
Chapter 8

Dialogue

�e remainder of the course (we’re trying something a li�le di�erent this year) is

about the problem of natural language dialogue. We’ll start with a brief overview

of the topic and then the various parts of a typical task-oriented dialogue
1

system

will motivate the rest of the topics of the course.

Dialogue systems can be divided broadly into two di�erent types: chatbots

and task-oriented dialogue systems. Chatbots are supposed to be able to have a

conversation about anything, whereas task-oriented dialogue systems are sup-

posed to help users complete a speci�c task or tasks. Siri, Alexa, Cortana, and

Google Assistant are task-oriented dialogue systems.

8.1 Chatbots
Turing’s imitation game. �e idea of a chatbot goes back (at least) to Turing’s

paper on arti�cial intelligence (Turing, 1950), in which he proposed to rede�ne

whether a computer is intelligent by whether it can carry on a conversation well

enough to be indistinguishable from a human. Turing predicted that in 50 years

(that is, in 2000), computers would be able to store 109 bits(?) and pass a �ve-

minute test with 70% success.

ELIZA. �e oldest chatbot (that I’m aware of) was ELIZA (Weizenbaum, 1966).

It used the pretense of being a Rogerian psychotherapist to turn the user’s ut-

terances back into questions, rather than trying to contribute new ideas to the

conversation. �e original source code was rediscovered only very recently,
2

but

there are many approximate reimplementations; in any copy of Emacs, you can

type M-x doctor (that is, Escape x doctor Return) to run one version.

Here’s the conversation from the original paper (punctuation added):

P: Men are all alike.

E: In what way?

P: �ey’re always bugging us about something or other.

1
A dialogue is a conversation between two people, or a person and a machine; a dialog box is a

window that pops up in a GUI that provides information and asks for a response.

2https://elizagen.org

101

https://elizagen.org

Chapter 8. Dialogue 102

E: Can you think of a speci�c example?

P: Well, my boyfriend made me come here.

E: Your boyfriend made you come here?

P: He says I’m depressed much of the time.

E: I am sorry to hear that you are depressed.

P: It’s true. I am unhappy.

E: Do you think coming here will help you not to be unhappy?

P: I need some help, that much seems certain.

E: What would it mean to you if you got some help?

P: Perhaps I could learn to get along with my mother.

E: Tell me more about your family.

P: My mother takes care of me.

E: Who else in your family takes care of you?

P: My father.

E: Your father?

P: You are like my father in some ways.

E: What resemblance do you see?

P: You are not very aggressive but I think you don’t want me to notice that.

E: What makes you think I am not very aggressive?

P: You don’t argue with me.

E: Why do you think I don’t argue with yoU?

P: You are afraid of me.

E: Does it please you to believe I am afaid of you?

P: My father is afraid of everybody.

E: What else comes to mind when you think of your father?

P: Bullies.

E: Does that have anything to do with the fact that your boyfriend made you

come here?

ELIZA is extremely simple. Given a stringF , for example, “You are very help-

ful,” it performs the following steps:

1. Find the most important keyword, , in the string. In the example, is

“you”.

2. Find a template � for that matches the string. In the example, � is “-

you are . ,” so - = n and . = very helpful.

3. Choose a response ' for � . For example, one response for “- you are . ”

is, “What makes you think I am .?”

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 103

4. In - , . , etc., change pronouns “me” to “you” and “you” to “me,” etc., and

substitute them into '. So the example ' becomes“What makes you think

I am very helpful?”.

Additionally, there are certain keywords, like “my,” that make ELIZA save a re-

sponse for later. If it later has nothing to say, it will generate a saved response

(like the last line of the above dialogue).

Essentially, what passes for syntax/semantics are templates like “- you are

. ” and “What makes you think I am .?”. Although this is a far cry from the

parse trees and logical forms we saw in earlier chapters, these templates get the

job done, and we will see that they are still being used today.

A simple neural chatbot. A modern, but also simple, chatbot was based on an

early neural machine translation system (Vinyals and Le, 2015). �e model was

just an encoder RNN whose �nal state was used to initialize the state of a decoder

RNN (that is, there was no a�ention mechanism). It was trained to “translate” a

line spoken by one movie character to a response from another movie character,

or a line spoken by a customer to a response from a helpdesk. Given how simple

the model was, some of the results were surprisingly good:

Human: what is the purpose of life ?

Machine: to serve the greater good .

Human: what is the purpose of living ?

