
Introduction to Compilers and Language Design
Copyright © 2023 Douglas Thain.
Paperback ISBN: 979-8-655-18026-0
Second edition.

Anyone is free to download and print the PDF edition of this book for per-
sonal use. Commercial distribution, printing, or reproduction without the
author’s consent is expressly prohibited. All other rights are reserved.

You can find the latest version of the PDF edition, and purchase inexpen-
sive hardcover copies at http://compilerbook.org

Revision Date: August 24, 2023

85

Chapter 6 – The Abstract Syntax Tree

6.1 Overview

The abstract syntax tree (AST) is an important internal data structure that
represents the primary structure of a program. The AST is the starting
point for semantic analysis of a program. It is “abstract” in the sense that
the structure leaves out the particular details of parsing: the AST does
not care whether a language has prefix, postfix, or infix expressions. (In
fact, the AST we describe here can be used to represent most procedural
languages.)

For our project compiler, we will define an AST in terms of five C
structures representing declarations, statements, expressions, types, and
parameters. While you have certainly encountered each of these terms
while learning programming, they are not always used precisely in prac-
tice. This chapter will help you to sort those items out very clearly:

• A declaration states the name, type, and value of a symbol so that
it can be used in the program. Symbols include items such as con-
stants, variables, and functions.

• A statement indicates an action to be carried out that changes the
state of the program. Examples include loops, conditionals, and
function returns.

• An expression is a combination of values and operations that is eval-
uated according to specific rules and yields a value such as an inte-
ger, floating point, or string. In some programming languages, an
expression may also have a side effect that changes the state of the
program.

For each kind of element in the AST, we will give an example of the
code and how it is constructed. Because each of these structures poten-
tially has pointers to each of the other types, it is necessary to preview all
of them before seeing how they work together.

Once you understand all of the elements of the AST, we finish the chap-
ter by demonstrating how the entire structure can be created automatically
through the use of the Bison parser generator.

85

86 CHAPTER 6. THE ABSTRACT SYNTAX TREE

6.2 Declarations

A complete B-Minor program is a sequence of declarations. Each declara-
tion states the existence of a variable or a function. A variable declaration
may optionally give an initializing value. If none is given, it is given a de-
fault value of zero. A function declaration may optionally give the body
of the function in code; if no body is given, then the declaration serves as
a prototype for a function declared elsewhere.

For example, the following are all valid declarations:

b: boolean;

s: string = "hello";

f: function integer (x: integer) = { return x*x; }

A declaration is represented by a decl structure that gives the name,
type, value (if an expression), code (if a function), and a pointer to the next
declaration in the program:

struct decl {

char *name;

struct type *type;

struct expr *value;

struct stmt *code;

struct decl *next;

};

Because we will be creating a lot of these structures, you will need a
factory function that allocates a structure and initializes its fields, like this:

struct decl * decl_create(char *name,

struct type *type,

struct expr *value,

struct stmt *code,

struct decl *next)

{

struct decl *d = malloc(sizeof(*d));

d->name = name;

d->type = type;

d->value = value;

d->code = code;

d->next = next;

return d;

}

(You will need to write similar code for statements, expressions, etc,
but we won’t keep repeating it here.)

86

6.2. DECLARATIONS 87

The three declarations on the preceding page can be represented graph-
ically as a linked list, like this:

struct decl

name type value code next

struct decl

name type value code next

b boolean

struct decl

name type value code next

s string "hello"

f

function(x:integer) returns integer

return x*x;

Note that some of the fields point to nothing: these would be repre-
sented by a null pointer, which we omit for clarity. Also, our picture is
incomplete and must be expanded: the items representing types, expres-
sions, and statements are all complex structures themselves that we must
describe.

87

88 CHAPTER 6. THE ABSTRACT SYNTAX TREE

6.3 Statements

The body of a function consists of a sequence of statements. A statement
indicates that the program is to take a particular action in the order speci-
fied, such as computing a value, performing a loop, or choosing between
branches of an alternative. A statement can also be a declaration of a local
variable. Here is the stmt structure:

struct stmt {

stmt_t kind;

struct decl *decl;

struct expr *init_expr;

struct expr *expr;

struct expr *next_expr;

struct stmt *body;

struct stmt *else_body;

struct stmt *next;

};

typedef enum {

STMT_DECL,

STMT_EXPR,

STMT_IF_ELSE,

STMT_FOR,

STMT_PRINT,

STMT_RETURN,

STMT_BLOCK

} stmt_t;

The kind field indicates what kind of statement it is:

• STMT DECL indicates a (local) declaration, and the decl field will
point to it.

