
Chapter 3

Machine Translation

3.1 Problem (again)
Remember that we motivated the language modeling problem by thinking about

machine translation as “deciphering” the source language into the target lan-

guage.

% (f, e) = % (e) % (f | e) (3.1)

ê = arg max

e
% (e | f) (3.2)

= arg max

e

% (e, f)
% (f) (3.3)

= arg max

e
% (e, f) (3.4)

= arg max

e
% (e) % (f | e). (3.5)

In this chapter, we start by focusing on % (f | e). But we’ll also consider so-called

direct models that estimate % (e | f), in particular neural networks.

All the models we’ll look at are trained on parallel text, which is a corpus of

text that expresses the same meaning in two (or more) di�erent languages. Usu-

ally we assume that a parallel text is already sentence-aligned, that is, it consists

of sentence pairs, each of which expresses the same meaning in two languages.

In the original work on statistical machine translation (Brown et al., 1993), the

source language was French (f) and the target language was English (e), and we’ll

use those variables even for other language pairs. Our example uses Spanish and

English.

Here is an example parallel text (Knight, 1999):

1. Garcia and associates

Garcı́a y asociados

2. his associates are not strong

sus asociados no son fuertes

29

Chapter 3. Machine Translation 30

3.2 Word Alignment
We want to de�ne a model for generating Spanish sentences f from English sen-

tences e. Let’s make the simplifying assumption that each Spanish word depends

on exactly one English word. For example:

1. Garcia and associates EOS

Garcı́a y asociados EOS

2. his associates are not strong EOS

sus asociados no son fuertes EOS

(We’ve made some slight changes compared to the original paper, which did not

use EOS. But the basic idea is the same.)

More formally: let Σf and Σe be the Spanish and English vocabularies, and

• f = 51 · · · 5= range over Spanish sentences (5= = EOS)

• e = 41 · · · 4< range over English sentences (4< = EOS)

• a = (01, . . . , 0=) range over possible many-to-one alignments, where 0 9 = 8

means that Spanish word 9 is aligned to English word 8 .

We will use these variable names throughout this chapter. Remember that e, 8 ,

and< come alphabetically before f , 9 , and =, respectively.

�us, for our two example sentences, we have

1. f = Garcı́a y asociados EOS

e = Garcia and associates EOS

a = (1, 2, 3, 4)

2. f = sus asociados no son fuertes EOS

e = his associates are not strong EOS

a = (1, 2, 4, 3, 5, 6).

�ese alignments a will be included in our “story” of how an English sentence

e becomes a Spanish sentence f . In other words, we are going to de�ne a model

of % (f, a | e), not % (f | e), and training this model will involve summing over all

alignments a:

maximize ! =
∑

(f,e) ∈data

log % (f | e) (3.6)

=
∑

(f,e) ∈data

log

∑
a
% (f, a | e) . (3.7)

(�is is similar to training of NFAs in the previous chapter, where there could be

more than one accepting path for a given training string.)

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 31

3.3 Model 1
IBM Model 1 (Brown et al., 1993) is the �rst in a series of �ve seminal models for

statistical word alignment. �e basic generative story goes like this.

1. Generate each alignment 01, . . . , 0= , each with uniform probability
1
<

.

2. Generate Spanish words 51, . . . , 5= , each with probability C (59 | 40 9).

In equations, the model is:

% (f, a | e) =
=∏
9=1

(
1

<
C (59 | 40 9)

)
. (3.8)

�e parameters of the model are the word-translation probabilities C (5 | 4).
We want to optimize these parameters to maximize the log-likelihood,

! =
∑

(f,e) ∈data

log

∑
a
% (f, a | e). (3.9)

�e summation over a is over an exponential number of alignments; as with

NFAs, we can rearrange this to make it e�ciently computable:∑
a
% (f, a | e) =

<∑
01=1

· · ·
<∑

0==1

=∏
9=1

(
1

<
C (59 | 40 9)

)
(3.10)

=

<∑
01=1

1

<
C (51 | 401) · · ·

<∑
0==1

1

<
C (5= | 40=) (3.11)