Machine: to live forever .

Human: what is the purpose of existence ?

Machine: to �nd out what happens when we get to the planet earth .

Human: where are you now ?

Machine: i ’m in the middle of nowhere .

Human: what is the purpose of dying ?

Machine: to have a life .

Human: what is the purpose of being intelligent ?

Machine: to �nd out what it is .

Human: what is the purpose of emotions ?

Machine: i don ’t know .

8.2 Task-Oriented Dialogue
In this section I’m relying heavily on Chapter 24 of SLP (Jurafsky and Martin,

2021).

�e reason I’ve dwelt so much on ELIZA is that many of the elements of

how ELIZA works are still part of the task-oriented dialogue systems that we

use today. GUS (Bobrow et al., 1977) was another early example.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 104

Dialogue act classi�cation.. �e �rst thing the computer does is to deter-

mine what kind of dialogue act the user input is. in the MultiWOZ data set

(Budzianowski et al., 2018), for example, some possible dialogue acts are:

• book hotel

• book restaurant

• book train

• find attraction

• find hospital

• find hotel

• find restaurant

• find taxi

• find train

If the user asks, “i need a place to dine in the center thats expensive,” that’s a

find restaurant.

Recall that in ELIZA, the �rst step was to identify the most important key-

word; this corresponds (very) roughly to dialogue act classi�cation.

Slot �lling. In ELIZA, each keyword was associated with one or more pa�erns,

and ELIZA would try to match the user input against each one. Similarly, in

the task-oriented dialogue system, each dialogue act corresponds to one or more

frames that contain slots. For example, a frame for find restaurantmight have

slots for

• restaurant-area

• restaurant-food

• restaurant-name

• restaurant-pricerange

For the user input “i need a place to dine in the centre thats expensive,” the

slot �llers would be restaurant-area = centre, restaurant-pricerange =

expensive.

In both cases, the frame (find restaurant(restaurant-area = centre,

restaurant-pricerange = expensive)) is what serves as both syntax and se-

mantics. It’s a lot simpler than we we studied in past weeks of the course, but it

gets the job done!

Dialogue state tracking. �e system maintains a dialogue state that persists

from turn to turn. In ELIZA, the dialogue state took the form of a “memory” that

stored - whenever the user says “my - .” In a task-oriented dialogue system, the

state might, for example, contain a partial frame. If the frame is incomplete, the

computer will request more information from the user until the frame is com-

plete.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 105

Dialogue policy and content planning. �e �nal step for ELIZA was to choose

a response pa�ern (by cycling through a li�le of possible responses) and copying

the slot �llers from the user input to the response slots (changing pronouns as

needed).

A task-oriented dialogue does the same thing, using the current dialogue state

to choose a dialogue act for the response and to �ll the slots in the response. For

example, the dialogue act might be recommend restaurant and the �ller might

be restaurant-name = Bedouin. Of course, ELIZA’s strategy of copying slot

�llers from the user input to the response won’t work very well, since the point

of the system is to provide new information to the user. We’re going to assume

that this is taken care of by a database system and won’t say any more about this

step!

Sentence realization. Finally, the computer has to translate the response frame,

e.g., recommend restaurant(restaurant-name = Bedouin), into text, like

“�ere is a place named Bedouin in the centre. How does that sound?”

(In ELIZA, this step was trivial because the frames are already literal text; or,

you could consider the mapping of pronouns to be the sentence realization step.)

In the following sections, we will talk about dialogue act classi�cation (and

other classi�cation tasks), slot �lling (and other sequence labeling tasks), and

�nally generation.

8.3 Slot Filling (Sequence Labeling)

8.3.1 Problem
In slot-�lling, the input is a sentence like

Please �nd me a train from cambridge to stansted airport

and the output is

Please �nd me a train from [cambridge]departure to [stansted airport]destination

�e most common way to formulate this kind of problem, where the com-

puter has to identify a number of non-overlapping substrings of the input, is

called BIO tagging.

O O O O O O B-departure O B-destination I-destination

Please �nd me a train from cambridge to stansted airport

B stands for “begin” and is used for the �rst word in each slot-�ller; I stands for

“inside” and is used for the second and subsequent words in each slot-�ller. O

stands for “outside” and is used for any word that does not belong to a slot-�ller.

Other schemes exist, like BILOU (L for the last word an entity, U ‘unit’ for the

only word in an entity), but this is the simplest and most common.

