H \)-orthogonal tori in \(\Sigma_g \) that we introduced in §5.2. Given a \(p \)-simplex \(\sigma = [\ell_0, \ldots, \ell_p] \), let \(X_\sigma \) be the subsurface of \(\Sigma_g \) defined in §6.3:

\[
X_\sigma = \Sigma_g \setminus \text{Nbd}(\partial \Sigma_g \cup \text{Im}(\ell_0) \cup \cdots \cup \text{Im}(\ell_p))
\]

Thus \(X_\sigma \cong \Sigma_{g-p-1} \), and the inclusion \(X_\sigma \hookrightarrow \Sigma_g \) is \(H \)-compatible. The \(\text{Mod}_g^1(\ell) \)-stabilizer of \(\sigma \) consists of all elements of \(\text{Mod}_g^1(\ell) \) supported on \(X_\sigma \), so \(\text{Mod}_g^1(\ell)_\sigma \cong \text{Mod}_{g-p-1}^1(\ell) \).

Next, let \(\mathcal{H}_g^1(H; \mathbb{C}) \) be the augmented coefficient system on \(T^1_g(I, H) \) defined in §6.3. Let \(\pi : \Sigma_g \ra \Sigma_g \) be the cover used to define \(\mathcal{S}_g^1(H; \mathbb{C}) \), and for a simplex \(\sigma \) of \(T^1_g(I, H) \) let

\[
\tilde{X}_\sigma = \pi^{-1}(X_\sigma).
\]

For a \(p \)-simplex \(\sigma \) of \(T^1_g(I, H) \), we then have

\[
\mathcal{H}_g^1(H; \mathbb{C})(\sigma) = H_1(\tilde{X}_\sigma; \mathbb{C}) \cong \mathcal{S}_{g-p-1}^1(H; \mathbb{C}).
\]
In particular, for the empty simplex [] we have
\[\mathcal{H}_0^k(H; \mathbb{C})[] = \mathcal{S}_0^k(H; \mathbb{C}). \]

It follows that to prove the claim, it is enough to prove that the map
\[
\bigoplus_{v \in \mathcal{I}_g^k(I,H)_{(\otimes)}^0} H_k(\text{Mod}_g^1(\ell); \mathcal{H}_g^1(H; \mathbb{C})_{\otimes r}(v)) \rightarrow H_k(\text{Mod}_g^1(\ell); \mathcal{H}_g^1(H; \mathbb{C})_{\otimes r}[])
\]
is surjective. This will follow from Proposition 4.1 once we verify its three hypotheses. This requires manipulating our bound on \(g \), so we introduce the notation
\[b(k,r) = 2(k+r)^2 + 7k + 6r + 2. \]

Thus our assumption is that \(g \geq b(k,r). \)

Hypothesis (i) is that \(\mathcal{H}_1^k(\mathbb{T}_{g^1}(I,H); \mathcal{H}_{g^1}(H; \mathbb{C})_{\otimes r}) = 0 \) for \(-1 \leq i \leq k-1 \). Lemma 6.3 says that \(\mathcal{H}_1^k(H; \mathbb{C}) \) is strongly polynomial of degree 1, so Lemma 4.8 implies that \(\mathcal{H}_{g^1}(H; \mathbb{C})_{\otimes r} \) is strongly polynomial of degree \(r \). By assumption (d) from Step 1 the genus of \(H \) is at most \(r \), so Corollary 5.2 implies that \(\mathcal{T}_{g^1}(I,H) \) is weakly forward Cohen–Macaulay of dimension \(\frac{g-(4r+3)}{2r+2} + 1 \). Applying Theorem 4.4, we deduce that \(\mathcal{H}_1^k(\mathbb{T}_{g^1}(I,H); \mathcal{H}_{g^1}(H; \mathbb{C})_{\otimes r}) = 0 \) for \(-1 \leq i \leq \frac{g-(4r+3)}{2r+2} - r \). We must prove that this is at least \(k-1 \). Manipulating
\[
g - \frac{4r + 3}{2r + 2} - r \geq k - 1,
\]
we see that it is equivalent to
\[g \geq 2(k+r)(r+1) + 2r + 1. \]

We thus must prove that \(b(k,r) \geq 2(k+r)(r+1) + 2r + 1 \). But at the beginning of Step 3 we proved\(^ {63} \) that \(b(k,r) \geq 2(k+r)(r+2) + (4r+7) \), which is even stronger.