=

=∏
9=1

<∑
8=1

1

<
C (59 | 48). (3.12)

�e good news is that this objective function is convex, that is, every local

maximum is a global maximum. �e bad news is that there’s no closed-form

solution for this maximum, so we must use some iterative approximation. �e

classic way to do this is expectation-maximization, but we can also use stochastic

gradient ascent. �e trick is ensuring that the C probabilities sum to one. We do

this by de�ning a matrix T with an element for every pair of Spanish and English

words. �e elements are unconstrained real numbers (called logits), and are the

new parameters of the model. �en we can use the so�max function to change

them into probabilities, which we use as the C probabilities.

T ∈ R |Σf |× |Σe |
(3.13)

C (5 | 4) =
[
so�max T:,4

]
5

(3.14)

=
exp T5 ,4∑

5 ′∈Σf

exp T5 ′,4
(3.15)

where T:,4 means “the 4’th column of T.”

For large datasets, C (5 | 4) should be zero for the vast majority of (5 , 4) pairs,

which means that the vast majority of entries of T would be −∞. So to make this

practical, we’d have to store T as a sparse matrix.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 32

3.4 Model 2 and beyond
In Model 1, we chose each 0 9 with uniform probability 1/<, which makes for a

very weak model. For example, it’s unable to learn that the �rst Spanish word is

more likely to depend on the �rst English word than (say) the seventh English

word. In Model 2, we replace 1/< with a learnable parameter:

% (f, a | e) =
=∏
9=1

(
0(8 | 9,<, =) C (59 | 40 9)

)
.

where for each 8, 9,<, =, the parameter 0(8 | 9,<, =) must be learned. (�is nota-

tion follows the original paper; I hope it’s not too confusing that 0 9 is an integer

but 0(·) is a probability distribution.) �en we can learn that (say) 0(1 | 1, 10, 10)
is high, but 0(7 | 1, 10, 10) is low.

�ere are also Models 3, 4, and 5, which can learn dependencies between the

0 9 , like:

• Distortion: Even if the model gives low probability to 01 = 7, it should be

the case that given 01 = 7, the probability that 02 = 8 is high, because it’s

common for a block of words to move together.

• Fertility: It should be most common for one Spanish word to align to one

English word, less common for zero or two Spanish words to align to one

English word, and extremely rare for ten Spanish words align to one En-

glish word.

But for our purposes, it’s good enough to stop here at Model 2.

To train Model 2 by stochastic gradient ascent, we again need to express the 0

probabilities in terms of unconstrained parameters. Let" and# be the maximum

English and Spanish sentence length, respectively. �en:

A ∈ R"×#×"×# (3.16)

0(8 | 9,<, =) = [so�max A:, 9,<,=]8 (3.17)

=
exp A8, 9,<,=∑
8′ exp A8′, 9,<,=

. (3.18)

Based on the progression of topics in the previous chapter, you might expect

me at this point to show how the IBM models are instances of weighted �nite au-

tomata. For a �xed e and=, you can indeed construct a weighted �nite automaton

that generates strings f with probability % (f | e) under Model 1 or 2. But there

isn’t a single machine (that I know of) that can read in any string e and output

strings f with probability % (f | e). Fear not, however; I still have something nu�y

in store.

3.5 From Alignment to Attention
So far, we’ve been working in the noisy-channel framework,

% (f, e) = % (e) % (f | e). (3.19)

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 33

•

Garcı́a

•

y

•

asociados

•
•
•

T

•
•
•

•
•
•

•
•
•

so�max

•
•
•

•
•
•

•
•
•

mean

•

Garcı́a

•

y

•

asociados

•
•

V>

•
•

•
•

•
•
•

U

•
•
•

•
•
•

•
•
•

so�max

•
•
•

•
•
•

•
•
•

mean

•

Garcı́a

•

y

•

asociados

•
•

V>

•
•

•
•

•
•

mean

•
•
•

U

•
•
•

so�max

(a) Original (b) Factorized (c) A�ention

Figure 3.1: Variations of IBM Model 1, pictured as a neural network.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 34

One reason for doing this is to divide up the translation problem into two parts

so each model (language model and translation model) can focus doing its part

well. But neural networks are rather good at doing two jobs at the same time,

and so modern MT systems don’t take a noisy-channel approach. Instead, they

directly model % (e | f). Let’s start by rewriting Model 1 in the direct direction:

% (e | f) =
<∏
8=1

=∑
9=1

1

=

[
so�max T:,59

]
48
. (3.20)

See Figure 3.1a for a picture of this model, drawn in the style of a neural network.

