
Chapter 1

Introduction

1.1 Applications of NLP
Natural language processing (NLP) is about making computers do all kinds of
things with natural language (that is, human languages, like English or Chinese).
I can think of three broad areas where this would be useful.

First, we’d like to be able to interact with computers using natural language.
�is idea has captured imaginations for a long time, since at least Star Trek and
2001: A Space Odyssey’s HAL 9000, and became a major goal of NLP research and
development – for example, in the 1990s Bill Gates was a major advocate, saying
things like “Most of [our research] now is focused on what we call the natural
interface – the computer being able to listen and talk and recognize handwrit-
ing. . . .Now we’re be�ing the company on these natural interface technologies.” 1
Today, the technology for this is good enough for systems like Apple Siri to be-
come commercial products, but if you’ve used such systems, you know that they
still have a long way to go.

�ere are also situations where we’d like to understand or communicate with
other humans, but face a limitation that we’d like NLP to overcome. One limita-
tion is when the other person doesn’t speak the same language, and we’d like to
use NLP to translate between the two languages. Historically, this was the oldest
application of NLP, and indeed one of the very oldest applications of computers.
�e most well-known early system was developed by Georgetown and IBM in
the early 1950s for translating Russian into English. Now, you can use Google
Translate to get translations that are very high quality under the right condi-
tions, but still need work under other conditions (like, translating Shakespeare
into Japanese).

Another limitation is when there is too much language: I can read a book,
but I can’t read a million books. I’d like to use NLP to read them for me and then
answer questions about them, summarize them, extract relevant pieces of infor-
mation from them, and so on. As more and more data comes into existence, and
much of it in the form of natural language, this application of NLP has become
more and more important. One high-pro�le recent demonstration of this use of
NLP was IBM’s Watson, which defeated Ken Jennings at Jeopardy in 2011. But
Watson’s spectacular failure in the �nal round of this match showed, again, that

1Remarks at Gartner Symposium, 1997/10/06, Orlando, FL.

1

Chapter 1. Introduction 2

there’s still a long way to go.

1.2 Stages of NLP
How canwemake computers do these things?We can break a typical NLP system
into several stages of processing. �ese stages will also form the main units of
the course (a�er an initial introduction focusing on machine translation).

1.2.1 Text
Raw language input exists in many forms: primarily, speech (for spoken lan-
guages) and signing (for sign languages), and secondarily, all the ways that peo-
ple have come up with over the centuries for encoding language, like hand-
writing, printing, and keyboard input. (�ere are other forms of language like
whistling and drums that are not the focus of any serious NLP research that I’m
aware of.)

�e �rst stage of language processing involves ingesting language in one or
more of the above forms and ge�ing it into a representation that computers can
do useful thingswith. Nearly always, that representation is plain text. Converting
each of the above forms of language into text is a research �eld in its own right:
speech recognition, sign language recognition, handwriting recognition, optical
character recognition. Even converting typing into text is not trivial (think about
mobile devices, or users with disabilities), and research on text input methods sits
at the border between human-computer interaction and NLP. In this part of the
course, we’ll take a brief look at these topics and how they interface with natural
language processing.

1.2.2 Structure
In the next part of the course, we’ll study how computers can automatically dis-
cern the structure of natural language text (Figure 1.1): words combine to form
phrases, phrases combine to form sentences; going in the other direction, words
can o�en be broken down into smaller units called morphemes.

�e reason that we’re interested in structure is that we believe that structure
is the key to understanding language, as well as other understanding-like tasks.
For example, suppose you want to translate this sentence into Latin:

(1.1) spiritus
spirit

nobile
noble

minimum
smallest

virum
man

auget
embiggens

In order to do this right, your system has to learn that in Latin, verbs (auget =
embiggen) usually come a�er their objects (minimum virum = the smallest man).
�ese elements belong to syntactic structure, which is not explicit in our data
(punctuation in text and intonation in speech give hints, but not very much).

�e big problem at this stage is ambiguity: a given expression can have more
than one structure. In fact, most expressions have many, many structures. So the
computer’s job is to �gure out which structure out of all the possible structures
is the right one.