• STMT EXPR indicates an expression statement and the expr field
will point to it.

• STMT IF ELSE indicates an if-else expression such that the expr

field will point to the control expression, the body field to the state-
ments executed if it is true, and the else body field to the state-
ments executed if it is false.

• STMT FOR indicates a for-loop, such that init expr, expr, and
next expr are the three expressions in the loop header, and body

points to the statements in the loop.

• STMT PRINT indicates a print statement, and expr points to the
expressions to print.

• STMT RETURN indicates a return statement, and expr points to the
expression to return.

• STMT BLOCK indicates a block of statements inside curly braces, and
body points to the contained statements.

88

6.3. STATEMENTS 89

And, as we did with declarations, we require a function stmt create

to create and return a statement structure:

struct stmt * stmt_create(stmt_t kind,

struct decl *decl, struct expr *init_expr,

struct expr *expr, struct expr *next_expr,

struct stmt *body, struct stmt *else_body,

struct stmt *next);

This structure has a lot of fields, but each one serves a purpose and is
used when necessary for a particular kind of statement. For example, an
if-else statement only uses the expr, body, and else body fields, leaving
the rest null:

if(x<y) print x; else print y;

STMT_IF_ELSE

decl init_expr expr next_expr body else_body next

x<y print x; print y;

A for-loop uses the three expr fields to represent the three parts of the
loop control, and the body field to represent the code being executed:

for(i=0;i<10;i++) print i;

STMT_FOR

decl init_expr expr next_expr body else_body next

i=0 i<10 i++ print i;

89

90 CHAPTER 6. THE ABSTRACT SYNTAX TREE

6.4 Expressions

Expressions are implemented much like the simple expression AST shown
in Chapter 5. The difference is that we need many more binary types: one
for every operator in the language, including arithmetic, logical, compar-
ison, assignment, and so forth. We also need one for every type of leaf
value, including variable names, constant values, and so forth. The name
field will be set for EXPR NAME, the integer value field for
EXPR INTEGER LITERAL, and so on. You may need to add values and
types to this structure as you expand your compiler.

struct expr {

expr_t kind;

struct expr *left;

struct expr *right;

const char *name;

int integer_value;

const char *
string_literal;

};

typedef enum {

EXPR_ADD,

EXPR_SUB,

EXPR_MUL,

EXPR_DIV,

...

EXPR_NAME,

EXPR_INTEGER_LITERAL,

EXPR_STRING_LITERAL

} expr_t;

As before, you should create a factory for a binary operator:

struct expr * expr_create(expr_t kind,

struct expr *L,

struct expr *R);

And then a factory for each of the leaf types:

struct expr * expr_create_name(const char *name);

struct expr * expr_create_integer_literal(int i);

struct expr * expr_create_boolean_literal(int b);

struct expr * expr_create_char_literal(char c);

struct expr * expr_create_string_literal

(const char *str);

Note that you can store the integer, boolean, and character literal val-
ues all in the integer value field.

90

6.4. EXPRESSIONS 91

A few cases deserve special mention. Unary operators like logical-not
typically have their sole argument in the left pointer:

!x

EXPR_NOT

left right

EXPR_NAME

x

A function call is constructed by creating an EXPR CALL node, such
that the left-hand side is the function name, and the right hand side is an
unbalanced tree of EXPR ARG nodes. While this looks a bit awkward, it al-
lows us to express a linked list using a tree, and will simplify the handling
of function call arguments on the stack during code generation.

f(a,b,c)

EXPR_CALL

left right

EXPR_NAME

f

EXPR_ARG

left right

EXPR_NAME

a

EXPR_ARG

left right

EXPR_NAME

b

EXPR_ARG

left right

EXPR_NAME

c

91

92 CHAPTER 6. THE ABSTRACT SYNTAX TREE

Array subscripting is treated like a binary operator, such that the name
of the array is on the left side of the EXPR SUBSCRIPT operator, and an
integer expression on the right:

a[b]