Factoring T. Above, we mentioned that matrix T is very large and sparse. We

can overcome this by factoring it into two smaller matrices (see Figure 3.1b):

U ∈ R |Σe |×3
(3.21)

V ∈ R |Σf |×3
(3.22)

T = UV> (3.23)

So the model now looks like

% (e | f) =
<∏
8=1

=∑
9=1

1

=

[
so�max UV59

]
48

(3.24)

If you think of T as transforming Spanish words into English words (more

precisely, logits for English words), we’re spli�ing this transformation into two

steps. First, V maps the Spanish word into a size-3 vector, called a word embed-
ding. �is transformation V is called an embedding layer because it embeds the

Spanish vocabulary into the vector space R3 which is (somewhat sloppily) called

the embedding space.
Second, U transforms the hidden vector into a vector of logits, one for each

English word. �is transformation U, together with the so�max, are known as a

so�max layer. �e rows of U can also be thought of as embeddings of the English

words.

In fact, for this model, we can think of U and V as embedding both the Spanish

and English vocabularies into the same space. Figure 3.2 shows that if we run

factored Model 1 on a tiny Spanish-English corpus (Knight, 1999) and normalize

the Spanish and English word embeddings, words that are translations of each

other do lie close to each other.

�e choice of 3 ma�ers. If 3 is large enough (at least as big as the smaller

of the two vocabularies), then UV> can compute any transformation that T can.

But if 3 is smaller, then UV> can only be an approximation of the full T (called a

low-rank approximation). �is is a good thing: not only does it solve the sparse-

matrix problem, but it can also generalize be�er. Imagine that we have training

examples

1. El perro es grande.

�e dog is big.

2. El perro es gigante.

�e dog is big.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 35

40 20 0 20 40

60

40

20

0

20

40

60

.

.

<EOS>

<EOS>

the
are

los

associates
asociados

groups

grupos

son

estan

not

sus

no

has

tiene

Garcia

García

clients

and

clientes

y

also

angry

tambien

enfadados

strong
fuertes

its

company

three

empresa

tres

Carlos

Carlos

sell
venden

modern

modernos

enemies

enemigos

his

in
Europe

en

Europa

la

do
zenzanine

zanzanina

pharmaceuticalsmedicinas

small
pequenos

a

una

Figure 3.2: Two-dimensional visualization of the 64-dimensional word embed-

dings learned by the factored Model 1. �e embeddings were normalized and

then projected down to two dimensions using t-SNE (Maaten and Hinton, 2008).

In most cases, the Spanish word embedding is close to its corresponding English

word embedding.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 36

3. El perro es gigante.

�e dog is large.

�e original Model 1 would not be able to learn a nonzero probability for C (gigante |
large). But the factorized model would map both grande and gigante to nearby

embeddings (because both translate to big), and map that region of the space to

large (because gigante translates to large). �us it would learn a nonzero proba-

bility for C (gigante | large).