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 3

a noble spirit embiggens the smallest man

embiggens the smallest man

the smallest man

mansmallest

-estsmall

the

embiggens

-sembiggen

- enbigen-

a noble spirit

spiritnoblea

Figure 1.1: Levels of structure.

1.2.3 Meaning
Although some applications (like grammar checking) might stop at analyzing
structure, most interesting applications of NLP do something with the meaning
of natural language input.

�e principle of compositionality, which originates in the philosophy of lan-
guage, says that the meaning of an expression is a function of the meanings of
its subexpressions. A sentence’s meaning is a function of its phrases’ meanings,
a phrase’s meaning is a function of its words’ meanings, and a word’s meaning is
a function of its morphemes’ meanings. So we use the structure produced in the
previous stage (1.2.2), each level of which has meaning (as opposed to the �rst
stage (1.2.1): a le�er/sound r doesn’t have meaning, but a morpheme re- does).

So, having determined the structure of a piece of text, computing its meaning
is thought to be a bo�om-up process, from the morphemes at the bo�om all the
way up to sentences and beyond.

1.2.4 Generation
Finally, in some applications, we need the computer to go in the reverse direction,
from internal representations of meaning to spoken or wri�en language. In the
last (shortest) part of the course, we’ll talk about methods for doing this.

1.3 Approaches to NLP

1.3.1 Linguistics
�e above division of natural language processing into stages is informed by the
science of linguistics. Very early NLP was more or less ad hoc, but in the 1960s,
a commi�ee of scientists appointed by the government prescribed more basic
research into computational linguistics, the use of computational methods for the
scienti�c study of language. �e hope was, and is, that by understanding be�er
how human language works, we will do a be�er job programming computers to
imitate it.

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 4

For some (myself included), computational linguistics is interesting even if it
doesn’t lead to NLP applications. Although human languages seem so di�erent
from the formal languages and computer languages invented by people, they,
too, are governed by rules, rules that you were never explicitly taught by your
parents or in school. To take one example, if you are a native speaker of English,
then you know that the sentence

(1.2) Who did Bill ask when arrived?

is not English. You have to say “Bill asked when who arrived?” instead. A theory
of language should explain why, and one particularly simple explanation comes
from computational linguistics, using a grammar slightly more powerful than a
context-free grammar, called a tree-adjoining grammar.

1.3.2 Learning
In the 1990s, there was a second major shi� in the way natural language pro-
cessing was done. Instead of just building systems that simulate human use of
language, we began trying to simulate a second human behavior: learning lan-
guage. In other words, we used to program the rules of language directly into the
computer, but now we program computers to learn the rules, and their weights,
automatically from data. So the goal of modern, statistical NLP is to build com-
puter systems that learn from data how to use human language.

Initially, people who used linguistics and the people who used statistics were
at odds with each other.�e reason was simple: linguistics is primarily interested
in structures and representations that exist in the mind and cannot be directly
observed, whereas statistics are based on observable quantities. So for a while, it
was assumed that if you were using linguistics, you did not believe in statistics,
and if you were using statistics, you did not believe in linguistics.

1.3.3 Linguistics and Learning
Over time, however, a synthesis emerged. First, people started to build datasets
annotated with linguistic structures (for example, the Penn Treebank), thus mak-
ing unobservable structures and representations observable. �us it became pos-
sible to use statistics and linguistics together: “linguistics tells us what to count,
and statistics tell us how to count it” (Joshi).

Second, people started to develop models that can learn unobserved things
(for example, syntactic structure). �ese models, though not tied to a particu-
lar linguistic theory, were nevertheless informed by what linguistics says about
how language works (for example, syntactic structure is recursive, so our models
should be recursively structured as well).

�ere is a third possible outcome for the role of linguistics in NLP. It may end
up that we do not need linguistics either for creating datasets or for designing
models, but that vanilla models will successfully learn their own representations
o�anguages. In that case, the role of linguistics will be to analyze and explain
what computers learn about language (just as it now tries to analyze and explain
what humans learn about language).