Now we’ve reduced slot-�lling to a sequence labeling task. Other examples of

sequence labeling tasks are:

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 106

• Word segmentation: Given a representation of a sentence without any

word boundaries, reconstruct the word boundaries. In some languages, like

Chinese, words are wri�en without any spaces in between them. (Indeed,

it can be di�cult to se�le on the de�nition of a “word” in such languages.)

• Part of speech tagging: Given a sentence, label each word with its part of

speech.

• Named entity detection/recognition: Given a sentence, identify all the proper

names (Notre Dame, Apple, etc.) and classify them as persons, organiza-

tions, places, etc.

One of the hallmarks of sequence labeling problems is dependencies between

the labels. For example, if we’re doing named entity recognition, a model might

learn that Dame has a high probability of being tagged I-org, as the last word of

Notre Dame (and University of Notre Dame, Cathedral of Notre Dame, etc.). But in

a sentence like

In 2004, Dame Julie Andrews voiced �een Lillian in Shrek 2,

Dame should be tagged B-person. Maybe the model can get enough clues from

the surrounding words to tag it correctly, but the strongest clue should be that

I-org absolutely cannot follow O.

8.3.2 Sequence labeling as parsing
�e classic models used to solve sequence labeling problems are, in historical

order, hidden Markov Models (HMMs), conditional random �elds (CRFs), and

biLSTM-CRFs. HMMs and CRFs are usually formulated as either �nite automata

or matrix operations. But since you have parsing with CFGs fresh in your mind,

let’s formulate them as CFGs. It may be overkill, but it’s arguably the cleanest

way to write them.

What would a parse tree look like for this task? �e labels (B-*, I-*, O) would

be like parts of speech, and since we don’t have any other kind of structure, it

only makes sense to use a purely right-branching or le�-branching structure.

Let’s choose right-branching:

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 107

S̄

Ō

Ō

Ō

Ō

Ō

Ō

B̄-departure

Ō

B̄-destination

Ī-destination

Ē

EOS

I-destination

airport

B-destination

stansted

O

to

B-departure

cambridge

O

from

O

train

O

a

O

me

O

�nd

O

Please

S

BOS

So the grammar has the following kinds of rules:

-̄ → - .̄ - and . are labels

- → 0 - is a label and 0 is a word (incl. BOS)

Ē→ EOS

�e start symbol is S̄ (not S). Let’s call the �rst kind of rules transition rules and

the last two kinds emission rules. (�e reason we have to special-case the last

rule is because it’s the only emission rule whose le�-hand side has a bar over it.

Otherwise, it’s not really that special.)

8.3.3 Hidden Markov models
If the grammar is a probabilistic CFG, then this is equivalent to a hidden Markov

model. �e probabilities of the transition rules -̄ → - .̄ measure the probabil-

ity of one label coming a�er another and are called transition probabilities. �e

emission rules, - → 0, measure the probability of generating a word given a

label and are called emission probabilities.

8.3.4 Conditional random fields
If the grammar is a weighted (not necessarily probabilistic) CFG, then this is

equivalent to a conditional random �eld. A rule can have any weight ? > 0; we

also call log? its score.

Note that in order for this CFG to be equivalent to a CRF, we have to include

all rules of the form - → 0 and -̄ → - .̄ , even if they were not observed in the

training data.

In the parsing chapter, we skipped straight from PCFGs to neural weighted

CFGs, so we won’t dwell on non-neural weighted CFGs any longer.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 108

8.3.5 RNN+CRFs
In the parsing chapter and in HW3, we built a neural parser by using a neural

network to compute the rule scores of a weighted CFG. We can do the exact same

thing here, but with a slightly di�erent neural network.

We start o�, as usual, with a sequence encoder. LetF = F1 · · ·F= be the input

string, withF1 = BOS andF= = EOS. Let Γ be the set of possible labels.

V ∈ R=×3

V8 = Embedding
1 (F8) 8 = 1, . . . , = (8.1)

H ∈ R=×3

H = RNN
2 (V). (8.2)

Usually the encoder is a fancier kind of RNN called a bidirectional LSTM, but

we’re sticking to a simple, le�-to-right RNN here. Each H8 is the encoding ofF8 .

So far, this is the same as the neural parser from before.

