
Chapter 15

Synchronous CFGs

Synchronous context-free grammars are a generalization of CFGs that generate pairs of related strings
instead of single strings. They are useful in many situations where one might want to specify a recursive
relationship between two languages. Originally, they were developed in the late 1960s for programming-
language compilation (Aho and Ullman, 1969). In natural language processing, they have been used for
machine translation (Wu, 1997; Yamada and Knight, 2001; Chiang, 2005) and (less commonly, perhaps)
semantic interpretation.

The term synchronous CFG is recent and far from universal. They were originally known as syntax-
directed transduction grammars (Lewis and Stearns, 1968) or syntax-directed translation schemata (Aho
and Ullman, 1969). Inversion transduction grammars (Wu, 1997) are a special case of synchronous CFGs.

15.1 Motivation

Earlier we used finite transducers to perform many kinds of string transformations, but there are many
kinds of transformations that they can’t perform. Even something as simple as reversing the input string
is beyond the power of finite transducers.

Question 19. Informally, what is the reason that there is no finite transducer that can output the reverse
of its input string?

For a linguistic example, consider the following English sentence and its (admittedly somewhat un-
natural) equivalent in Japanese (with English glosses):

(15.1) the boy stated that the student said that the teacher danced

shoonen-ga
the boy

gakusei-ga
the student

sensei-ga
the teacher

odotta
danced

to
that

itta
said

to
that

hanasita
stated

This kind of reordering is beyond the power of finite transducers, but a synchronous CFG can do this.

15.2 Definition

In a synchronous CFG, the productions have two right-hand sides—call them the input rhs and the out-
put rhs—that are related in a certain way. Below is an example synchronous CFG for a fragment of English

114

Chapter 15. Synchronous CFGs 115

and Japanese:

S →〈NP 1 VP 2 ,NP 1 VP 2 〉 (15.2)

VP →〈VB 1 NP 2 ,NP 2 VB 1 〉 (15.3)

NP →〈I,watashi wa〉 (15.4)

NP →〈the box,hako wo〉 (15.5)

VB →〈open,akemasu〉 (15.6)

The boxed numbers i link up nonterminal symbols in the input rhs with nonterminal symbols in the
output rhs: 1 links to 1 , 2 with 2 , and so on. Linked nonterminals must match (X with X), and the
linking must be a one-to-one correspondence.

How does this grammar work? Just as we start in a CFG with a start symbol and repeatedly rewrite
nonterminal symbols using the productions, so in a synchronous CFG, we start with a pair of linked start
symbols (I just chose the number 10 arbitrarily),

〈S 10 ,S 10 〉
and repeatedly rewrite pairs of nonterminal symbols using the productions—with two wrinkles. First,
when we apply a production, we renumber the boxed indices consistently to fresh indices that aren’t in
our working string pair. Thus, applying production (15.2), we get

⇒〈NP 11 VP 12 ,NP 11 VP 12 〉
Second, we are only allowed to rewrite linked nonterminal symbols. Thus we can apply production (15.3)
like so:

⇒〈NP 11 VB 13 NP 14 ,NP 11 NP 14 VB 13 〉
But now if we want to apply production (15.4), we can’t apply it to NP 11 on one side and NP 14 on the
other, like this:

̸⇒ 〈I VB 13 NP 14 ,NP 11 watashi wa VB 13 〉
But we can apply it to any linked nonterminals, like so:

⇒〈I VB 13 NP 14 ,watashi wa NP 14 VB 13 〉
⇒ 〈I open NP 14 ,watashi wa NP 14 akemasu〉
⇒ 〈I open the box,watashi wa hako wo akemasu〉

And now we have an English string and Japanese string which are translations of each other!
We can also view synchronous CFG derivations as pairs of trees, just as CFG derivations can be viewed

as trees: 

S 10

VP 12

NP 14

boxthe

VB 13

open

NP 11

I

,

S 10

VP 12

VB 13

akemasu

NP 14

wohako

NP 11

wawatashi


(15.7)

