
Chapter 7

Semantics

When we began our study of syntax, I had to spend some time convincing you

that syntax exists (that is, that there is some kind of representation of syntactic

structure in your mind when you use language), but the basic shape of those

representations has not been all that controversial.

By contrast, as we turn our a�ention to semantics, or meaning, I probably

don’t need to convince you at all that meaning exists, but in theories of semantics

and computational approaches to semantics, representations of meaning come in

all kinds of shapes and sizes.

Semantics is o�en divided into the meanings of words, known as lexical se-
mantics, and the meanings of sentences, which is usually just called semantics.
As I see it, there are three main approaches to representing meaning in NLP:

1. Vectors: whose components are features, either designed by humans or

automatically learned.

2. Graphs: in which nodes are usually entities and edges are various kinds of

relationships among them.

3. Logic: formulas of logics of various kinds, or SQL queries, or even computer

programs.

7.1 Vectors
We’ve already seen lots of examples of vector representations of text. For exam-

ple, we saw, in IBMModel 1, possibly the simplestway to represent the “meaning”

of a text, which is to assume that each word in the text contributes a li�le bit of

meaning, which we can represent as a one-hot vector, and that we can combine

the “meanings” of words simply by adding up their vectors.

the cat sat on the mat→ {cat : 1,mat : 1, on : 1, sat : 1, the : 2}

In information retrieval, this is called a term vector, but in NLP it’s more com-

monly known (somewhat pejoratively) as a bag of words. �is representation

completely ignores any semantic relationships between words (like synonymy)

and any kind of structure of the text (like word order or syntax). Yet, in many

situations, it can be very e�ective.
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A�er IBMModel 1, recall that we factored the model so that it computed a 𝑑-

dimensional dense representation of the sentence. �is sentence representation

was computed as a by-product of a model trained to carry out a particular task,

like translation. Next week, we’ll revisit vector representations of texts in the

context of the task of text classi�cation.

7.2 Graphs
�e next broad category of semantic representation I want to talk about is se-

mantic graphs. I’m including under this heading a bunch of tasks like

• Named entity recognition:Which noun phrases are names of people, places,

etc., and what entity do they refer to?

• Coreference resolution: Which noun phrases (including pronouns) refer to

the same thing?

• Word sense disambiguation: If a word has more than one sense, which one

is being used in this context?

• Semantic role labeling: For each action in the sentence, who/what is the

agent (the one doing the action), the patient (the one uponwhom the action

is done), etc.?

• Relation extraction: Sometimes we’re interested in higher-level relation-

ships between entities, like “𝑥 is the president of 𝑦.”

Ultimately, the entities and relationships that these tasks �nd can be assembled

into a graph – either a graph that represents the meaning of a sentence, or a big

graph that represents the knowledge contained in a whole collection of text.

Above we mentioned various semantics-related tasks like semantic role label-

ing (Gildea and Jurafsky, 2000), word sense disambiguation (Brown et al., 1991),

coreference resolution (Soon, Ng, and Lim, 2001), and so on. Resources likeOntoNotes

(Hovy et al., 2006) provided separate resources for each of these tasks.

Some more recent work in semantic processing tries to consolidate these

tasks into one. For example, the Abstract Meaning Representation (AMR) Bank

(Banarescu et al., 2013) began as an e�ort to unify the various annotation layers

of OntoNotes. Others include: the Prague Dependency Treebank (Böhmová et al.,

2003), DeepBank (Oepen and Lønning, 2006), and Universal Conceptual Cogni-

tive Annotation (Abend and Rappoport, 2013). By and large, these resources are

based on, or equivalent to, graphs, in which vertices stand for entities and edges

stand for semantic relations among them.

Abstract Meaning Representations

Here, I’ll focus on AMRs, just because they’re the representation I’m most famil-

iar with. AMRs can bewri�en in a serialized form or as directed graphs. Examples

of these two representations, from the AMR Bank (LDC2014T12), are reported in
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Figure 7.1 and Figure 7.2. Nodes are labeled, in order to convey lexical informa-

tion. Edges are labeled to convey information about semantic roles. Labels at the

edges need not be unique, meaning that edges impinging on the same nodemight

have the same label. Furthermore, our DAGs are not ordered, meaning that there

is no order relation for the edges impinging at a given node, as is usually the

case in standard graph structures. A node can appear in more than one place (for

example, in Figure 7.1, node s2 appears six times).