Hypotheses (ii) is that \(\mathcal{H}_1^k(\mathbb{T}_{g^1}(I,H)/\text{Mod}_g^1(\ell)) = 0 \) for \(-1 \leq i \leq k \). By the simplifying assumption (†) from Step 1 the genus of \(H \) is at most \(r \), so Corollary 5.6 implies that \(\mathbb{T}_{g^1}(I,H)/\text{Mod}_g^1(\ell) \) is at most \(\frac{g-r-5}{2} \)-connected. We want to prove that this is at least \(k \). Manipulating this, we see that it is equivalent to
\[g \geq 2k + r + 5. \]
We thus must prove that \(b(k,r) \geq 2k + r + 5 \). For this, we calculate:
\[
b(k,r) = 2(k+r)^2 + 7k + 6r + 2 = 2k + r + (2(k+r)^2 + 5k + 5r + 2)
\geq 2k + r + (2 + 5 + 0 + 2) \geq 2k + r + 5,
\]
as desired. Here we are using our inductive hypothesis (a) from Step 1, which says that \(k \geq 1 \) and \(r \geq 0 \).

Hypothesis (iii) is that if \(\sigma \) is a simplex of \(\mathbb{T}_{g^1}(I,H) \) and \(i \geq 1 \), then the map
\[
\mathcal{H}_{k-i}(\text{Mod}_g^1(\ell)_{\sigma}; \mathcal{H}_g^1(H; \mathbb{C})_{\otimes r}(\sigma)) \rightarrow \mathcal{H}_{k-i}(\text{Mod}_g^1(\ell); \mathcal{H}_g^1(H; \mathbb{C})_{\otimes r}[])
\]
is an isomorphism if \(i - 1 \leq \dim(\sigma) \leq i + 1 \). By our description of the simplex stabilizers and the values of \(\mathcal{H}_g^1(H; \mathbb{C}) \), this is equivalent to proving that for \(i \geq 1 \), the map
\[
\mathcal{H}_{k-i}(\text{Mod}_g^1(\ell); \mathcal{S}_{g^1}(H; \mathbb{C})_{\otimes r}) \rightarrow \mathcal{H}_{k-i}(\text{Mod}_g^1(\ell); \mathcal{S}_{g^1}(H; \mathbb{C})_{\otimes r})
\]
\(^ {63} \)Actually, what we proved was \(b(k,r) - 1 \geq 2(k+r)(r+2) + (4r+6) \).
is an isomorphism if \(i \leq h \leq i + 2 \). In fact, we will prove that it is an isomorphism for \(1 \leq h \leq i + 2 \). The above map fits into a commutative diagram

\[
\begin{array}{c}
H_{k-i}(\text{Mod}^1_{g-h}(\ell); \mathcal{F}_r^1(\mathbb{C}^{\otimes r})) \\ \downarrow
\end{array} \rightarrow \begin{array}{c}
H_{k-i}(\text{Mod}^1_g(\ell); \mathcal{F}_r^1(H; \mathbb{C}^{\otimes r}))
\end{array}
\]

\[
\begin{array}{c}
H_{k-i}(\text{Mod}^1_{g-h}(H); \mathcal{F}_r^1(H; \mathbb{C}^{\otimes r})) \\ \downarrow
\end{array} \rightarrow \begin{array}{c}
H_{k-i}(\text{Mod}^1_g(H); \mathcal{F}_r^1(H; \mathbb{C}^{\otimes r})).
\end{array}
\]

What we will do is use our inductive hypothesis (b) from Step 1 to show that both vertical arrows are isomorphisms and Theorem 8.1 to prove that the bottom horizontal arrow is an isomorphism.