Attention. To motivate the next change, consider the Spanish-English sentence

pairs

1. por favor

please

2. por ejemplo

for example

Model 1 would learn to generate please when the source sentence contains por
or favor. Speci�cally, it would learn C (please | por) = 1

2
, so if you asked it to

re-translate por ejemplo, it would prefer the translation please example over for
example. What we really want is to generate please when the source sentence

contains por and favor.
We can get this if we move the average (

∑=
9=1

1
=
[·]) inside the so�max. It can

go anywhere inside, but let’s put it between V and U (see Figure 3.1c):

% (e | f) =
<∏
8=1

[
so�max

(
U

=∑
9=1

1

=
V59

)]
48

. (3.25)

Remember that the so�max contains an exp in it, so moving the summation in-

side has (roughly) the e�ect of changing it into a product – in other words, chang-

ing an or into an and. So we can now generate please when the source sentence

contains por and favor. Suppose U and V have the following values:

U =
©­­«

please 1 0 0

for 0 1 0

example 0 0 1

ª®®¬ V> =
©­­«

por favor ejemplo

5 10 0

10 0 0

0 0 10

ª®®¬ (3.26)

If f = por favor, then

% (please | f) = 0.924 (3.27)

% (for | f) = 0.076 (3.28)

% (example | f) = 0.000 (3.29)

but if f = por ejemplo, then

% (please | f) = 0.039 (3.30)

% (for | f) = 0.480 (3.31)

% (example | f) = 0.480. (3.32)

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 37

If the V59 can be thought of as vector representations of words, then the aver-

age

∑
9
1
=

V59 can be thought of as a vector representation of the whole sentence f .

Recall that going from Model 1 to Model 2, we changed the uniform average into

a weighted average, weighted by the parameters 0(9 | 8). Similarly, here, we can

make the uniform average into a weighted average

% (e | f) =
<∏
8=1

[
so�max

(
U

=∑
9=1

0(9 | 8) V59

)]
48

. (3.33)

At each time step 8 , the weights 0(9 | 8), which must sum to one (

∑
9 0(9 | 8) = 1),

provide a di�erent “view” of f . �is mechanism is known as a�ention, and the

network is said to a�end to di�erent parts of the sentence at di�erent times.

�e weights 0(9 | 8) are called a�ention weights. �ese days, they are usually

computed using dot-product a�ention, which factors 0(· | ·) like we did for C (· | ·)
earlier:

Q ∈ R<×3 (3.34)

K ∈ R=×3 (3.35)

0(9 | 8) = [so�max KQ8] 9 (3.36)

For each Spanish word 59 , the network computes a vector K9 , called a key. �is

vector could depend on the position 9 , the word 59 , or any other words in f .

�en, at time step 8 , the network computes a vector Q8 , called a query. �is

vector could depend on the position 8 , or the words 41, . . . , 48−1. �e above de�-

nition makes the network a�end most strongly to Spanish words 59 whose keys

K9 are most similar to the query Q8 .

�e vectors that are averaged together (here, the V59) are called the values.
�ey are frequently (but not always) the same as the keys. And the resulting

weighted average is sometimes called the context vector.
To get something similar to Model 2, we would let Q and K be learnable pa-

rameters. More precisely, let# be the maximum length of any Spanish or English

sentence, and de�ne learnable parameters

K̄ ∈ R#×3 (3.37)

Q̄ ∈ R#×3 . (3.38)

�e rows of Q̄ and K̄ are called position embeddings (Gehring et al., 2017). �en

for a given sentence pair with lengths =,<, let the keys and queries be the �rst =

and< rows of K̄ and Q̄, respectively:

K = K̄1:= (3.39)

Q = Q̄1:< . (3.40)

3.6 Neural Machine Translation
Our modi�ed Model 2 (eqs. 3.33–3.40) is still not a credible machine translation

system. Its ability to model context on both the source side and target side is very

weak. But there have been two very successful extensions of this model, which

we describe in this section.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 38

3.6.1 Remaining problems
�e most glaring problem with our modi�ed Model 2 is that it outputs proba-

bility distributions for each English word, % (48 | f), but the English words are

all independent of one another. “El rı́o Jordan” can be translated as “the river

Jordan” or “the Jordan river,” so if

% (42 = river | el rı́o Jordan) = 0.5 % (43 = Jordan | el rı́o Jordan) = 0.5 (3.41)

