
Scaling Up with AWS

Alan Vuong
Katie Quinn

Idea

● Create a scalable image sharing website
● When a website becomes popular, need to be able to handle more requests
● Amazon (S3, DynamoDB) to scale up
● Using Condor, PhantomJS, and Apache AB to measure performance of non-

scaled vs. scaled up application

Goals

● To increase the storage space available for website
● To increase the number of requests/second that can be made
● To carefully plan out design and budgeting to ensure AWS services are used

efficiently

Website Design

Initial Architecture

Website API

GET request to cherrypy:

● Returns object containing the list of image paths
● {"pictures": [{"id": 1, "name": {"name": "/Pictures/1460917065.jpg\n"}}, {"id": 2,

"name": {"name": "/Pictures/1460917075.jpg\n"}] "result": "success"}

POST request to cherrypy:

● Returns object acknowledging success and image path
● {result: "success", file: "/Pictures/1460920228.jpg"}

AWS: S3 and DynamoDB

S3

● Store objects in buckets
● Uses replication of at least 3 copies
● High availability, weak consistency

DynamoDB

● Fully managed NoSQL Database service
● Uses replication
● Optimizes availability over consistency

Scaled Up Architecture

Using Javascript to send requests to AWS

Challenges

● Browser caching javascript file
○ Restarting the apache service with new files
○ Files not properly loaded

● PhantomJS testing
○ For testing, you have to have the client actually make the AJAX calls to our CherryPy server

and further on S3 and DynamoDB

Testing and Conclusions
Users Request/s

1 33.81

2 32.78

3 30.98

4 30.30

5 28.85

6 28.87

7 28.11

8 27.65

9 27.3

10 26.65

What’s next?

● Testing more cases such as “POST” requests
● More testing for the scaled up version
● Add more complexity to the website, more styling

Questions?