We start by using our inductive hypothesis to show that both vertical arrows are isomorphisms. To show this, since \(g \geq b(k, r) \) it is enough to prove that

\[
(9.21) \quad b(k, r) \geq b(k-i, r) + (i+2) \quad \text{for } 1 \leq i \leq k.
\]

In fact, we will prove something stronger, namely that for all \(j, r \geq 0 \) we have have

\[
(9.22) \quad b(j+1, r) \geq b(j, r) + 7.
\]

Iterating this gives an even better bound than (9.21), namely that \(b(k, r) \geq b(k-i, r) + 7i \). To see (9.22), we calculate as follows:

\[
b(j+1, r) = 2(j+r+1)^2 + 7(j+1) + 6r + 2 \geq 2(j+r)^2 + 7(j+1) + 6r + 2 = b(j, r) + 7.
\]

We next use Theorem 8.1 to prove that the bottom horizontal arrow is an isomorphism. The bound in that theorem for \(H_j \) is \(b'(j, r) = 2(j+r)(r+1) + (4r+2) \), so since \(g \geq b(k, r) \) what we have to show is that

\[
b(k, r) \geq b'(k-i, r) + (i+2) \quad \text{for } 1 \leq i \leq k.
\]

To see this, it is enough to prove that \(b(k, r) \geq b'(k, r) + 7 \) and that \(b'(j+1, r) \geq b'(j, r) + 2 \) for all \(j, r \geq 0 \). For \(b(k, r) \geq b'(k, r) + 7 \), we calculate as follows:

\[
b(k, r) = 2(k+r)^2 + 7k + 6r + 2 \geq 2(k+r)(r+1) + 7k + 6r + 2
\]

\[
\geq 2(k+r)(r+1) + 4r + (7k + 2)
\]

\[
\geq 2(k+r)(r+1) + 4r + 9 = b'(k, r) + 7.
\]

For \(b'(j+1, r) \geq b'(j, r) + 2 \), we calculate as follows:

\[
b'(j+1, r) = 2(j+r+1)(r+1) + (4r+2) = 2(j+r)(r+1) + (4r+2) + (2r+2) \geq b'(j, r) + 2. \quad \Box
\]

Claim 4.2. Let \(j_0 \): \(\Sigma_{g-1}^1 \hookrightarrow \Sigma_g^1 \) and \(j_1 \): \(\Sigma_{g-1}^1 \hookrightarrow \Sigma_g^1 \) be two \(H \)-compatible embeddings. Let

\[
(j_i)_* : \text{Mod}^1_{g-1}(\ell); \mathcal{F}_r^1(\mathbb{C}^{\otimes r}) \rightarrow \text{Mod}^1_g(\ell); \mathcal{F}_r^1(H; \mathbb{C}^{\otimes r})
\]

be the induced map. Then the images of \((j_0)_*\) and \((j_1)_*\) are the same.

Proof of claim. The group \(\text{Mod}^1_g(H) \) acts transitively\(^\ddagger\) on the set of \(H \)-compatible embeddings \(\Sigma_g^1 \hookrightarrow \Sigma_g^1 \). We can thus find some \(\phi \in \text{Mod}^1_g(H) \) such that \(j_1 = \phi \circ j_0 \).

By the simplifying assumption \((\dagger\dagger)\) from Step 1, the genus \(h \) of \(H \) is at most \(r \). Lemma 2.10 says that \(\text{Mod}^1_g(H) \) is generated by \(\text{Mod}^1_g(\ell) \) along with any set \(S \) of Dehn twists about simple closed nonseparating curves \(\gamma \) with \([\gamma] \in H^1 \) such that \(S \) maps to a generating set for \(\text{Sp}(H^1) \cong \text{Sp}_{2g-1}(\mathbb{Z}/\ell) \). In fact, as Remark 2.11 points out, we can take

\[
S = \{T_{\alpha_1}, \ldots, T_{\alpha_{g-h}}, T_{\beta_1}, \ldots, T_{\beta_{g-h}}, T_{\gamma_1}, \ldots, T_{\gamma_{g-h}}\},
\]

\(^{\ddagger}\)This can be proved directly along the same lines as Lemma 5.4. Alternatively, since all \(H \)-compatible embeddings come from vertices of \(\mathbb{T}^1(I;H) \), it follows from the fact that \(\text{Mod}^1_g(H) \) acts transitively on such vertices. See [61, Lemma 3.9] for a proof of this in a much more general context.
where the α_i and β_i and γ_i are as follows:

![Diagram showing α_i, β_i, and γ_i]

Here the image of j_0 is the shaded region, and H consists of all elements of homology orthogonal to the curves about whose twists are in S, so H is supported on the handles on the left side of the figure that have no S-curves around them.