% (42 = river | el rı́o Jordan) = 0.5 % (43 = Jordan | el rı́o Jordan) = 0.5 (3.42)

then the translations “the river river” and “the Jordan Jordan” will be just as

probable as “the river Jordan” and “the Jordan river.” To �x this problem, we need

to make the generation of 48 depend on the previous English words. In the original

noisy-channel approach (% (f | e) % (e)), modeling dependencies between English

words was the job of the language model (% (e)), but we threw the language model

out when we switched to a direct approach (% (e | f)).
Likewise, on the source side, although we’ve argued that our modi�ed Model

2 can, to a certain extent, translate multiple words like “por favor” at once, it’s not

very sensitive to word order. Indeed, if the model a�ends equally to both words,

it cannot distinguish at all between “por favor” and “favor por.” So we’d like to

make the encoding of a Spanish word also take into account its surrounding

context.

3.6.2 Preliminaries
Please note that my descriptions of these models are highly simpli�ed. �ey’re

good enough to get the main idea and to do the homework assignment on ma-

chine translation, but if you should ever need to implement a full-strength trans-

lation model, please consult the original papers or the many online tutorials

about them.

Even simpli�ed, these networks get rather large. To make their de�nitions

more manageable, we break them up into functions. �ese functions usually have

learnable parameters, and to make it unambiguous which function calls share

parameters with which, we introduce the following notation. If a function’s name

has a superscript that looks like 5
ℓ

, then its de�nition may contain a parameter

with the same superscript, like G
ℓ

. �e ℓ stands for 1, 2, etc., so if we call 5
1

twice, the same parameter G
1

is shared across both calls. But if we call 5
1

and

5
2

, they have two di�erent parameters G
1

and G
2

. (In PyTorch, such functions

would be implemented as modules.)

So, we can de�ne some functions:

Embedding
ℓ (:) = E ℓ

:
(3.43)

A�ention(q,K,V) =
∑
9

[so�max Kq] 9 V9 (3.44)

So�maxLayer
ℓ (x) = so�max(W ℓ x) (3.45)

And now our modi�ed Model 2 (eqs. 3.33–3.40) can be wri�en as:

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 39

For 9 = 1, . . . , =:

V9 = Embedding
1 (59) (3.46)

K9 = Embedding
2 (9) (3.47)

For 8 = 1, . . . ,<:

q(8) = Embedding
3 (8) (3.48)

c(8) = A�ention(q(8) ,K,V) (3.49)

% (48) = So�maxLayer
4 (c(8)). (3.50)

3.6.3 Using RNNs
�e �rst way to introduce more context sensitivity (Bahdanau, Cho, and Bengio,

2015) is to insert an RNN on both the source and target side (see Figure 3.3). �ese

RNNs are called the encoder and decoder, respectively.

From now on, we assume that 51 = 41 = BOS, and continue to assume that

5< = 4= = EOS. �is makes the de�nitions of the RNNs simpler.

In addition to the functions de�ned above, we need a couple of new ones.

First, a tanh layer:

TanhLayer
ℓ (x) = tanh(W ℓ x + b ℓ). (3.51)

To compute one step of an RNN:

RNNCell
ℓ (h, x) = tanh(A ℓ h + B ℓ x + c ℓ) (3.52)

To de�ne a function that computes a full run of an RNN, we pack the input vectors

into a single matrix.

RNN
ℓ

: R=×3 → R=×3 (3.53)

RNN
ℓ (X) = [h(1) · · · h(=)]> (3.54)

where h(0) = 0 (3.55)

h(9) = RNNCell
ℓ (h(9−1) , x(9)) 9 = 1, . . . , = (3.56)

Now, the model is de�ned as follows. We compute a sequence of source word

embeddings,

V ∈ R=×3 (3.57)

V9 = Embedding
1 (59) 9 = 1, . . . , =. (3.58)

From these, the encoder RNN computes a sequence of hidden vectors:

H ∈ R=×3

H = RNN
2 (V). (3.59)

Usually fancier RNNs (using GRUs or LSTMs) are used instead of a simple RNN

as shown here. Also, it’s quite common to stack up several RNNs, with the output

of one feeding into the input of the next.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 40

•

Garcı́a

one-hot vectors

•

y

•

asociados

•
•RNN encoder

•
•

•
•

•
•context vector

a�ention

•

Garcia

one-hot vectors

•

and

•
•RNN decoder

•
•

•
•
•

logits

•
•
•

% (43)

so�max

Figure 3.3: Simpli�ed diagram of an RNN translation model (Bahdanau, Cho, and

Bengio, 2015; Luong, Pham, and Manning, 2015).

