
Chapter 8

Part-of-Speech Tagging

8.1 Problem

Let’s turn to a new task: Given a sentence, assign a part-of-speech (POS) tag (noun, verb, etc.) to each
word. Many words have a unique POS tag, but some words are ambiguous: for example, short can be
an adjective (short vowel), a noun (direct a short), an adverb (to throw a ball short) or a verb (to short an
appliance). Figuring out which POS is the correct one depends on the context, including the POS tags of
the neighboring words.

This is a sequence labeling task, just like the first version of the typo correction problem we looked at,
which involved only character substitutions and no insertions or deletions. Other examples of sequence
labeling tasks are:

• Word segmentation: Given a representation of a sentence without any word boundaries, recon-
struct the word boundaries. In some languages, like Chinese, words are written without any spaces
in between them. (Indeed, it can be difficult to settle on the definition of a “word” in such lan-
guages.) This situation also occurs with any spoken language.

• Word sense disambiguation: Given a dictionary which gives one or more word senses to each word
(for example, a bank can either be a financial institution or the sloped ground next to a river), and
given a sentence, guess the sense of each word in the sentence.

• Named entity detection: Given a sentence, identify all the proper names (Notre Dame, Apple,
etc.) and classify them as persons, organizations, places, etc. The typical way to set this up as a
sequence-labeling problem is called BIO tagging. Each word is labeled B (beginning) if it is the
first word in a named entity, I (inside) if it is a subsequent word in a named entity, and O (outside)
otherwise. Other encodings are possible as well.

8.2 Hidden Markov Models

Previously, we talked about Hidden Markov Models in the context of typo correction. Now the reason for
the choice of variable names t and w emerges – part-of-speech tagging is the classic application of HMMs
in NLP, and w stands for “words” and t stands for “tags.” The same methods we discussed previously can
be used to do supervised part-of-speech tagging fairly well.
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What about unsupervised part-of-speech tagging? Given just plain text, can an HMM automatically
figure out what the parts of speech are? With some caveats. . .kind of.

The procedure at a high level would look like this:

1. Choose a set of possible tags.

2. Start with an initial model (estimates for the p(t ′ | t ) and p(w | t )).

3. E step: For each sentence in the trianing data, use the Forward-Backward algorithm to compute
a distribution over possible taggings; or (for hard EM) use the Viterbi algorithm to find the best
tagging.

4. M step: Count up the tag bigrams and tag-word pairs, and restimate p(t ′ | t ) and p(w | t ).

5. Go to 3.

The first problem is with step 1. You can choose a tag set like {N,V}, but there’s absolutely no way for
EM to know that you want N to be the nouns and V to be the verbs. So there’s no point in giving the tags
names/meanings; just number them, and try to assign names/meanings afterwards.

A second, related, problem is with step 2: if you initialize the model to uniform probabilities, then
the model will be perfectly symmetric between the tags. So EM will get stuck, not doing anything. (This
didn’t happen to us before, because we assumed a pre-trained language model that breaks the symmetry.)
Fortunately, the solution is very simple: just add some random noise to the initial probabilities.

The third problem, also related to the first, is that there’s nothing here that tells EM to look for parts of
speech; it could go off and look for something else instead, like words about finance versus words about
politics. Whatever helps the model give the highest probability to the observed sentences is what EM will
try to find, and that might or might not be parts of speech.

I’m not aware of a satisfying solution to this problem. There’s a restricted version of the task, com-
monly known as the Merialdo task, that solves all three problems by assuming the availability of a dic-
tionary that says, for each word, what all the possible tags for that word are. Under this restriction, EM is
able to do something resembling POS tagging.

Yet another problem is overfitting. If you choose the tag set to be too large (say, one million), then
EM could simply give each word token its own tag, which would allow the model to give the observed
sentences a very high probability. (Why?) Even if you choose a tag set with a reasonable size (45), though,
this problem can crop up in subtle ways.

8.3 Conditional Random Fields

Returning to supervised part-of-speech tagging, the state-of-the-art method for most sequence labeling
tasks is a bidirectional LSTM plus conditional random field, and before that, it was just a conditional
random field or CRF (Lafferty, McCallum, and Pereira, 2001). CRFs consistently outperform HMMs for
sequence labeling tasks, and generally do as well or better than other methods. The downside of CRFs is
that they have to be trained using numerical optimization, which is a lot slower than (supervised) HMMs.

8.3.1 Definition

In a HMM, the parameters to be learned are the p(t ′ | t ) and p(w | t ), which are required to sum to one.
In a CRF, these parameters are no longer probabilities; they are now just numbers that can be positive or
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negative, big or small. There are two kinds of parameters: λ(t , t ′) for every tag/tag pair, and µ(t , w) for
every tag/word pair. There’s no definition of what the values of these parameters should be; instead, you
initialize them to all zeros and optimize them to maximize the likelihood of the training data.

Recall that a HMM is (when written out using log-probabilities):

logP (t,w) = log p(t1 | <s>)+ log p(w1 | t1)+
n∑

i=2

(
log p(ti | ti−1)+ log p(wi | ti )

)+ log p(</s> | tn). (8.1)

The new model replaces all the log-probabilities with parameters that can be positive or negative, big or
small:

s(t,w) =λ(<s>, t1)+µ(t1, w1)+
(

n∑
i=2

λ(ti−1, ti )+µ(ti , wi )

)
+λ(tn ,</s>). (8.2)

And our goal is to adjust all these parameters to maximize the conditional likelihood:

L = ∑
(t,w)∈data

logP (t | w) (8.3)

P (t | w) = exp s(t,w)∑
t̄

exp s(t̄,w)
(8.4)

where t̄ ranges over all possible tag sequences of length n. (See below for how to compute this sum
efficiently.)

8.3.2 As finite transducers

Recall that we wrote an HMM as a finite transducer, where the edges looked like

t t ′
t ′ : w / p(t ′ | t )p(w | t ′)

We can write a CRF as a finite transducer too:

t t ′
t ′ : w / expλ(t , t ′)expµ(t ′, w)

If we run this transducer on tags t and words w, then the weight of the path is exp s(t,w), which is the
numerator of (8.4). How do we compute the denominator?

8.3.3 Summing over all tag sequences

The denominator in equation (8.4) is a summation over all possible tag sequences t̄ – that’s a lot of tag
sequences! The way that we perform the summation is similar to how the Viterbi algorithm finds the
maximum over all possible tag sequences. The only difference is that when a state has multiple incoming
edges, we add the weights instead of taking their maximum.

forward[q0] ← 1
forward[q] ← 0 for q ̸= q0

for each state q ′ in topological order do
for each incoming transition q → q ′ with weight p do

forward[q ′] ← forward[q ′]+ forward[q]×p
end for

end for
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8.3.4 Training

As always, we want to maximize the log-likelihood:

logL = ∑
t,w in data

logP (t | w) (8.5)

We do this using stochastic gradient descent, looping over all the sentences, and for each sentence w with
correct tags t, take a step uphill on logP (t | w). The gradient can be computed by automatic differentia-
tion.
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