�e numbers (e.g., ask-01) require some explanation. �ese are from Prop-

Bank (Palmer, Gildea, and Kingsbury, 2005), which catalogues and numbers, for

each verb, the di�erent senses of the verb and ways it can be used. For example,

• ask-01 is for asking questions

• ask-02 is for asking favors

• ask-03 is for asking a price

• ask out-04 is for asking someone on a date.

Each of these senses comes with a numbered list of arguments. For example, for

ask-01,

• arg0 is the asker

• arg1 is the question

• arg2 is the hearer.

AMR parsing

Semantic parsing is the task of taking a natural language sentence and mapping

it to a representation of its meaning. If the semantic representation is AMR, we

call this AMR parsing.

�ese days, it’s easy to build a barebones AMR parser – just run a neural

machine translation system on parallel text consisting of English sentences and

their AMRs in textual format (Figure 7.1). Research on AMR parsing has go�en

plentymore sophisticated than that, but here I want to focus on one improvement

to the basic NMT system (which you will implement in HW4).

Unlike language-to-language translation, it’s typical for the AMR to have

words in commonwith the source text.�e NMT system can do a good job learn-

ing to copy these words if they’re frequent, but for rare words, it may do so less

reliably, and for unknown words, it will be unable to. So we want to add a copy
mechanism to the model.

�e basic idea is to introduce a fake target word, COPY, which instructs the

system to copy aword from the source sentence.Whichword?We use the source-

to-target a�ention, which is a distribution over source positions, to choose one

source word.

We’re only interested in the last two steps of the model, which were the same

in our presentation of both the RNN and Transformer models. �ese are for the
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(a / and

:op1 (a2 / ask-01

:ARG0 (i / i)

:ARG1 (t / thing

:ARG1-of (t2 / think-01

:ARG0 (s2 / she)

:ARG2 (l / location

:location-of (w / we))))

:ARG2 s2)

:op2 (s / say-01

:ARG0 s2

:ARG1 (a3 / and

:op1 (w2 / want-01 :polarity -

:ARG0 s2

:ARG1 (t3 / think-01

:ARG0 s2

:ARG1 l))

:op2 (r / recommend-01

:ARG0 s2

:ARG1 (c / content-01

:ARG1 i

:ARG2 (e / experience-01

:ARG0 w))

:ARG2 i))

:ARG2 i)

:op3 c)

Figure 7.1: Example AMR in its standard format, number

DF-200-192403-625 0111.7 from the AMR Bank. �e sentence is: “I

asked her what she thought about where we’d be and she said she doesn’t want

to think about that, and that I should be happy about the experiences we’ve had

(which I am).”
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op1
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op2
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ARG2

ARG2ARG0
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w2 / want-01

op1

r / recommend-01

op2

ARG0 -

polarity

t3 / think-01

ARG1 ARG1

ARG2ARG0

ARG0
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ARG1ARG0

ARG2

Figure 7.2: �e AMR of Figure 7.1, presented as a directed graph.

context vector c(𝑖) , and the output word distribution:

g(𝑖) ∈ R𝑑

H ∈ R𝑛×𝑑

o(𝑖) ∈ R𝑑

c(𝑖) ∈ R𝑑

c(𝑖) = A�ention(g(𝑖) ,H,H) (7.1)

𝑃 (𝑒𝑖+1) = So�maxLayer
6 (o(𝑖) ). (7.2)

�e equation for c(𝑖) computes both the a�ention and the weighted average,

so we’re going to “break it open” to get at the a�ention inside:

𝛼 (𝑖) ∈ R𝑛 (7.3)

𝛼 (𝑖) = so�maxHg(𝑖) (7.4)

�e output word distribution now includes COPY. We modify this to:

p(𝑖) ∈ R𝑛 (7.5)

p(𝑖) = So�maxLayer
6 (o(𝑖) ) (7.6)

𝑃 (𝑒) = p(𝑖)𝑒 + p(𝑖)COPY
∑︁

𝑗=1,...,𝑛
𝑓𝑗=𝑒

𝛼
(𝑖)
𝑗
. (7.7)
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�is means that there are one or more ways of choosing word 𝑒: �rst, we could

choose it directly from the output distribution o(𝑖) , or, for each source word 𝑓𝑗

that is equal to 𝑒 , we could copy word 𝑓𝑗 with probability p(𝑖)COPY𝛼 𝑗 .