The element $\phi \in \text{Mod}^1_g(H)$ with $j_1 = \phi \circ j_0$ from the first paragraph can thus be written as $\phi = \phi_1 \cdots \phi_n$ with each ϕ_i either in $\text{Mod}^1_g(\ell)$ or $S^{\pm 1}$. We can therefore “connect” j_0 and j_1 by the sequence of H-compatible embeddings

$$j_0, \quad \phi_1 \circ j_0, \quad \phi_1 \phi_2 \circ j_0, \quad \ldots, \quad \phi_1 \cdots \phi_n \circ j_0 = j_1.$$

It is enough to prove that the maps on homology induced by consecutive embeddings $\phi_1 \cdots \phi_i \circ j_0$ and $\phi_1 \cdots \phi_i \phi_{i+1} \circ j_0$ in this sequence have the same image. Multiplying these on the left by $(\phi_1 \cdots \phi_i)^{-1}$, we see that in fact it is enough to prove that the maps on homology induced by j_0 and $\phi_i \circ j_0$ have the same image. We remark that this type of argument was systematized in [55], which has many examples of it.

This is trivial if $\phi_i \in \text{Mod}^1_g(\ell)$ since the images differ by an inner automorphism of $\text{Mod}^1_g(\ell)$ and inner automorphisms act trivially on homology (see, e.g., [11, Proposition III.8.1]). It is also trivial if ϕ_i is an element of $S^{\pm 1}$ that fix these subsurface $j_0(\Sigma_{g-1})$. The only remaining case is where $\phi_i = T^{\pm 1}_1$. It is actually enough to deal with the case where the sign is positive; indeed, if the maps on homology induced by j_0 and $T_{\gamma_1} \circ j_0$ have the same image, then we can multiply both by $T^{-1}_{\gamma_1}$ and deduce that the maps on homology induced by $T_{\gamma_1}^{-1} \circ j_0$ and j_0 have the same image.

In summary, we have reduced ourselves to handling the case where $j_1 = T_{\gamma_1} \circ j_0$ as in the following:

![Diagram showing j_0, γ_1, and j_1]

We can find an embedding $\iota: \Sigma^2_{g-1} \hookrightarrow \Sigma^1_g$ whose image contains the images of both j_0 and j_1:

![Diagram showing j_0, γ_1, and ι]

Using the notation from §2.6, the embedding ι induces a homomorphism $\overline{\text{Mod}}^2_{g-1}(\ell) \to \text{Mod}_g(\ell)$, and each j_i factors as

$$\text{Mod}^1_{g-1}(\ell) \xrightarrow{j'_i} \overline{\text{Mod}}^2_{g-1}(\ell) \longrightarrow \text{Mod}_g(\ell).$$

To prove that the images of $(j_0)_*$ and $(j_1)_*$ are the same, it is enough to prove that the maps

$$(j'_i)_*: \text{H}_k(\text{Mod}^1_{g-1}(\ell); \mathfrak{I}^1_{g-1}(H)^{\otimes r}) \longrightarrow \text{H}_k(\overline{\text{Mod}}^2_{g-1}(\ell); \mathfrak{I}^2_{g-1}(H)^{\otimes r})$$
are surjective. In fact, we will prove they are isomorphisms. Consider the composition

\[\text{Mod}_{g-1}^1(\ell) \xrightarrow{j_1'} \text{Mod}_{g-1}^2(\ell) \xrightarrow{f} \text{Mod}_{g-1}^1(\ell) \xrightarrow{j_1} \text{Mod}_{g-1}^1(\ell), \]

where the final map glues a disc to one of the components of \(\partial \Sigma_{g-1}^1 \). This comes from a map \(\Sigma_{g-1}^1 \to \Sigma_{g-1}^1 \) that is homotopic to the identity:

\[
\begin{array}{ccc}
\bullet & \xrightarrow{f} & \bullet \\
& & \\
& \text{def} \hspace{1cm} \text{retract} & \\
\end{array}
\]

Letting \(W = \mathfrak{H}_{g-1}^1(H)^{\otimes r} \) and \(V = \mathfrak{H}_{g-1}^2(H)^{\otimes r} \), it follows that the following composition is the identity (and in particular, is an isomorphism):

\[H_k(\text{Mod}_{g-1}^1(\ell); W) \xrightarrow{(j_1')^*} H_k(\text{Mod}_{g-1}^2(\ell); V) \xrightarrow{f} H_k(\text{Mod}_{g-1}^2(\ell); V) \xrightarrow{(f')^*} H_k(\text{Mod}_{g-1}^1(\ell); W). \]

Here for the final map we are using the map \(V \to W \) induced by the map that fills in a boundary component. Corollary 2.13 says that \(f_* \) is an isomorphism, and Step 3 says that \((f')_* \) is an isomorphism.\(^{65}\) We conclude that \((j_1')_* \) is an isomorphism, as desired. \(\square \)

This completes the proof of Theorem D. \(\square \)

10. Closed surfaces

We close by showing how to derive Theorems A and B for closed surfaces from the case of surfaces with nonempty boundary.

