
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

5

Chapter 2 – A Quick Tour

2.1 The Compiler Toolchain

A compiler is one component in a toolchain of programs used to create
executables from source code. Typically, when you invoke a single com-
mand to compile a program, a whole sequence of programs are invoked in
the background. Figure 2.1 shows the programs typically used in a Unix
system for compiling C source code to assembly code.

Preprocessor
(cpp)

Preprocessed
Source

Compiler
(cc1)

Assembly
(prog.s)

Assembler
(as)

Object Code
(prog.o)

Static
Linker

(ld)

Executable
(prog)

Libraries
(libc.a)

Dynamic
Linker
(ld.so)

Running
Process

Dynamic Libraries
(libc.so)

Source
(prog.c)

Headers
(stdio.h)

Figure 2.1: A Typical Compiler Toolchain

• The preprocessor prepares the source code for the compiler proper.
In the C and C++ languages, this means consuming all directives that
start with the # symbol. For example, an #include directive causes
the preprocessor to open the named file and insert its contents into
the source code. A #define directive causes the preprocessor to
substitute a value wherever a macro name is encountered. (Not all
languages rely on a preprocessor.)

• The compiler proper consumes the clean output of the preproces-
sor. It scans and parses the source code, performs typechecking and

5

6 CHAPTER 2. A QUICK TOUR

other semantic routines, optimizes the code, and then produces as-
sembly language as the output. This part of the toolchain is the main
focus of this book.

• The assembler consumes the assembly code and produces object
code. Object code is “almost executable” in that it contains raw ma-
chine language instructions in the form needed by the CPU. How-
ever, object code does not know the final memory addresses in which
it will be loaded, and so it contains gaps that must be filled in by the
linker.

• The linker consumes one or more object files and library files and
combines them into a complete, executable program. It selects the
final memory locations where each piece of code and data will be
loaded, and then “links” them together by writing in the missing ad-
dress information. For example, an object file that calls the printf
function does not initially know the address of the function. An
empty (zero) address will be left where the address must be used.
Once the linker selects the memory location of printf, it must go
back and write in the address at every place where printf is called.

In Unix-like operating systems, the preprocessor, compiler, assembler,
and linker are historically named cpp, cc1, as, and ld respectively. The
user-visible program cc simply invokes each element of the toolchain in
order to produce the final executable.

2.2 Stages Within a Compiler

In this book, our focus will be primarily on the compiler proper, which is
the most interesting component in the toolchain. The compiler itself can
be divided into several stages:

Scanner Tokens Parser
Abstract
Syntax
Tree

Semantic
Routines

Intermediate
Representation

Optimizers

Code
Generator

Assembly
Code

Character
Stream

Figure 2.2: The Stages of a Unix Compiler

• The scanner consumes the plain text of a program and groups to-
gether individual characters to form complete tokens. This is much
like grouping characters into words in a natural language.

6

2.3. EXAMPLE COMPILATION 7

• The parser consumes tokens and groups them together into com-
plete statements and expressions, much like words are grouped into
sentences in a natural language. The parser is guided by a grammar
which states the formal rules of composition in a given language.
The output of the parser is an abstract syntax tree (AST) that cap-
tures the grammatical structures of the program. The AST also re-
members where in the source file each construct appeared, so it is
able to generate targeted error messages, if needed.

• The semantic routines traverse the AST and derive additional mean-
ing (semantics) about the program from the rules of the language
and the relationship between elements of the program. For exam-
ple, we might determine that x + 10 is a float expression by ob-
serving the type of x from an earlier declaration, then applying the
language rule that addition between int and float values yields
a float. After the semantic routines, the AST is often converted into
an intermediate representation (IR) which is a simplified form of
assembly code suitable for detailed analysis. There are many forms
of IR which we will discuss in Chapter 8.

• One or more optimizers can be applied to the intermediate represen-
tation, in order to make the program smaller, faster, or more efficient.
Typically, each optimizer reads the program in IR format, and then
emits the same IR format, so that each optimizer can be applied in-
dependently, in arbitrary order.

• Finally, a code generator consumes the optimized IR and transforms
it into a concrete assembly language program. Typically, a code gen-
erator must perform register allocation to effectively manage the
limited number of hardware registers, and instruction selection and
sequencing to order assembly instructions in the most efficient form.