Next, we need to de�ne a function that assigns a score to every rule, possibly

depending on its position in the string. We de�ne this function for the three kinds

of rules as follows:

B (-̄ → 8 - .̄ =) = T-,. 0 ≤ 8 ≤ = − 2 (8.3)

B (- → 8−1 0 8) = O8,- 1 ≤ 8 < = (8.4)

B (Ē→ =−1 EOS =) = O8,E (8.5)

where T ∈ R |Γ |× |Γ | is a matrix of learnable parameters, so that every transition

rule gets an independent score; and O is computed from the RNN encodings as

O ∈ R=×|Γ |

O8 = LinearLayer
3 (H8). (8.6)

Now both training and labeling (= parsing) can be done exactly as before.

But, this is an extremely ine�cient way of implementing a RNN+CRF. Since the

grammar includes all rules with the forms shown above, even if they were not

observed in the training data, the grammar is quite large. In the next section,

we’ll see how to optimize this.

8.3.6 RNN+CRFs made more efficient
Recall that during training, we maximize

! =
∑

(F,tree) ∈data

log % (tree | F)

=
∑

(F,tree) ∈data

log

exp B (tree)∑
tree

′ exp B (tree
′)

=
∑

(F,tree) ∈data

©«
B (tree) − log

∑
tree

′
exp B (tree

′

︸ ︷︷ ︸
partition function

)

ª®®®®®®¬
CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 109

and the partition function is computed using a modi�ed CKY algorithm. And

during parsing, we use the CKY algorithm.

As a reminder, here’s the algorithm, where we’ve plugged in the rule scores

computed by the neural network. �e symbol ⊕ is a generic operator that is max

if we’re looking for the best parse and logaddexp if we want the total score of all

parses.

1: for all 0 ≤ 8 < 9 ≤ = do
2: for all - ∈ Γ do
3: chart[8, 9] [-] ← −∞
4: chart[8, 9] [-̄] ← −∞
5: end for
6: end for

7: ⊲ rules of the form - → F8

8: for all 8 ← 1, . . . , = − 1 do
9: for all - ∈ Γ do

10: chart[8 − 1, 8] [-] ← O8,-

11: end for
12: end for

13: ⊲ rule Ē→ EOS

14: chart[= − 1, =] [Ē] ← O=,E

15: ⊲ rules of the form -̄ → - .̄

16: for ℓ ← 2, . . . , = do
17: for 8 ← 0, . . . , = − ℓ do
18: 9 ← 8 + ℓ
19: for : ← 8 + 1, . . . , 9 − 1 do
20: for all - ∈ Γ do
21: for all . ∈ Γ do
22: chart[8, 9] [-̄] ← chart[8, 9] [-̄]

⊕ (T-,. + chart[8, :] [-] + chart[:, 9] [.̄])
23: end for
24: end for
25: end for
26: end for
27: end for
28: return chart[0, =] [S̄]

Linear time. �is is$ (=3), but we would like to reduce this to$ (=). Remember

that the cubic time complexity comes from the triple loop involving 8 , 9 , and : .

But in the trees that our grammar generates, it’s always the case that if 9 − 8 > 1,

then 8 ≤ =−2, : = 8+1, and 9 = =. We didn’t even de�ne the rule-scoring function

for other values of 8 and 9 . So the above triple loop can be rewri�en as a single

loop:

16: for 8 ← = − 2, . . . , 0 do
17: for all - ∈ Γ do
18: for all . ∈ Γ do

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 110

19: chart[8, =] [-̄] ← chart[8, =] [-̄]
⊕ (T-,. + chart[8, 8 + 1] [-] + chart[8 + 1, =] [.̄])

20: end for
21: end for
22: end for

which is $ (=) as desired.

Vectorization. �e other thing that is special about our grammar is that it’s

very dense, in the sense that it has a rule - → 0 for every single - , and a rule

-̄ → - .̄ for every single - and . . Instead of thinking of chart[8, 9] as a hash

table from labels to numbers, we think of it as a vector of numbers. Instead of all

those loops over labels, we can now use vector operations.

1: for 8 ← 1, . . . , = − 1 do
2: chart[8 − 1, 8] ← O8,∗
3: end for
4: for all - ≠ E do
5: chart[= − 1, =]- ← −∞
6: end for
7: chart[= − 1, =]E ← O=,E

8: for 8 ← = − 2, . . . , 0 do
9: chart[8, =]- ←

⊕
.

(
T-,. + chart[8, 8 + 1]- + chart[8 + 1, =].

)
10: end for
11: return chart[0, =]S

�at’s the whole algorithm! But line 9 requires some explanation.

• �e meaning of the index - on the le�-hand side means that this assign-

ment should be performed for all values of - .