10.1. Alternate standard representation. This first requires the following variant on Theorem B for non-closed surfaces. Let \(\text{Mod}_{g,p}^b \) act on \(H_1(\Sigma_g) \) via the homomorphism \(\text{Mod}_{g,p}^b \to \text{Mod}_g \) that fills in the punctures and glues discs to the boundary components. Also, recall that \(\text{Mod}_{g,p}^b[\ell] \) is the kernel of the action of \(\text{Mod}_{g,p}^b \) on \(H_1(\Sigma_g; \mathbb{Z}/\ell) \).

Theorem E. Let \(g, p, b \geq 0 \) and \(\ell \geq 2 \) be such that \(p + b \geq 1 \). Then for \(r \geq 0 \), the maps

\[H_k \left(\text{Mod}_{g,p}^b(\ell); H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \to H_k \left(\text{Mod}_{g,p}^b; H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \]

and\(^{66}\)

\[H_k \left(\text{Mod}_{g,p}^b[\ell]; H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \to H_k \left(\text{Mod}_{g,p}^b; H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \]

are isomorphisms if \(g \geq 2(k + r)^2 + 7k + 6r + 2 \).

Proof. The transfer map lemma (Lemma 2.14) implies that both maps in the composition

\[H_k \left(\text{Mod}_{g,p}^b(\ell); H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \to H_k \left(\text{Mod}_{g,p}^b[\ell]; H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \to H_k \left(\text{Mod}_{g,p}^b; H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \right) \]

are surjections. It is thus enough to prove that (10.1) is an isomorphism. If \(p + b = 1 \), then \(H_1(\Sigma_{g,p}^b; \mathbb{Q}) \cong H_1(\Sigma_g; \mathbb{Q}) \) and this reduces to Theorem B. We can thus assume that \(p + b \geq 2 \).

Choose some arbitrary ordering on the punctures and boundary components of \(\Sigma_{g,p}^b \), and for \(0 \leq p' \leq p \) and \(0 \leq b' \leq b \) let \(\text{Mod}_{g,p}^b \) act on \(H_1(\Sigma_{g,p}^{b'}; \mathbb{Q}) \) by filling in the first

\(^{65}\)This is why we needed the bound in Step 3 to be one better than the bound we are proving for \(H_k \).

\(^{66}\)As discussed in §1.8, our other main theorems also apply to \(\text{Mod}_{g,p}^b[\ell] \). We only state this separately here since we will need to use \(\text{Mod}_{g,p}^b[\ell] \) below.
\(p - p'\) punctures and gluing discs to the first \(b - b'\) boundary components. For sequences \(p = (p_1, \ldots, p_r)\) with \(0 \leq p_i \leq p\) and \(b = (b_1, \ldots, b_r)\) with \(0 \leq b_i \leq b\), define

\[
U(p, b) = H_1(\Sigma_{g, p_1}^b; \mathbb{Q}) \otimes \cdots \otimes H_1(\Sigma_{g, p_r}^b; \mathbb{Q}).
\]

We will prove more generally that the map

\[
H_k\left(\text{Mod}^b_{g, p}(\ell); U(p, b)\right) \to H_k\left(\text{Mod}^b_{g, p}; U(p, b)\right)
\]

is an isomorphism if \(g \geq 2(k + r)^2 + 7k + 6r + 2\).

The proof will be by induction on \(r\). For the base case \(r = 0\), this is the trivial representation and the theorem follows from Theorem B. Assume, therefore, that \(r > 0\) and that the theorem is true whenever \(r\) is smaller. Consider some \(p\) and \(b\) as above, and define

\[
d(p, b) = \sum_{i=1}^{r} (p - p_i) + \sum_{i=1}^{r} (b - b_i).
\]

The proof will be by induction on \(d(p, b)\). The base case is when \(d(p, b) = 0\), in which case \(U(p, b) = H_1(\Sigma_{g, p_r}^b; \mathbb{Q})^{\otimes r}\) and the theorem follows from Theorem B. Assume, therefore, that \(d(p, b) > 0\) and that the theorem is true whenever this is smaller.