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 41

�e decoder RNN varies more from model to model; the one shown here is

most similar to that of Luong, Pham, and Manning (2015). Whereas the encoder

could be wri�en using many loops over 9 , the decoder has to be wri�en as a

single loop over 8 = 1, . . . , =−1. For each 8 , we’re trying to predict 48+1. (Remember

that 41 = BOS, so we don’t need to predict it.) We look up the previous word’s

embedding and run one step of the RNN:

u(8) ∈ R3

u(8) = Embedding
3 (48) (3.60)

g(8) ∈ R3

g(8) = RNNCell
4 (g(8−1) , u(8)). (3.61)

�e a�ention computes a context vector:

c(8) ∈ R3

c(8) = A�ention(g(8) ,H,H) (3.62)

Using the Spanish encodings (H) as the keys and values is very standard, whereas

the choice of queries varies. For simplicity, we’re using the most recent English

word’s encoding (g(8)).
So we have an English encoding g(8) that summarizes the English sentence

so far (41 · · · 48), and a context vector c(8) that summarizes the Spanish sentence.

We concatenate the two and apply a tanh layer to get a single vector:

o(8) ∈ R3

o(8) = TanhLayer
5

([
c(8)

g(8)

])
(3.63)

And �nally we predict an English word:

% (48+1) = So�maxLayer
6 (o(8)). (3.64)

3.6.4 Using self-attention: Transformers
�e other successful neural translation model, which is the current state of the

art, is called the Transformer (Vaswani et al., 2017). �e key idea here is to rec-

ognize that a�ention is not just useful for linking the source and target sides of

the model; it can transform a sequence into a sequence of the same length, and

therefore be used as a replacement for RNNs (Figure 3.4).

We de�ne a new self-a�ention layer, which applies three di�erent linear trans-

formations to the same sequence of vectors to get queries, keys, and values. �en

it uses a�ention to compute a sequence of context vectors.

SelfA�entionCell
ℓ (X, 8) = A�ention(W ℓ

Q
X8 ,K,V) (3.65)

where K9 = W ℓ

K
X9 (3.66)

V9 = W ℓ

V
X9 (3.67)

SelfA�ention
ℓ (X) = C (3.68)

where C8 = SelfA�entionCell
ℓ (X, 8). (3.69)

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 42

•

Garcı́a

•

y

•

asociados

•
•

•
•

•
•

•
•

•
•

•
•

self-a�ention

•
•

•
•

•
•

•
•

•
•

•
•

self-a�ention

•
•

•
•

•
•

•
•

cross-a�ention

•

Garcia

•

and

•
•

•
•

•
•

•
•

self-a�ention

•
•

•
•

•
•

•
•

self-a�ention

•
•
•

% (43)

Figure 3.4: Simpli�ed diagram of a Transformer translation model (Vaswani et

al., 2017).

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 43

Like an RNN, it maps a sequence of = vectors to a sequence of = vectors, and so

it can, in principle, be used as a drop-in replacement for an RNN.

�ey’re not the same, though – self-a�ention is be�er at learning long-distance

dependencies, but (like Model 1) it knows nothing about word order. �e solution

is surprisingly simple: augment word embeddings with position embeddings.

�en the vector representation of a word token will depend both on the word

type and its position, and the model has the potential to be sensitive to word

order.