EXPR_SUBSCRIPT

left right

EXPR_NAME

a

EXPR_NAME

b

6.5 Types

A type structure encodes the type of every variable and function men-
tioned in a declaration. Primitive types like integer and boolean are
expressed by simply setting the kind field appropriately, and leaving the
other fields null. Compound types like array and function are built by
connecting multiple type structures together.

typedef enum {

TYPE_VOID,

TYPE_BOOLEAN,

TYPE_CHARACTER,

TYPE_INTEGER,

TYPE_STRING,

TYPE_ARRAY,

TYPE_FUNCTION

} type_t;

struct type {

type_t kind;

struct type *subtype;

struct param_list *params;

};

struct param_list {

char *name;

struct type *type;

struct param_list *next;

};

92

6.5. TYPES 93

For example, to express a basic type like a boolean or an integer, we
simply create a standalone type structure, with kind set appropriately,
and the other fields null:

boolean
TYPE_BOOLEAN

subtype param

integer
TYPE_INTEGER

subtype param

To express a compound type like an array of integers, we set kind to
TYPE ARRAY and set subtype to point to a TYPE INTEGER:

array [] integer

TYPE_ARRAY

subtype param

TYPE_INTEGER

subtype param

These can be linked to arbitrary depth, so to express an array of array
of integers:

array [] array [] integer

TYPE_ARRAY

subtype param

TYPE_ARRAY

subtype param

TYPE_INTEGER

subtype param

93

94 CHAPTER 6. THE ABSTRACT SYNTAX TREE

To express the type of a function, we use subtype to express the return
type of the function, and then connect a linked list of param list nodes
to describe the name and type of each parameter to the function.

For example, here is the type of a function which takes two arguments
and returns an integer:

function integer (s:string, c:char)

TYPE_FUNCTION

subtype param

TYPE_INTEGER

subtype param

struct param_list

name type next

struct param_list

name type next

TYPE_STRING

subtype param
"s"

TYPE_CHAR

subtype param
"c"

Note that the type structures here let us express some complicated and
powerful higher order concepts of programming. By simply swapping in
complex types, you can describe an array of ten functions, each returning
an integer:

a: array [10] function integer (x: integer);

Or how about a function that returns a function?

f: function function integer (x:integer) (y:integer);

Or even a function that returns an array of functions!

g: function array [10]

function integer (x:integer) (y:integer);

While the B-Minor type system is capable of expressing these ideas,
these combinations will be rejected later in typechecking, because they re-
quire a more dynamic implementation than we are prepared to create. If
you find these ideas interesting, then you should read up on functional
languages such as Scheme and Haskell.

94

6.6. PUTTING IT ALL TOGETHER 95

6.6 Putting it All Together

Now that you have seen each individual component, let’s see how a com-
plete B-Minor function would be expressed as an AST:

compute: function integer (x:integer) = {

i: integer;

total: integer = 0;

for(i=0;i<10;i++) {

total = total + i;

}

return total;

}

DECL "compute"

type value code next

TYPE_FUNCTION

subtype params

STMT_DECL

decl init_expr expr next_expr body else_body next

TYPE_INTEGER

subtype params

PARAM

name type next

DECL "i"

type value code next

STMT_DECL

decl init_expr expr next_expr body else_body next

"x"
TYPE_INTEGER

subtype params

TYPE_INTEGER

subtype params

DECL "total"

type value code next

STMT_FOR

decl init_expr expr next_expr body else_body next

TYPE_INTEGER

subtype params

EXPR_INTEGER

0

EXPR_ASSIGN

left right

EXPR_LT

left right

EXPR_INC

left right

STMT_BLOCK

decl init_expr expr next_expr body else_body next

STMT_RETURN

decl init_expr expr next_expr body else_body next

EXPR_NAME

i

EXPR_INTEGER

0

EXPR_NAME

i

EXPR_INTEGER

10

EXPR_NAME

i

STMT_EXPR

decl init_expr expr next_expr body else_body next

EXPR_NAME

total

EXPR_ASSIGN

left right

EXPR_NAME

total

EXPR_ADD

left right

EXPR_NAME

total

EXPR_NAME

i

95

96 CHAPTER 6. THE ABSTRACT SYNTAX TREE

6.7 Building the AST

With the functions created so far in this chapter, we could, in principle,
construct the AST manually in a sort of nested style. For example, the fol-
lowing code represents a function called square which accepts an integer
x as a parameter, and returns the value x*x:

d = decl_create(

"square",

type_create(TYPE_FUNCTION,

type_create(TYPE_INTEGER,0,0),

param_list_create(

"x",

type_create(TYPE_INTEGER,0,0),

0)),

0,

stmt_create(STMT_RETURN,0,0,

expr_create(EXPR_MUL,

expr_create_name("x"),

expr_create_name("x")),

0,0,0,0),

0);