2.3 Example Compilation

Suppose we wish to compile this fragment of code into assembly:

height = (width+56) * factor(foo);

The first stage of the compiler (the scanner) will read in the text of
the source code character by character, identify the boundaries between
symbols, and emit a series of tokens. Each token is a small data structure
that describes the nature and contents of each symbol:

id:height = (id:width + int:56) * id:factor (id:foo) ;

At this stage, the purpose of each token is not yet clear. For example,
factor and foo are simply known to be identifiers, even though one is

7

8 CHAPTER 2. A QUICK TOUR

the name of a function, and the other is the name of a variable. Likewise,
we do not yet know the type of width, so the + could potentially rep-
resent integer addition, floating point addition, string concatenation, or
something else entirely.

The next step is to determine whether this sequence of tokens forms
a valid program. The parser does this by looking for patterns that match
the grammar of a language. Suppose that our compiler understands a
language with the following grammar:

Grammar G1

1. expr → expr + expr

2. expr → expr * expr

3. expr → expr = expr

4. expr → id (expr)

5. expr → (expr)

6. expr → id

7. expr → int

Each line of the grammar is called a rule, and explains how various
parts of the language are constructed. Rules 1-3 indicate that an expression
can be formed by joining two expressions with operators. Rule 4 describes
a function call. Rule 5 describes the use of parentheses. Finally, rules 6 and
7 indicate that identifiers and integers are atomic expressions. 1

The parser looks for sequences of tokens that can be replaced by the
left side of a rule in our grammar. Each time a rule is applied, the parser
creates a node in a tree, and connects the sub-expressions into the abstract
syntax tree (AST). The AST shows the structural relationships between
each symbol: addition is performed on width and 56, while a function
call is applied to factor and foo.

With this data structure in place, we are now prepared to analyze the
meaning of the program. The semantic routines traverse the AST and de-
rive additional meaning by relating parts of the program to each other and
to the definition of the programming language. An important component
of this process is typechecking, in which the type of each expression is
determined, and checked for consistency with the rest of the program. To
keep things simple here, we will assume that all of our variables are plain
integers.

To generate linear intermediate code, we perform a post-order traver-
sal of the AST and generate an IR instruction for each node in the tree. A
typical IR looks like an abstract assembly language, with load/store in-
structions, arithmetic operations, and an infinite number of registers. For
example, this is a possible IR representation of our example program:

1The careful reader will note that this example grammar has ambiguities. We will discuss
that in some detail in Chapter 4.

8

2.3. EXAMPLE COMPILATION 9

ASSIGN

ID
height

MUL

ADD CALL

ID
width

INT
56

ID
factor

ID
foo

Figure 2.3: Example AST

LOAD $56 -> r1

LOAD width -> r2

IADD r1, r2 -> r3

ARG foo

CALL factor -> r4

IMUL r3, r4 -> r5

STOR r5 -> height

Figure 2.4: Example Intermediate Representation

The intermediate representation is where most forms of optimization
occur. Dead code is removed, common operations are combined, and code
is generally simplified to consume fewer resources and run more quickly.

Finally, the intermediate code must be converted to the desired assem-
bly code. Figure 2.5 shows X86 assembly code that is one possible trans-
lation of the IR given above. Note that the assembly instructions do not
necessarily correspond one-to-one with IR instructions.

A well-engineered compiler is highly modular, so that common code
elements can be shared and combined as needed. To support multiple lan-
guages, a compiler can provide distinct scanners and parsers, each emit-
ting the same intermediate representation. Different optimization tech-
niques can be implemented as independent modules (each reading and
writing the same IR) so that they can be enabled and disabled indepen-

9

10 CHAPTER 2. A QUICK TOUR

MOVQ width, %rax # load width into rax

ADDQ $56, %rax # add 56 to rax

MOVQ %rax, -8(%rbp) # save sum in temporary

MOVQ foo, %edi # load foo into arg 0 register

CALL factor # invoke factor, result in rax

MOVQ -8(%rbp), %rbx # load sum into rbx

IMULQ %rbx # multiply rbx by rax

MOVQ %rax, height # store result into height

Figure 2.5: Example Assembly Code

dently. A retargetable compiler contains multiple code generators, so that
the same IR can be emitted for a variety of microprocessors.

2.4 Exercises

1. Determine how to invoke the preprocessor, compiler, assembler, and
linker manually in your local computing environment. Compile a
small complete program that computes a simple expression, and ex-
amine the output at each stage. Are you able to follow the flow of
the program in each form?

2. Determine how to change the optimization level for your local com-
piler. Find a non-trivial source program and compile it at multiple
levels of optimization. How does the compile time, program size,
and run time vary with optimization levels?

3. Search the internet for the formal grammars for three languages that
you are familiar with, such as C++, Ruby, and Rust. Compare them
side by side. Which language is inherently more complex? Do they
share any common structures?

10