Note that

• 𝛼 (𝑖) and p(𝑖) are both vectors of probabilities, not log-probabilities.

• �e test 𝑓𝑗 = 𝑒 compares the words as words, not as numbers.

7.3 Logic
�e last category of semantic representations is that of logical formulas, under-

stood broadly to include not only logics like �rst-order logic, but languages like

SQL or even programming languages.

In these notes, I’d like to focus on a traditional approach to semantics called

Montague grammar.

7.3.1 Logical forms
We start with a very simple example:

(7.8) a. John sees Mary.

b. see(John,Mary).

Entities are represented by constants or variables, and events are represented by

predicates.

A variation (called neo-Davidsonian semantics) represents events by vari-

ables, too:

(7.9) a. John sees Mary.

b. ∃𝑒.see(𝑒) ∧ agent(𝑒, John) ∧ theme(𝑒,Mary).

�is is quite similar to AMR. But let’s stick with events as predicates.

A keyway that logical semantics di�ers from graph representations like AMR

is in handling of quanti�ers.

(7.10) a. John sees a girl.

b. ∃𝑔.girl(𝑔) ∧ see(John, 𝑔).

(7.11) a. A boy sees Mary.

b. ∃𝑏.boy(𝑏) ∧ see(𝑏,Mary).

7.3.2 Compositionality
How do we compute these representations? We want to follow the principle of

compositionality, that themeaning of any expression is computed from themean-

ing of its subexpressions. In other words, we want to write a recursive function

that processes a syntax tree bo�om-up, something like

function semantics(root)
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if root = S and root.children = (NP,VP) then
𝑠1 ← semantics(root.children[1])
𝑠2 ← semantics(root.children[2])
build 𝑠 from 𝑠1 and 𝑠2
return 𝑠

else. . .
end if

end function
So we want to associate with each context-free grammar rule (e.g., S →

NP VP) a li�le function that build the semantics of S from the semantics of NP

and VP. To do that, it will be convenient to have some new notation for writing

li�le functions.

7.3.3 Lambda calculus
A 𝜆-expression (lambda-expression) is a self-containedway of writing a function.

Many programming languages now have them:

𝜆-calculus 𝜆𝑥.𝑥 · 𝑥
Scheme/Lisp (lambda (x) (* x x))

Python lambda x: x * x

C++ [](float x) { return x * x; }

In 𝜆-calculus, the application of a function 𝑓 to an expression 𝑒 is simply wri�en

as 𝑓 𝑒 . So

(𝜆𝑥 .𝑥 · 𝑥)10 −→ 10 · 10 = 100.

Lambda expressions can do a lot of things you might not expect them to be

able to do at �rst; here, I want to mention just one. Traditionally, 𝜆-expressions

take exactly one argument. But you can e�ectively write a function of two argu-

ments as a function that returns another function, like this:

𝑓 = 𝜆𝑥.𝜆𝑦.
√︁
𝑥2 + 𝑦2 (7.12)

𝑓 3 4 = (𝜆𝑥 .𝜆𝑦.
√︁
𝑥2 + 𝑦2) 3 4 (7.13)

−→ (𝜆𝑦.
√︁
3
2 + 𝑦2) 4 (7.14)

−→
√
3
2 + 42 (7.15)

= 5. (7.16)

�is is called currying a�er Haskell Curry, who had nothing to do with it.