�e model is de�ned as follows. We represent the source words as word em-

beddings plus position embeddings:

V ∈ R=×3

V9 = Embedding
1 (59) + Embedding

2 (9) 9 = 1, . . . , = (3.70)

Next comes a self-a�ention layer:

H ∈ R=×3

H = SelfA�ention
3 (V). (3.71)

�e self-a�ention layer is always followed by a position-wise feedforward net-
work:

H′ ∈ R=×3

H′9 = TanhLayer
4 (H9) 9 = 1, . . . , =. (3.72)

�en, steps (3.71–3.72) are repeated: SelfA�ention
5

, TanhLayer
6

, and so

on, usually with 4 or 6 repetitions in total. To avoid running out of le�ers of the

alphabet, though, we don’t write equations for any more repetitions.

�e decoder is also a stack of self-a�ention layers, and again we need to write

the equations using a single iteration over 8 . For each time step 8 = 1, . . . , = − 1,
we want to predict the next English word, % (48+1). Start by computing the vector

representation of 48 :

u(8) ∈ R3

u(8) = Embedding
7 (48) + Embedding

8 (8). (3.73)

�en self-a�ention and feedforward layers, but note that at each time step 8 , self-

a�ention only operates on u(1) , . . . , u(8) because it can’t see the future:

g(8) ∈ R3

g(8) = SelfA�entionCell
9 ([u(1) · · · u(8)]>, 8) (3.74)

g′ (8) ∈ R3

g′ (8) = TanhLayer
10 (g(8)). (3.75)

Now, just as in the RNN-based model, we have a sequence of source encod-

ings and a sequence of target encodings, and the rest of (our simpli�ed version

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

Chapter 3. Machine Translation 44

of) the model proceeds exactly as before (cf. eqs. 3.62–3.64).

c(8) ∈ R3

c(8) = A�ention(g′ (8) ,H′,H′) (3.76)

o(8) ∈ R3

o(8) = TanhLayer
5

([
c(8)

g′ (8)

])
(3.77)

% (48+1) = So�maxLayer
6 (o(8)). (3.78)

�e real Transformer is more complicated – in particular, there are actually mul-

tiple cross-a�entions, one a�er each decoder self-a�ention – but hopefully this

su�ces to get the main idea across.

References
Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Ma-

chine Translation by Jointly Learning to Align and Translate”. In: Proc. ICLR.

url: https://arxiv.org/abs/1409.0473.

Brown, Peter F. et al. (1993). “�e Mathematics of Statistical Machine Translation:

Parameter Estimation”. In: Computational Linguistics 19, pp. 263–311.

Gehring, Jonas et al. (2017). “Convolutional Sequence to Sequence Learning”. In:

Proc. ICML.

Knight, Kevin (1999).AStatisticalMT TutorialWorkbook. url: https://kevincrawfordknight.

github.io/papers/wkbk.pdf.

Luong, �ang, Hieu Pham, and Christopher D. Manning (Sept. 2015). “E�ective

Approaches to A�ention-based Neural Machine Translation”. In: Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Process-
ing. Lisbon, Portugal: Association for Computational Linguistics, pp. 1412–

1421. doi: 10.18653/v1/D15- 1166. url: https://www.aclweb.org/

anthology/D15-1166.

Maaten, Laurens van der and Geo�rey Hinton (2008). “Visualizing High-Dimensional

Data Using t-SNE”. In: Journal of Machine Learning Research 9, pp. 2579–2605.

Vaswani, Ashish et al. (2017). “A�ention is All You Need”. In: Proc. NeurIPS,

pp. 5998–6008. url: https://papers.nips.cc/paper/7181-attention-

is-all-you-need.

CSE 40657/60657: Natural Language Processing Version of March 10, 2021

https://arxiv.org/abs/1409.0473
https://kevincrawfordknight.github.io/papers/wkbk.pdf
https://kevincrawfordknight.github.io/papers/wkbk.pdf
https://doi.org/10.18653/v1/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://www.aclweb.org/anthology/D15-1166
https://papers.nips.cc/paper/7181-attention-is-all-you-need
https://papers.nips.cc/paper/7181-attention-is-all-you-need

	Machine Translation
	Problem (again)
	Word Alignment
	Model 1
	Model 2 and beyond
	From Alignment to Attention
	Neural Machine Translation
	Remaining problems
	Preliminaries
	Using RNNs
	Using self-attention: Transformers