If for some \(i\) we have \(p_i = b_i = 0\), then increasing either \(p_i\) or \(b_i\) by 1 does not change \(U(p, b)\), so the theorem follows by induction. We can therefore assume that for all \(i\) we have either \(p_i > 0\) or \(b_i > 0\). Since \(d(p, b) > 0\), there is some \(i\) such that either \(p_i < p\) or \(b_i < b\) (or both). We will give the details for when \(b_i < b\). The case where \(p_i < p\) is similar.

Reordering the indices, we can assume that \(b_r < b\). Let

\[
b' = (b_1, \ldots, b_{r-1}) \quad \text{and} \quad b'' = (b_1, \ldots, b_{r-1}, b_r + 1).
\]

Since we do not have \(b_r = p_r = 0\), we have a short exact sequence

\[
0 \to \mathbb{Q} \to H_1(\Sigma_{g, p_r}^{b_r+1}; \mathbb{Q}) \to H_1(\Sigma_{g, p_r}^{b_r}; \mathbb{Q}) \to 0
\]

of representations of \(\text{Mod}^b_{g, p}\). Tensoring this with \(U(p, b')\), we get a short exact sequence

\[
0 \to U(p, b') \to U(p, b'') \to U(p, b) \to 0
\]

of \(\text{Mod}^b_{g, p}\)-representations. This induces long exact sequences in both \(\text{Mod}^b_{g, p}(\ell)\) and \(\text{Mod}^b_{g, p}(H)\) homology, and a map between these long exact sequences. To simplify our notation, let

\[
U = U(p, b) \quad \text{and} \quad U' = U(p, b') \quad \text{and} \quad U'' = U(p, b'')
\]

and let \(M(\ell) = \text{Mod}^b_{g, p}(\ell)\) and \(M(H) = \text{Mod}^b_{g, p}(H)\). This map between long exact sequences contains the segment

\[
\begin{array}{cccccc}
\text{H}_k(M(\ell); U') & \to & \text{H}_k(M(\ell); U'') & \to & \text{H}_k(M(\ell); U) & \to & \text{H}_{k-1}(M(\ell); U') \\
\downarrow f_1 & & \downarrow f_2 & & \downarrow f_3 & & \downarrow f_4 \\\n\text{H}_k(M(H); U') & \to & \text{H}_k(M(H); U'') & \to & \text{H}_k(M(H); U) & \to & \text{H}_{k-1}(M(H); U')
\end{array}
\]

By our inductive hypotheses, \(f_1\) and \(f_2\) and \(f_4\) and \(f_5\) are isomorphisms, so by the five-lemma \(f_3\) is an isomorphism, as desired. \(\square\)
10.2. Closed surfaces. The following theorem subsumes Theorems A and B for closed surfaces. We remark that Theorem A, which concerns the trivial representation, is the case \(r = 0 \).

Theorem 10.1. Let \(g \geq 0 \) and \(\ell \geq 2 \). Then for \(r \geq 0 \), the map

\[
H_k(\text{Mod}_g(\ell); H_1(\Sigma_g; \mathbb{Q})^{\otimes r}) \rightarrow H_k(\text{Mod}_g; H_1(\Sigma_g; \mathbb{Q})^{\otimes r})
\]

is an isomorphism if \(g \geq 2(k + r)^2 + 7k + 6r + 2 \).

Proof. To simplify our notation, let \(V = H_1(\Sigma_g; \mathbb{Q})^{\otimes r} \). We will adapt to our situation a beautiful argument of Randal-Williams [66] for proving homological stability for mapping class groups of closed surfaces. For \(g \geq 3 \) and \(b \geq 0 \), let \(\mathcal{D}_g^b = \text{Diff}^+(\Sigma_g, \partial\Sigma_g^b) \) and let \(\mathcal{D}_g^b[\ell] \) be the kernel of the action of \(\mathcal{D}_g^b \) on \(H_1(\Sigma_g; \mathbb{Z}/\ell) \) obtained by gluing discs to all the boundary components. We thus have

\[
\text{Mod}_g^b = \pi_0(\mathcal{D}_g^b) \quad \text{and} \quad \text{Mod}_g^b[\ell] = \pi_0(\mathcal{D}_g^b[\ell]).
\]