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 5

I don’t know which of these outcomes, or which combination of these out-
comes, will prevail, but I think it must be some combination of these, and so there
will always be a role for linguistics in NLP. Consequently, although we will try
to cover state-of-the-art machine learning methods for NLP, there’s a signi�cant
emphasis on linguistics and older NLP methods as well.

1.4 Preliminaries

1.4.1 Probability
Below is a very brief review of basic probability theory. �e notation used for
probabilities in NLP is a li�le sloppy, but hopefully this is good enough. For a
proper treatment, see the textbook by Bertsekas and Tsitsiklis (2008).

Random variables. A random variable is a variable with a di�erent random
value in each “experiment”. For example, if our experiments are coin �ips, we
could de�ne a random variable � ∈ {heads, tails} for the result of the �ip. Or, if
our experiments are the words of a speech, we could de�ne a random variable
, ∈ {a, aa, ab, . . .} for the words spoken. If - is a random variable with values
in X, we call % (-) the distribution of - . If G ∈ X, we write % (- = G) for the
probability that - has value G . We must have∑

G ∈X
% (- = G) = 1.

For example, if % (,) is a distribution over English words, we might have

% (, = the) = 0.1
% (, = syzygy) = 10−10

...

Joint and marginal probabilities. �ings get more interesting when we deal
with more than one random variable. For example, suppose our experiments
are words spoken during a debate, and , is again the words spoken, while
(∈ {Biden,Trump, . . .} is the person speaking. We can talk about the joint dis-
tribution of (and, , wri�en % ((,,), which should satisfy∑

B,F

% ((= B,, = F) = 1.

Let’s make up some numbers:

% ((= Trump,, = bigly) = 0.2
% ((= Trump,, = huge) = 0.4
% ((= Biden,, = c’mon) = 0.3
% ((= Biden,, = man) = 0.1.

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 6

We also have to have

% ((= B) =
∑
F

% ((= B,, = F)

% (, = F) =
∑
B

% ((= B,, = F),

known as marginal distributions.
Using our made-up numbers, we have

% ((= Trump) = 0.2 + 0.4 = 0.6
% ((= Biden) = 0.3 + 0.1 = 0.4

and

% (, = bigly) = 0.2
% (, = huge) = 0.4
% (, = c’mon) = 0.3
% (, = man) = 0.1.

It’s extremely common to write % (F) as shorthand for % (, = F). �is leads
to some sloppiness, because the symbol % is now “overloaded” to mean several
things and you’re supposed to know which one. To be precise, we should distin-
guish the distributions (using % ((= B) or %((B)). But in NLP, we deal with some
fairly complicated structures, and it becomes messy to keep this up. In practice,
it’s rarely a problem to use the sloppier notation.

Conditional probabilities. We also de�ne the conditional distributions

% (B | F) = % (B,F)
% (F)

% (F | B) = % (B,F)
% (B) .

Note that ∑
B

% (B | F) = 1∑
F

% (F | B) = 1.

You should know this already, but it should be second nature, and in particular, be
sure never to get % (B | F) and % (F | B) confused! Using our made-up numbers:

% (Trump | bigly) = 0.2/0.2 = 1
% (bigly | Trump) = 0.2/0.6 ≈ 0.333.

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 7

Expected values. Finally, if a random variable has numeric values, we can talk
about its average or expected value. For example, let 2e (F) be the number of
occurrences of the le�er e inF . �e expectation of 2e is

� [2e] =
∑
F

% (, = F) 2e (F),

and using our made-up numbers, this is

� [2e] = 0.2 · 0 + 0.4 · 1 + 0.3 · 2 + 0.1 · 0 = 1.

Estimating probabilities. �ere’s a “true” probability distribution over English
words, % (,), but it’s impossible to know what it really is. If we want actual
numbers, we need an estimate: % (F) ≈ \F . (Here we write % (F) for the true
probability and \F for its estimate, but when we don’t need to be so careful,
we o�en just write % (F) for the estimate.) We can obtain an estimate from a
collection of English text,F1 · · ·F# . Let 2 (F) be the number of times that word
F is seen in the data. �en the maximum-likelihood estimate for % (F) is:

\F =
2 (F)∑
F′ 2 (F ′)

=
2 (F)
#

.

