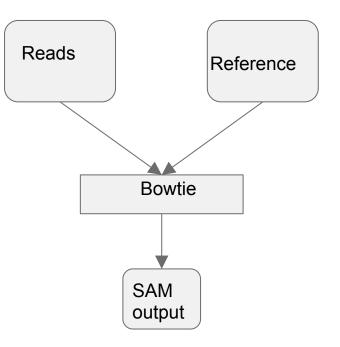

Short Read Alignment in Cloud Computing

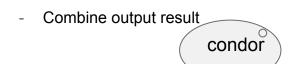
Xuanyi Li Xinyi Wang

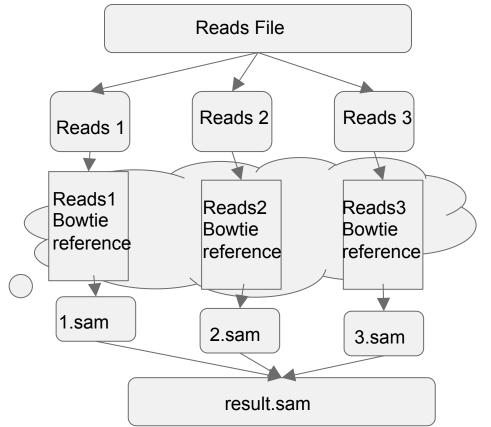
Rationale


- Improvement in sequencing technology:
- Critical need to accelerate data analysis
- Short reads (30-50bp) alignment (RNA-seq)
 - Large input size
 - Parallel nature
- Goal: convert <u>bowtie</u>, an open-source short-read-aligner, to the Cloud.

1. Mortazavi, Ali, et al. "Mapping and quantifying mammalian transcriptomes by RNA-Seq." *Nature methods* 5.7 (2008): 621-628.

Bowtie

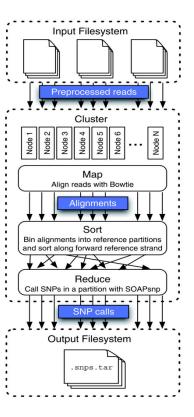

- Ultrafast, memory efficient, short aligner
- Works best with short reads and long reference genomes
- Output in SAM format
 - Read name, reference strand aligned to, string representing differences etc..
- Default parameters used:
 - (-k 1): output the first valid alignment encountered
 - Number of cores: 1

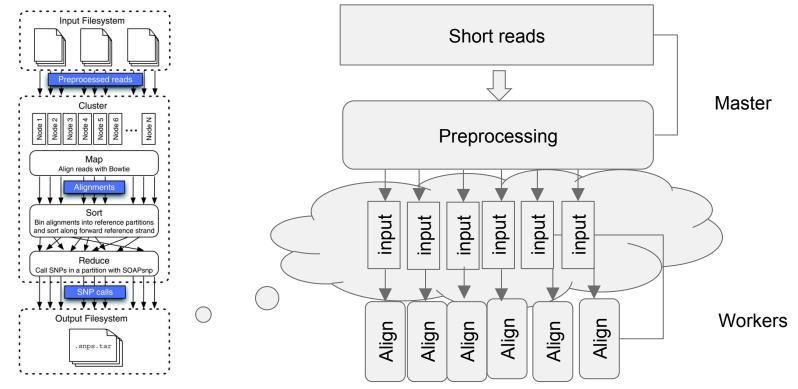


Approach one: Bowtie in workqueue

 \bigcirc

- Split reads files
- Each read file is a task
 - Small read file
 - Bowtie executable
 - Reference genome
- condor_submit_workers




Approach two: Implementation with MapReduce

- Crossbow
 - Alignment & SNP calling
- Map & Reduce wrapper
 - MapWrap.pl
 - BinSort.pl
 - ReduceWrap.pl

1. Langmead, Ben, et al. "Searching for SNPs with cloud computing." Genome Biol 10.11 (2009): R134.

Implementation Crossbow

Testing Datasets

E_coli

Short Reads

Dataset	# of spots	# of bases	size
Small	8M	321.2M	2.2Gb
Full	20M	720M	4.3Gb

Mouse

Short Reads

Dataset	# of spots	# of bases	size
Small	6M	485.9M	3.2Gb
Full	56M	4G	26.6Gb

Reference Genomes

- Ecoli: **5.4 Mb**

Reference Genomes

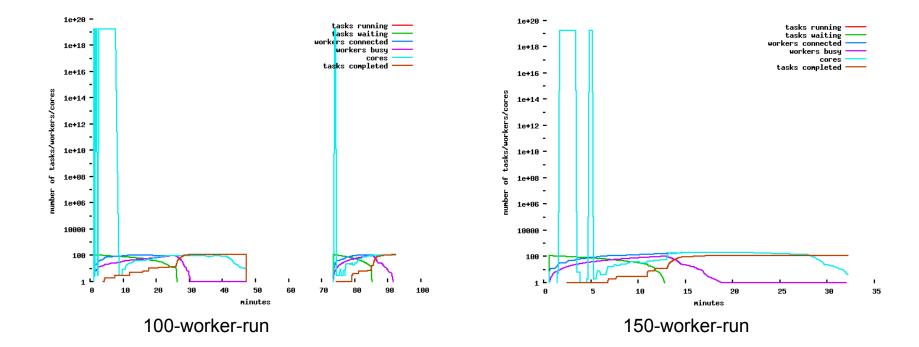
- Mouse Chromosome 17: 29Mb

Performance: scaling up input data

• 20-worker-runs

	Ecoli_small	Ecoli_full	Mouse_small	Mouse_full
Wq_bowtie	63.54(s)	162.54(s)	411.79(s)	1089.07(s)
Wq_crossbow	254.43(s)	498.63(s)	494.78(s)	1441.69(s)

Performance: scaling up number of workers

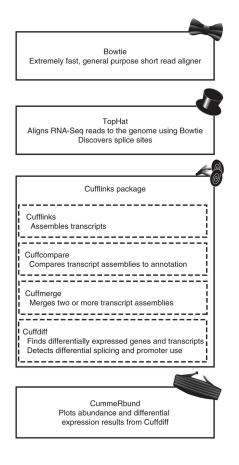

Mouse-full-runs

	20 workers	50 workers	100 workers	150 workers
Wq_bowtie	1089.07(s)	663.71(s)	772.51(s)	739.64(s)
Wq_crossbow	1441.69(s)	2115.98(s)	1171.09(s)	2085.38(s)

Wq_Crossbow

	20 workers	50 workers	100 workers	150 workers
Speedup	21.81	14.85	26.85	15.07
Efficiency	1.09	0.30	0.27	0.10

Performance:stragglers



Conclusion

- Short read alignment is suitable for the Cloud
- Problem with stragglers
- Wq_bowtie is faster; But wq_crossbow is part of an analysis pipeline in MapReduce model

Future direction

- Crossbow on hadoop
- Build wq_bowtie into a sequence analysis pipeline in cloud

1. Trapnell, Cole, et al. "Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks." Nature protocols 7.3 (2012): 562-578.