Obviously, this is no way to write code! Instead, we want our parser
to invoke the various creation functions whenever they are reduced, and
then hook them up into a complete tree. Using an LR parser generator
like Bison, this process is straightforward. (Here I will give you the idea
of how to proceed, but you will need to figure out many of the details in
order to complete the parser.)

At the top level, a B-Minor program is a sequence of declarations:

program : decl_list

{ parser_result = $1; }

;

Then, we write rules for each of the various kinds of declarations in a
B-Minor program:

decl : name TOKEN_COLON type TOKEN_SEMI

{ $$ = decl_create($1,$3,0,0,0); }

| name TOKEN_COLON type TOKEN_ASSIGN expr TOKEN_SEMI

{ $$ = decl_create($1,$3,$5,0,0); }

| /* and more cases here */

. . .

;

96

6.7. BUILDING THE AST 97

Since each decl structure is created separately, we must connect them
together in a linked list formed by a decl list. This is most easily done
by making the rule right-recursive, so that decl on the left represents one
declaration, and decl list on the right represents the remainder of the
linked list. The end of the list is a null value when decl list produces ǫ.

decl_list : decl decl_list

{ $$ = $1; $1->next = $2; }

| /* epsilon */

{ $$ = 0; }

;

For each kind of statement, we create a stmt structure that pulls out
the necessary elements from the grammar.

stmt : TOKEN_IF TOKEN_LPAREN expr TOKEN_RPAREN stmt

{ $$ = stmt_create(STMT_IF_ELSE,0,0,$3,0,$5,0,0); }

| TOKEN_LBRACE stmt_list TOKEN_RBRACE

{ $$ = stmt_create(STMT_BLOCK,0,0,0,0,$2,0,0); }

| /* and more cases here */

. . .

;

Proceed in this way down through each of the grammar elements of
a B-Minor program: declarations, statements, expressions, types, parame-
ters, until you reach the leaf elements of literal values and symbols, which
are handled in the same way as in Chapter 5.

There is one last complication: What, exactly is the semantic type of the
values returned as each rule is reduced? It isn’t a single type, because each
kind of rule returns a different data structure: a declaration rule returns a
struct decl *, while an identifier rule returns a char *. To make this
work, we inform Bison that the semantic value is the union of all of the
types in the AST:

%union {

struct decl *decl;

struct stmt *stmt;

. . .

char *name;

};

And then indicate the specific subfield of the union used by each rule:

%type <decl> program decl_list decl . . .

%type <stmt> stmt_list stmt . . .

. . .

%type <name> name

97

98 CHAPTER 6. THE ABSTRACT SYNTAX TREE

6.8 Exercises

1. Write a complete LR grammar for B-Minor and test it using Bison.
Your first attempt will certainly have many shift-reduce and reduce-
reduce conflicts, so use your knowledge of grammars from Chapter 4
to rewrite the grammar and eliminate the conflicts.

2. Write the AST structures and generating functions as outlined in
this chapter, and manually construct some simple ASTs using nested
function calls as shown above.

3. Add new functions decl print(), stmt print(), etc. that print
the AST back out so you can verify that the program was generated
correctly. Make your output nicely formatted using indentation and
consistent spacing, so that the code is easily readable.

4. Add the AST generator functions as action rules to your Bison gram-
mar, so that you can parse complete programs, and print them back
out again.

5. Add new functions decl translate(), stmt translate(), etc.
that output the B-Minor AST in a different language of your own
choosing, such as Python or Java or Rust.

6. Add new functions that emit the AST in a graphical form so you can
“see” the structure of a program. One approach would be to use the
Graphviz DOT format: let each declaration, statement, etc be a node
in a graph, and then let each pointer between structures be an edge
in the graph.

98