• �e meaning of

⊕
. is to perform ⊕ over all values of . . In other words:

During training, ⊕ is logaddexp, so

⊕
is the log-sum-exp over all values

of . (PyTorch logsumexp). During labeling, ⊕ is max, so

⊕
takes the

maximum over all values of . .

�is line can be coded in PyTorch without any loops using broadcasting.
3

• T has rows indexed by - and columns indexed by . .

• chart[8, 8 + 1] is indexed by - , so we can think of it as a column vector, or

a matrix of size |Γ | × 1. In PyTorch, there are many ways to reshape it to

be |Γ | × 1; I usually use unsqueeze.

• chart[8 + 1, =] is indexed by . , so we can think of it as a row vector, or a

matrix of size 1 × |Γ |.

Unlike in math, in PyTorch you can add matrices of size |Γ | × |Γ |, |Γ | × 1, and

1 × |Γ |. �e column vector and row vector are e�ectively replicated until they

have size |Γ | × |Γ |; then they are added to form a matrix of size |Γ | × |Γ |.
3
Please see https://pytorch.org/docs/stable/notes/broadcasting.html for more de-

tails.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

https://pytorch.org/docs/stable/notes/broadcasting.html

Chapter 8. Dialogue 111

�e above algorithm with ⊕ = max �nds the score of the best-scoring label-

ing, but it doesn’t actually �nd the labeling itself. To do that, we use back-pointers

as in CKY:

1: for 8 ← 1, . . . , = − 1 do
2: chart[8 − 1, 8] ← O8,∗
3: end for
4: for all - ≠ E do
5: chart[= − 1, =]- ← −∞
6: end for
7: chart[= − 1, =]E ← O=,E

8: for 8 ← = − 2, . . . , 0 do
9: chart[8, =]- ← max

.

(
T-,. + chart[8, 8 + 1]- + chart[8 + 1, =].

)
10: back[8, =]- ← arg max

.

(
T-,. + chart[8, 8 + 1]- + chart[8 + 1, =].

)
11: end for

Reconstructing the best label sequence is just like reconstructing the best parse

tree in CKY. Namely, back[8, =]- = . means that the best labeling of F8+1 · · ·F=

that starts with - continues with . . So we can start with back[0, =]S and follow

the pointers to reconstruct the whole label sequence.

One �nal note: It’s a li�le weird that this algorithm runs right-to-le�. If we

had made our original tree le�-branching instead of right-branching, the �nal

algorithm would run le�-to-right.

8.4 Dialogue Act Classification
Dialogue act classi�cation is one of numerous text classi�cation problems in NLP;

another very well-known example is sentiment analysis, which is the task of

classifying documents into positive or negative sentiment.

Assume that is a set of possible classes (book hotel, etc.) and let : range

over possible classes. Our training data consists of # strings, each of which is

labeled with a correct class. Broadly, we can divide classi�cation models into

generative and discriminative models. Since you’ve seen more sophisticated ver-

sions of all these models before, we can hopefully describe them brie�y.

8.4.1 Generative classifiers
Generative models are de�ned by the (by now very familiar) equation

arg max

:

% (: | F) = arg max

:

% (:,F) (8.7)

= arg max

:

% (:) % (F | :) (8.8)

where % (:) is just a categorical distribution (% (:) = 2 (:)/#) and % (F | :) is

some sort of language model that depends on : .

If % (F | :) is a unigram language model, this is called a naı̈ve Bayes classi�er.

But it can be a fancier language model, like an =-gram model or an RNN.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 112

8.4.2 Discriminative classifiers
Discriminative classi�ers try to directly estimate % (: | F). Here, we limit our

a�ention to models of the form

h ∈ R3

h = Encoder(F) (8.9)

y = So�maxLayer
1 (h) (8.10)

% (: | F) = y: (8.11)

where Encoder(·) is some function that encodes strings as vectors.

�e simplest choice of encoding would be a bag of words. �at is, 3 = |Σ|,
the words of Σ are numbered 1, . . . , 3 , and hf is the number of times that f oc-

curs inF . �e parameters of the So�maxLayer would be weights W:,f that cap-

ture how much word f is predictive of class : ; for example, we would expect

Wfind hotel,stay to be high, but Wfind hotel,eat to be low. �is kind of classi�er is

usually known as logistic regression.