It’s called the maximum-likelihood estimate because it’s the estimate that maxi-
mizes the likelihood,

L(Θ) = \F1
· · · \F#

.

�e likelihood is just the probability (estimate) of the data, but thought of as a
function of Θ, which is the set of all the \F ’s. Maximizing it gives us the model
that gives the most probability to the observed data.

1.4.2 Logarithms
You learned logarithms a long time ago, but you’ll really use them a lot in this
class. �e following identities should be second nature:

log expG = G exp logG = G

logG~ = logG + log~ exp(G + ~) = expG exp~

log
∏
8

G8 =
∑
8

logG8 exp
∑
8

G8 =
∏
8

expG8

logG= = = logG exp=G = (expG)=

log 1 = 0 exp 0 = 1

Unless otherwise indicated, log and exp will always have base 4 .

Log-probabilities. Logarithms are used a lot to simplify expressions like this
product of many probabilities:

? (G1, . . . , G=) =
∏
8

? (G8).

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 8

It’s extremely common to take the log of everything, changing the product into
a sum:

log? (G1, . . . , G=) =
∑
8

log? (G8).

�ere are a few of reasons for this. First, it used to be that additions are faster
than multiplications, but we don’t worry about this anymore (in fact, �oating-
point multiplication is sometimes faster). Second, it’s o�en easier on paper to
work with sums instead of products. (For example, taking derivatives is easier.)

�ird, a product of many probabilities quickly becomes a very small number.
An IEEE 754 double only goes down to 10−308, and we o�en deal with probabil-
ities much smaller than that. To avoid under�ow, the typical solution is to use
log-probabilities.

Computing with log-probabilities is easy. If we have two log-probabilities
log? and log@, instead of multiplying ? and @, we add log? and log@ (because
log?@ = log? + log@). To compare ? and @, just compare log? and log@, which
is equivalent.

�e only tricky part is addition. To compute log(? + @) given log? and log@,
we can’t do this:

log(? + @) = log(exp log? + exp log@)

because either of the exp’s might cause an under�ow. What should you do in-
stead?�e short answer is that you should use library functions designed for this
purpose (in PyTorch, torch.logaddexp or torch.logsumexp).

�e long answer is: Assume that ? > @; if not, swap them.�en, observe that:

log(? + @) = log?
(
1 + @

?

)
= log? + log

(
1 + @

?

)
= log? + log

(
1 + exp log @

?

)
= log? + log(1 + exp(log@ − log?)) .

Now, the exp could still cause an under�ow, but the under�ow is harmless. (Why?)
For an extra li�le boost in accuracy, you can use the log1p function, found in
nearly all standard libraries, which computes log(1 + G) but is accurate for small
G . �is is sometimes called the log-sum-exp trick.

Note that if ? is a probability, log ? is negative or zero. Sometimes we work
with − log? , which is positive or zero, but is confusingly called a negative log-
probability.

So�max. Suppose thatG1, G2, . . . , G= are log-probabilities; then their exps should
sum to one. But sometimes, it’s more convenient to let them be unconstrained
numbers (called logits) and force them to sum to one by dividing by their sum. In
neural networks, this is called a so�max. Let x =

[
G1 G2 · · · G=

]> be a vector
of real numbers (positive or negative), and de�ne so�max x to be the vector

[so�max x]8 =
expG8∑=

8′=1 expG8′
,

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Chapter 1. Introduction 9

where exp xmeans the elementwise exp of x. It’s also common to express this as

log [so�max x]8 = G8 − log
=∑

8′=1

expG8′,

where the second term is computed using the trick above.

CSE 40657/60657: Natural Language Processing Version of February 5, 2021

Bibliography

Bertsekas, Dimitri P. and John N. Tsitsiklis (2008). Introduction to Probability. 2nd.
Athena Scienti�c.

10

	Introduction
	Applications of NLP
	Stages of NLP
	Text
	Structure
	Meaning
	Generation

	Approaches to NLP
	Linguistics
	Learning
	Linguistics and Learning

	Preliminaries
	Probability
	Logarithms

