
Movie Rendering Service
Samantha Rack

Initial Plan - Maya Animation Rendering
● Straightforward web interface for students in Visual FX

○ Renderings of final projects for the class take hours to days

Images obtained from autodesk.com

Obstacles
● Limited number of licenses for Maya software

○ Only 30 Notre Dame machines can run the software simultaneously

● Animation dependencies prevent parallel rendering
● Optimal job length hard to achieve

○ Different frames of the same project can have drastically different render times

● Multiple versions of Maya that are not compatible
● Huge number of render options

Resulting Project - Upgraded POVRay Rendering
● Straightforward web interface for submission instead of terminal access
● Management of many job submissions from different clients
● Length of jobs tailored to Condor’s “ideal” job running time
● Awareness of Condor cluster’s status

System Overview

check_jobs process
 while (1):

// get current status of condor pool
avail =condor_status(LINUX, avail)

// check how many jobs are running
running = db.jobs_running_count()

num_start = min(avail / factor, max_ps - running)

for i = 0 to num_start:
 db.update(job, RUNNING)
 fork(‘condor_povray’, job)

// wait to check db again
sleep(timeout)

condor_povray processes
 // locally render one frame
 one_frame_time = time(‘povray file.pov -K0’)

 // calculate optimal number of frames per condor job
 frames_per_job = (30*60) / one_frame_time

 // build submit files to render all frames
 generate_and_submit(frames_per_job, tot_frames)

 // wait for completion, the build movie
 condor_wait()

 db.update(job, DONE)

 ffmpeg(frames)

Summary
● Greater overall throughput from resources through designing Condor

jobs carefully
● Gatekeeping in system accepts many jobs but is not overwhelmed