�ere are many imaginable neural networks that can be used as string en-

coders, but the one that is most o�en used now works as follows. Prepend a

special token CLS to the string, so the string is now CLSF1F2 · · ·F= . �en apply

a Transformer encoder, that is, look up word and position embeddings for each

word, then apply a stack of alternating self-a�ention layers and position-wise

feedforward neural networks. �e result is a sequence of (= + 1) vectors. Take

the �rst of these (the one corresponding to CLS) to be h.

8.5 Generation
In the “traditional” NLP pipeline, a dialogue system would have processed user

input by parsing it (syntax), interpreting it (semantics), and doing something

(dialogue policy) that yields semantics for a response (content planning). �en

the job of content generation would be to convert that semantics to an output

string. Just as semantics has always grappled with the problem of what the output

semantic representations should look like, generation has always grappled with

the problem of what the input semantic representations should look like.

Fortunately, in the task-oriented dialogue system we are sketching out, in-

stead of full semantics we just have frames with slot �llers, and so generation

(sentence realization) just involves mapping frames plus �llers into text. For ex-

ample,

(8.12) recommend restaurant(name = Fiddler’s Hearth, neighborhood =

downtown)

might map to

(8.13) I found a place in downtown called Fiddler’s Hearth.

We can treat this as a translation problem, but are faced with the problem

that the slot �llers are very diverse and the translation model will likely have

trouble with slot �llers it’s never seen before. For example, it’s easy to imagine

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

Chapter 8. Dialogue 113

that it would map the above frame to “I found a place in downtown called Cafe

Navarre,” substituting the name of one downtown restaurant for another. One

solution would be a copy mechanism that we alluded to brie�y when talking about

semantic parsing.

�e solution that Jurafsky and Martin (2021) present is called delexicalization.

�e idea is to train the system to translate from frames like

(8.14) recommend restaurant(name, neighborhood)

to

(8.15) I found a place in neighborhood called name.

Since these delexicalized frames and sentences abstract away from the slot �llers,

they are much less diverse and therefore much easier to learn.

So the training procedure goes like this:

1. For each training frame and sentence,

(a) Remove the slot �llers from the frame.

(b) Replace the slot �llers in the sentence with the slot names.

2. Train a translation model on the delexicalized frames and sentences.

And the generation procedure goes like this:

• For each frame and �llers that come from the dialogue policy,

(a) Remove the slot �llers from the frame.

(b) Translate the delexicalized frame into a delexicalized sentence.

(c) Put the slot �llers back into the sentence.

References
Bobrow, D. G. et al. (1977). “GUS, A frame driven dialog system”. In: Arti�cial

Intelligence 8, pp. 155–173.

Budzianowski, Paweł et al. (Oct. 2018). “MultiWOZ - A Large-Scale Multi-Domain

Wizard-of-Oz Dataset for Task-Oriented Dialogue Modelling”. In: Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing.

Brussels, Belgium: Association for Computational Linguistics, pp. 5016–5026.

doi: 10.18653/v1/D18- 1547. url: https://aclanthology.org/D18-

1547.

Jurafsky, Daniel and James H. Martin (2021). Speech and Language Processing. 3rd.

Dra� of September 21, 2021.

Turing, Alan M. (1950). “Computing Machinery and Intelligence”. In: Mind LIX.236,

pp. 433–460. doi: 10.1093/mind/LIX.236.433.

Vinyals, Oriol and �oc Le (2015). “A Neural Conversational Model”. In: ICML
Deep Learning Workshop. url: https://arxiv.org/abs/1506.05869.

Weizenbaum, Joseph (1966). “ELIZA—A Computer Program For the Study of Nat-

ural Language Communication Between Man and Machine”. In: Communica-
tions of the ACM 9.1, pp. 36–45. doi: 10.1145/365153.365168.

CSE 40657/60657: Natural Language Processing Version of November 17, 2021

https://doi.org/10.18653/v1/D18-1547
https://aclanthology.org/D18-1547
https://aclanthology.org/D18-1547
https://doi.org/10.1093/mind/LIX.236.433
https://arxiv.org/abs/1506.05869
https://doi.org/10.1145/365153.365168

	Dialogue
	Chatbots
	Task-Oriented Dialogue
	Slot Filling (Sequence Labeling)
	Problem
	Sequence labeling as parsing
	Hidden Markov models
	Conditional random fields
	RNN+CRFs
	RNN+CRFs made more efficient

	Dialogue Act Classification
	Generative classifiers
	Discriminative classifiers

	Generation