7.3.4 Examples
Here’s a very simple CFG, each of whose rules is associated with a function that

computes the semantics of the le�-hand side (that is, the parent) in terms of the
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semantics of the right-hand side (that is, the children):

S→ NP VP 𝜆𝑥.𝜆𝑃 .𝑃𝑥

NP→ John John
NP→ Mary Mary
VP→ IV 𝜆𝑃 .𝑃

IV→ stands 𝜆𝑥.stand(𝑥)

S

VP

IV

stands

NP

John

stand(John)

𝜆𝑥 .stand(𝑥)

𝜆𝑥 .stand(𝑥)

John

S→ NP VP 𝜆𝑥.𝜆𝑃 .𝑃𝑥

NP→ John John
NP→ Mary Mary
VP→ IV 𝜆𝑃 .𝑃

VP→ TV NP 𝜆𝑃 .𝜆𝑦.𝜆𝑥 .𝑃 (𝑥,𝑦)
IV→ stands 𝜆𝑥 .stand(𝑥)
TV→ sees 𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)

S

VP

NP

Mary

TV

sees

NP

John

see(John,Mary)

𝜆𝑥.see(𝑥,Mary)

Mary𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)

John

When we try to get examples like (7.10–7.11), however, problems arise. �e

meaning of “a” should be ∃, but how do we get this quanti�er to appear on the

very outside of the formula? �e solution is to �ip everything around so that

the semantics for “a boy” should not just be a formula representing a boy; it

should be a function that takes a predicate 𝑃 about boys and returns the formula

∃𝑏.boy(𝑏) ∧ 𝑃 (𝑏).
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S→ NP VP 𝜆𝑓 .𝜆𝑃 .𝑓 𝑃

NP→ John 𝜆𝑃 .𝑃 (John)
NP→ Mary 𝜆𝑃 .𝑃 (Mary)
NP→ a boy 𝜆𝑃 .(∃𝑏.boy(𝑏) ∧ 𝑃𝑏)
NP→ a girl 𝜆𝑃 .(∃𝑔.girl(𝑔) ∧ 𝑃𝑔)
VP→ TV NP 𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)
TV→ sees 𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)

S

VP

NP

girla

TV

sees

NP

John

∃𝑔.girl(𝑔) ∧ see(John, 𝑔)

𝜆𝑥 .(∃𝑔.girl(g) ∧ see(𝑥,𝑔))

𝜆𝑃 .∃𝑔.girl(g) ∧ 𝑃 (𝑔)𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)

𝜆𝑃 .𝑃 (John)

�e computation of VP is particularly complicated, so we write it out step by

step:

(𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)) (𝜆𝑥.𝜆𝑦.see(𝑥,𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.(𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦))𝑥𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.(𝜆𝑦.see(𝑥,𝑦))𝑦)) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.see(𝑥,𝑦))) (𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔))
−→ 𝜆𝑥 .(𝜆𝑃 .(∃𝑔.girl(g) ∧ 𝑃𝑔)) (𝜆𝑦.see(𝑥,𝑦))
−→ 𝜆𝑥 .(∃𝑔.girl(g) ∧ (𝜆𝑦.see(𝑥,𝑦))𝑔)
−→ 𝜆𝑥 .(∃𝑔.girl(g) ∧ see(𝑥, 𝑔)) .

Finally, we re�ne our grammar so that “a” has its own semantics.

S→ NP VP 𝜆𝑓 .𝜆𝑃 .𝑓 𝑃

NP→ John 𝜆𝑃 .𝑃 (John)
NP→ Mary 𝜆𝑃 .𝑃 (Mary)
NP→ Det N 𝜆𝑑.𝜆𝑓 .𝑑 𝑓

Det→ a 𝜆𝑁 .𝜆𝑃 .(∃𝑥 .𝑁𝑥 ∧ 𝑃𝑥)
Det→ every 𝜆𝑁 .𝜆𝑃 .(∀𝑥 .𝑁𝑥 ∧ 𝑃𝑥)
N→ boy 𝜆𝑏.boy(𝑏)
N→ girl 𝜆𝑔.girl(𝑔)
VP→ TV NP 𝜆𝑃 .𝜆𝑓 .𝜆𝑥 .𝑓 (𝜆𝑦.𝑃𝑥𝑦)
TV→ sees 𝜆𝑥 .𝜆𝑦.see(𝑥,𝑦)
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