
Chapter 2

Preliminaries

2.1 Logarithms

You learned logarithms a long time ago, but you’ll really use them a lot in this class. The following iden-
tities should be second nature:

log x y = log x + log y exp(x + y) = exp x exp y

log
∏

i
xi =

∑
i

log xi exp
∑

i
xi =

∏
i

exp xi

log xn = n log x expnx = (exp x)n

log1 = 0 exp0 = 1

Because we often deal with products of many probabilities, for example,

p(x1, . . . , xn) =∏
i

p(xi ),

it’s extremely common to take the log of everything, changing the product into a sum:

log p(x1, . . . , xn) =∑
i

log p(xi ).

There are a couple of reasons for this. First, it’s often easier to work with sums instead of products. (For
example, taking derivatives is easier.)

Second, a product of many probabilities quickly becomes a very small number. An IEEE double only
goes down to 10−308, and we often deal with probabilities much smaller than that. To avoid underflow,
the typical solution is to use log-probabilities.

Computing with log-probabilities is easy. If we have two log-probabilities log p and log q , instead of
multiplying p and q , we add log p and log q (because log pq = log p + log q). To compare p and q , just
compare log p and log q , which is equivalent.

The only tricky part is addition. To compute log(p +q) given log p and log q , we can’t do this:

log(p +q) = log(explog p +explog q)
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because either of the exp’s might cause an underflow. Instead, assume that p > q ; if not, swap them.
Then, observe that:

log(p +q) = log p

(
1+ q

p

)
= log p + log

(
1+ q

p

)
= log p + log

(
1+explog

q

p

)
= log p + log(1+exp(log q − log p)).

Now, the exp could still cause an underflow, but the underflow is harmless. (Why?) For an extra little
boost in accuracy, you can use the log1p function, found in nearly all standard libraries, which computes
log(1+x) but is accurate for small x.

2.2 Probability

Below is a very brief review of basic probability theory. The notation used for probabilities in NLP is a little
sloppy, but hopefully this is good enough. For a proper treatment, see the textbook by bertsekas+tsitsiklis:2008

A random variable is a variable with a different random value in each “experiment”. For example, if
our experiments are coin flips, we could define a random variable C ∈ {heads,tails} for the result of the
flip. Or, if our experiments are the words of a speech, we could define a random variable W ∈ {a,aa,ab, . . .}
for the words spoken. If X is a random variable with values in X , we call P (X ) the distribution of X . If
x ∈X , we write P (X = x) for the probability that X has value x. We must have∑

x∈X

P (X = x) = 1.

For example, if P (W ) is a distribution over English words, we might have

P (W = the) = 0.1

P (W = syzygy) = 10−10

...

Things get more interesting when we deal with more than one random variable. For example, sup-
pose our experiments are words spoken during a debate, and W is again the words spoken, while S ∈
{Clinton,Trump,. . .} is the person speaking. We can talk about the joint distribution of S and W , written
P (S,W ), which should satisfy ∑

s,w
P (S = s,W = w) = 1.

Let’s make up some numbers:

P (S = Trump,W = bigly) = 0.2

P (S = Trump,W = huge) = 0.4

P (S = Clinton,W = people) = 0.3

P (S = Clinton,W = think) = 0.1.
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We also have to have

P (S = s) =∑
w

P (S = s,W = w)

P (W = w) =∑
s

P (S = s,W = w).

Using our made-up numbers, we have

P (S = Trump) = 0.2+0.4 = 0.6

P (S = Clinton) = 0.3+0.1 = 0.4

and

P (W = bigly) = 0.2

P (W = huge) = 0.4

P (W = people) = 0.3

P (W = think) = 0.1.

It’s extremely common to write P (w) as shorthand for P (W = w). This leads to some sloppiness,
because the symbol P is now “overloaded” to mean several things and you’re supposed to know which
one. To be precise, we should distinguish the distributions (using P (S = s) or PS (s)). But in NLP, we deal
with some fairly complicated structures, and it becomes messy to keep this up. In practice, it’s rarely a
problem to use the sloppier notation.

We also define the conditional distributions

P (s | w) = P (s, w)

P (w)

P (w | s) = P (s, w)

P (s)
.

Note that ∑
s

P (s | w) = 1∑
w

P (w | s) = 1.

You should know this already, but it should be second nature, and in particular, be sure never to get
p(s | w) and p(w | s) confused! Using our made-up numbers:

P (Trump | bigly) = 0.2/0.2 = 1

P (bigly | Trump) = 0.2/0.6 ≈ 0.333.

Finally, if a random variable has numeric values, we can talk about its average or expected value. For
example, let ce(w) be the number of occurrences of the letter e in w . The expectation of ce is

E [ce] =∑
w

P (W = w)ce(w),

and using our made-up numbers, this is

E [ce] = 0.2 ·0+0.4 ·1+0.3 ·2+0.1 ·0 = 1.
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