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 116

By this point, we often don’t care about the boxed numbers and therefore drop them.
Here is a more complicated example, a grammar deriving sentence pair (15.1):

S →〈NP 1 VP 2 ,NP 1 VP 2 〉
VP →〈VB 1 ,VB 1 〉
VP →〈VB 1 SBAR 2 ,SBAR 2 VB 1 〉

SBAR →〈IN 1 S 2 ,S 2 IN 1 〉
IN →〈that, to〉

NP →〈the boy,shoonen-ga〉
NP →〈the student,gakusei-ga〉
NP →〈the teacher,sensei-ga〉
VB →〈danced,odotta〉
VB →〈said, itta〉
VB →〈stated,hanasita〉

(15.8)

Question 20. Show how to derive sentence pair (15.1).

Question 21. How would you write a synchronous CFG that outputs the reverse of its input string?

We can add states to a synchronous CFG just like we did for CFGs. We introduce the following nota-
tional convention: if β is a string of terminals and r indexed nonterminals, then β[q1, . . . , qr] adds state
qi to the nonterminal indexed by i .

15.3 Weighted synchronous CFGs

In a weighted synchronous CFG, a weight is attached to each production. The weight of a whole derivation
is just the product of the weights of the productions used in the derivation. Thus a weighted synchronous
CFG generates a weighted set of pairs of derivations.

We can (but don’t necessarily have to) think of a weighted synchronous CFG as a stochastic process,
in at least two different ways. First, by analogy with PCFG, each production A →〈α,α′〉 could have prob-
ability P (α,α′ | A), so that the probability of the whole derivation is the joint probability of the input and
output trees. Or, by analogy with finite transducers, each production could have probability P (α′ | A,α),
in which case the probability of the whole derivation would be the conditional probability of the output
tree given the input tree.

For example, suppose we want to translate French into English. We could learn a weighted syn-
chronous CFG that translates from English trees Te into French trees T f and computes P (T f | Te). Then
we would like to combine this grammar with a language model P (Te) so that we can compute:

arg max
Te

P (Te | T f) = arg max
Te

P (T f ,Te) (15.9)

= arg max
Te

P (T f | Te)P (Te) (15.10)

But suppose we are given only a French string, not a French tree, as input, and want only an English

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 117

string, not an English tree, as output. Then:

arg max
e

P (e | f) = arg max
e

P (f ,e) (15.11)

= arg max
e

∑
T f

∑
Te

P (T f ,Te) (15.12)

= arg max
e

∑
T f

∑
Te

P (T f | Te)P (Te) (15.13)

The summations are over trees that yield f and e, respectively. It is tractable to compute both summa-
tions for a fixed f ,e, but maximizing over e is intractable. Therefore the standard practice is to use the
Viterbi approximation:

= arg max
T f ,Te

P (T f | Te)P (Te) (15.14)

where again the maximization over T f and Te is over trees that yield f and e, respectively. We will see
how to do this maximization below.

This P (Te) could be modeled by a PCFG. However, n-gram language models continue to be far more
effective than tree language models. So it is common to use an n-gram language model instead, even
though it is a string language model, and assume that P (Te) ≈ P (e).

15.4 Extracting synchronous CFGs from data

There a few ways of getting a synchronous CFG from data (as opposed to writing one by hand). The
simplest (in some sense) is a two-phase process. In the first phase, we use a word-alignment model (like
IBM Model 1/2 or the HMM word alignment model) to produce a word alignment, which we can visualize
like this:

I open the box

watashi

wa

hako

wo

akemasu

In the second phase, we extract all possible synchronous CFG rules, using the nonterminal symbol
X , that possibly could have been used to generate this sentence, subject to the constraint that if a word
appears in a rule, then all the words it’s aligned with also appear in the rule. For example, starting with
rules that have no nonterminals on the rhs, all of the following would be rules:

X → (watashi wa,I)

X → (hako wo,the box)

X → (akemasu,open)