Since \(g \geq 3 \), theorems of Earle–Eells [21] and Earle–Schatz [22] say that the components of \(\mathcal{D}_g^b \) are all contractible. This implies that

\[
H_k(\text{Mod}_g^b; V) \cong H_k(B\mathcal{D}_g^b; V) \quad \text{and} \quad H_k(\text{Mod}_g^b[\ell]; V) \cong H_k(B\mathcal{D}_g^b[\ell]; V).
\]

By Theorem E, for \(b \geq 1 \) the map

\[
H_k(\text{Mod}_g^b[\ell]; V) \rightarrow H_k(\text{Mod}_g^b; V)
\]

is an isomorphism if \(g \geq 2(k + r)^2 + 7k + 6r + 2 \). It follows that the map

\[
(10.2) \quad H_k(B\mathcal{D}_g^b[\ell]; V) \rightarrow H_k(B\mathcal{D}_g^b; V)
\]

is also an isomorphism if \(g \geq 2(k + r)^2 + 7k + 6r + 2 \). Our goal is to prove that the map

\[
H_k(B\mathcal{D}_g[\ell]; V) \rightarrow H_k(B\mathcal{D}_g; V)
\]

is an isomorphism in that same range.

Assume that \(g \geq 2(k + r)^2 + 7k + 6r + 2 \). Randal-Williams ([66]; see [73, §5] for an expository reference) introduced a semisimplicial space of discs embedded in \(\Sigma_g \) and proved its geometric realization was contractible. He then showed that this leads to a spectral sequence converging to the homology of \(\mathcal{D}_g \). Though he worked with trivial coefficients, his exact same argument also works with the coefficient system \(V \), for which the spectral sequence in question has the form

\[
E^1_{pq} = H_q(\mathcal{D}_g^{p+1}; V) \Rightarrow H_{p+q}(B\mathcal{D}_g; V).
\]

The key fact that underlies the identification of this spectral sequence is the fact that for all \(p \), the group \(\mathcal{D}_g \) acts transitively on the set of orientation-preserving embeddings

\[
\bigcup_{i=0}^p \mathbb{D}^2 \rightarrow \Sigma_g
\]

and the stabilizer of one of these embeddings is isomorphic to \(\mathcal{D}_g^{p+1} \). The same thing is true for \(\mathcal{D}_g[\ell] \); indeed, even the identity component of \(\mathcal{D}_g \) acts transitively on embeddings (10.3). We thus also get a spectral sequence with

\[
(E')^1_{pq} = H_q(B\mathcal{D}_g^{p+1}[\ell]; V) \Rightarrow H_{p+q}(B\mathcal{D}_g[\ell]; V).
\]

We remark that \(\mathcal{D}_g^{p+1}[\ell] \) appears here rather than \(\mathcal{D}_g^{p+1}(\ell) \) since the stabilizer only fixes \(H_1(\Sigma_g; \mathbb{Z}/\ell) \), not \(H_1(\Sigma_g^{p+1}; \mathbb{Z}/\ell) \). There is a map \(E' \rightarrow E \) between these spectral sequences, and by our discussion of (10.2) above the map \((E')^1_{pq} \rightarrow E^1_{pq}\) is an isomorphism for \(q \leq k \).
and all p. It is also a surjection for all p and q by the transfer map lemma (Lemma 2.14). By the spectral sequence comparison theorem, we deduce that the map

$$H_k(B\mathcal{D}_g(\ell); V) \to H_k(B\mathcal{D}_g; V)$$

is an isomorphism, as desired. □

References

(Cited on page 3.)

(Cited on pages 10 and 23.)

(Cited on page 4.)

(Cited on page 7.)

(Cited on pages 3, 6, and 7.)

(Cited on page 3.)

(Cited on pages 3 and 4.)

(Cited on pages 7, 8, 9, 22, 30, 33, 34, 35, 36, 46, and 50.)

(Cited on pages 2, 6, 8, 14, 16, 17, 18, 19, 35, and 36.)

(Cited on page 3.)

(Cited on page 4.)

(Cited on page 54.)

(Cited on page 6.)

(Cited on page 3.)

(Cited on page 3.)

Dept of Mathematics; University of Notre Dame; 255 Hurley Hall; Notre Dame, IN 46556
Email address: andyp@nd.edu