X → (hako wo akemasu,open the box)

X → (watashi wa hako wo akemasu,I open the box)

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 118

We can also “subtract” one rule from another to get rules with rhs nonterminals:

X → (X 1 akemasu,open X 1)

X → (hako wo X 1 , X 1 the box)

X → (X 1 X 2 , X 2 X 1)

X → (X 1 hako wo akemasu, X 1 open the box)

X → (watashi wa X 1 akemasu,I open X 1)

X → (watashi wa hako wo X 1 , I X 1 the box)

X → (X 1 X 2 akemasu, X 1 open X 2)

X → (X 1 hako wo X 2 , X 1 X 2 the box)

X → (watashi wa X 1 X 2 , I X 2 X 1)

X → (watashi wa X 1 , I X 1)

X → (X 1 X 2 X 3 , X 1 X 3 X 2)

The number of rules thus extracted is exponential in the sentence length, so invariably some constraints
are imposed, like:

• A rule can have at most two nonterminals in each rhs

• A rule can have at most (say) 10 terminals plus nonterminals in each rhs

• A rule must have at least one aligned word pair

Even under such restrictions, the total number of rules can exceed a billion for large training datasets!
Estimating the probabilities of these rules is a messy business, because the rules overlap, so we have

no way of determining how many times each rule occurred. The simplest method (in my opinion) is

p(X → (γ,α)) = c(X → (γ,α))∑
γ′,α′

c(X → (γ′,α′))
, (15.15)

where c(X → (γ,α)) is the number of sentences in which rule (X → (γ,α)) was found (in other words, we
don’t count within-sentence duplicates).

It’s also extremely common to impose syntactic constraints. If we have a parse tree for the Japanese
side or the English side, then we can require that every lhs or rhs nonterminal corresponds to a node of
the tree. As a bonus, we can use the node’s label as the nonterminal symbol instead of X .

15.5 Binarization

Define the rank of a right-hand side to be the number of nonterminals in it: for example, NP VP has rank
two. Now define the rank of a CFG or synchronous CFG to be the maximum rank of any of its right-hand
sides.

Recall that any (non-synchronous) CFG can be converted into a (weakly) equivalent CFG with rank
two or less (Chomsky normal form). Is this true for synchronous CFG? It turns out that any synchronous
CFG of rank three can be converted into a synchronous CFG of rank two. For example, the production

A →〈B 1 C 2 D 3 ,D 3 B 1 C 2 〉

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 119

can be binarized into

A →〈A′
4 D 3 ,D 3 A′

4 〉
A′ →〈B 1 C 2 ,B 1 C 2 〉

Note that we did not sever any links in doing so.

Question 22. Show that any synchronous CFG production of rank three can be converted into a set of
productions of rank two. Assume that the production doesn’t have any terminal symbols.

But there are synchronous CFGs of rank four that can’t be binarized—namely, any synchronous CFG
containing a production with one of the following forms:

A →〈B 1 C 2 D 3 E 4 ,D 3 B 1 E 4 C 2 〉
A →〈B 1 C 2 D 3 E 4 ,C 2 E 4 B 1 D 3 〉 (15.16)

Question 23. Show that the first form can’t be binarized in such a way that preserves all the links.

In general, let r -SCFG stand for the set of string relations generated by synchronous CFGs of rank r .
Then:

1-SCFG⊊ 2-SCFG = 3-SCFG⊊ 4-SCFG⊊ . . . (15.17)

despite the fact that non-synchronous CFGs of rank 2 and higher are all weakly equivalent (Aho and
Ullman, 1969). There is an efficient algorithm for minimizing the rank of a synchronous CFG (Zhang and
Gildea, 2007).

15.6 Translation

Translation, analogous to application of finite transducers, is the problem of finding all possible output
strings for a given input string. If the input side of the grammar is in Chomsky normal form, we can use
a simple variant of CKY to do translation.

Consider the following synchronous CFG:

S
1−→〈NP 1 VP 2 ,NP 1 VP 2 〉

VP
1−→〈VB 1 NP 2 ,NP 2 VB 1 〉

VB
1−→〈see,veo〉

VB
1−→〈love,amo〉

NP
0.3−−→〈I,yo〉

NP
0.7−−→〈I,ϵ〉

NP
0.1−−→〈you,te〉

NP
0.9−−→〈you, la〉

NP
1−→〈her, la〉

(15.18)

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 120

Question 24. Run the Viterbi CKY algorithm (just probabilities, no back-pointers) using the input side
of the grammar on the input string I see her.

Remember that in CFG parsing, we represented back-pointers as CFG rules, augmenting nontermi-
nal symbols with spans i , j to specify which cells a pointer points to. Similarly, in synchronous CFG
translation, we represent back-pointers as synchronous CFG rules.

Question 25. Using the same grammar and input string as before, write down the back-pointers for the
two missing cells:

NP : NP0,1 →〈I,ϵ〉 ;

VB : VB1,2 →〈see,veo〉 VP : VP1,3 →〈VB1,2 1 NP2,3 2 ,NP2,3 2 VB1,2 1 〉

What is the best translation?

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 121

15.7 Translation with a language model

Suppose we want to do translation with a weighted synchronous CFG but also want to use a m-gram
language model, such that the score of a derivation is the score according to the synchronous CFG mul-
tiplied by the language model score.

Recall that a m-gram language model can be thought of as a finite transducer, one that reads in a
string, and outputs the same string, assigning it a probability. We sort of want to compose the syn-
chronous CFG that represents our translation model with the finite transducer that represents the lan-
guage model. We could in fact do exactly this, but we haven’t talked about how to intersect CFGs with
finite automata. And, it wouldn’t be the most efficient way to do it.

The way this is usually done in practice is an algorithm due to Wu (1996). Let’s assume a bigram
language model. In the CKY algorithm, we add an entry X to cell (i , j) when we’ve determined that,
according to the grammar, we can rewrite an X into the substring wi+1 · · ·w j . Now, we modify the algo-
rithm so that we add entry (X , a,b) to cell (i , j) when we can rewrite an X into the source-side substring
fi+1 · · · f j , and the first and last words of the target-side translation are a and b, respectively.

NP, ϵ, ϵ

NP,yo,yo

VB,veo,veo VP,te,veo

VP, la,veo

NP,te, te

NP,la, la

Question 26. Fill in the remaining cells, and fill in the probabilities for all the items, assuming the fol-

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Chapter 15. Synchronous CFGs 122

lowing language model:

p(<s> yo) = 0.1

p(<s> te) = 0.4

p(<s> la) = 0.5

p(yo te) = 0.5

p(yo la) = 0.5

p(te veo) = 1

p(la veo) = 1

p(veo </s>) = 1

CSE 40657/60657: Natural Language Processing Version of December 3, 2018

Bibliography

Aho, A. V. and J. D. Ullman (1969). “Syntax Directed Translations and the Pushdown Assembler”. In: Jour-
nal of Computer and System Sciences 3, pp. 37–56.

Chiang, David (2005). “A Hierarchical Phrase-Based Model for Statistical Machine Translation”. In: Proc.
ACL, pp. 263–270.

Lewis P. M., II and R. E. Stearns (1968). “Syntax-Directed Transduction”. In: Journal of the ACM 15, pp. 465–
488.

Wu, Dekai (1996). “A Polynomial-Time Algorithm for Statistical Machine Translation”. In: Proc. ACL, pp. 152–
158.

— (1997). “Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora”. In:
Computational Linguistics 23, pp. 377–404.

Yamada, Kenji and Kevin Knight (2001). “A Syntax-based Statistical Translation Model”. In: Proc. ACL,
pp. 523–530.

Zhang, Hao and Daniel Gildea (2007). “Factorization of Synchronous Context-Free Grammars in Linear
Time”. In: Proceedings of SSST, pp. 25–32.

123

