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the material. When we reach SmS, the state immediately above the
Fermi energy contains more f character than s±d character, and the
lowest-energy state has this electron participating in the occupied f
subshell; that is, the divalent phase is favoured. This behaviour
occurs in the light rare earths, from CeS to EuS, and is repeated in
the heavy rare earths from GdS to YbS.

As we go from EuS to GdS in the trivalent state, there is a sudden
change in the electronic structure. In trivalent EuS there is a sub-
band of six occupied localized spin-up f states, plus one spin-up
band state which is predominantly f-like and which is tied to the
Fermi level. The unoccupied f bands are held well above the Fermi
level by the magnetic splitting. When we go to the trivalent form of
GdS, the seventh spin-up f band is localized and is no longer tied to
the Fermi energy. The spin-up bands then fall closer to the nucleus,
to the position they would occupy in the atom. The unoccupied f
bands can then drop close to the Fermi energy.

There are two rather different types of f electron in these
materials. The fully occupied f states are strongly localized and
have the characteristics of core states. These determine the `valence'.
The outer electron is less well localized, meaning that the number of
f electrons in these materials is not an integer. The difference in the
total number of f electrons between the divalent and trivalent states
changes with atomic number and compound. Hence the traditional
view that the number of f electrons determines the valence is shown
to be not well founded. Consequently, a valence transition is not, in
general, a transition between two states with integer numbers of f
electrons. Rather, it is a transition between two states with integer
numbers of localized f electrons and an unspeci®ed number of other
f electrons.

Our discussion of valency implies that there is a direct relation-
ship between the difference in the number of the less well localized f
electrons and the difference in energy between the two valence
states. This is plotted in Fig. 4: a linear relationship is indeed
observed. M
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The narrowest feature on present-day integrated circuits is the
gate oxideÐthe thin dielectric layer that forms the basis of ®eld-
effect device structures. Silicon dioxide is the dielectric of choice
and, if present miniaturization trends continue, the projected
oxide thickness by 2012 will be less than one nanometre, or about

®ve silicon atoms across1. At least two of those ®ve atoms will be at
the silicon±oxide interfaces, and so will have very different
electrical and optical properties from the desired bulk oxide,
while constituting a signi®cant fraction of the dielectric layer.
Here we use electron-energy-loss spectroscopy in a scanning
transmission electron microscope to measure the chemical com-
position and electronic structure, at the atomic scale, across gate
oxides as thin as one nanometre. We are able to resolve the
interfacial states that result from the spillover of the silicon
conduction-band wavefunctions into the oxide. The spatial
extent of these states places a fundamental limit of 0.7 nm (four
silicon atoms across) on the thinnest usable silicon dioxide gate
dielectric. And for present-day oxide growth techniques, interface
roughness will raise this limit to 1.2 nm.

It is now technologically possible to produce metal oxide semi-
conductor ®eld effect transistors (MOSFETs) with gates shorter
than 50 nm and SiO2 gate oxides less than 1.3 nm thick2. Such a thin
gate oxide is required to improve the drain-current response of the
transistor to the applied gate voltage (allowing lower voltages to be
used). As power dissipation at present limits the scale of integration,
lowering the power supply voltage becomes the key to increasing
integration and improving integrated-circuit performance. The
performance of the gate oxide therefore becomes the limiting
factor when manufacturing very-large-scale integrated circuits. As
a practical alternative to SiO2 (or its nitrogenated derivatives),
providing a higher dielectric constant or a reduced leakage current,
has not been identi®ed yet1, it is crucial to the future of very-large-
scale integration (VLSI) to discover the practical limits on the
thickness of the SiO2 gate oxide.

There are two fundamental considerations. First, the roughness
of the interface must be controlled at an atomic scale if such thin
oxides are to prove practical. The leakage current through a 1-nm-
thick oxide increases by about a factor of 10 for every 0.1-nm
increase in the root-mean-square roughness. This leakage current,
in conjunction with the subthreshold leakage, is the most important
®gure of merit in a MOSFET. Second, a single layer of silicon and
oxygen has the incorrect topology to reproduce the local electronic
structure of bulk silicon dioxide3. The question is then how thick
must a silicon dioxide layer be before its bulk electrical properties
can be obtained? The presence of an intrinsic transition region
(which may be a substoichiometric oxideÐthe `suboxide') between
bulk Si and the bulk-like SiO2 will place a fundamental limit on
drive current by limiting the minimum thickness. Attempts to
measure the width of the transition region have given answers
that range from structurally abrupt (for molecular beam epitaxy on
an atomically ¯at substrate4) to a chemical thickness of 0.3±0.5 nm
(for thermally grown5 oxides). A comprehensive review of earlier
work in the ®eld (and the consequences for electronic properties of
the interface) is given in ref. 6. However, there is considerable
disagreement as to the precise structure and chemical composition
of this suboxide7,8.

Even if the interface structure were known, the connection
between the physical arrangement of atoms at the interface and
their electrical properties is neither direct nor obvious. Here we
focus on measuring the electronic states that directly determine the
electrical properties of the interface, which we do with atomic-scale
electron-energy-loss spectroscopy (EELS)9±12. We use EELS to map
the unoccupied electronic density of states by site, atom-column
and atomic species. These measurements give localized information
about both chemical composition and electronic properties. The
work of Batson11 is particularly relevant for the present study as he
demonstrated that a usable Si L edge EELS signal can be obtained
from an atomic-sized probe at a Si/SiO2 interface. To improve the
contrast and sensitivity, we found it necessary to use the higher-
energy (but weaker) oxygen K edge which is more localized than the
Si L edge13.

The O K and Si L2,3 EELS edges provide information on the
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unoccupied O-p, and Si-s,d electronic densities of states (DOS)
respectively14. The effect of the 2p core hole on the Si L edge is
signi®cant, producing a strong exciton. However, the 1s core hole on
the O K edge does not introduce any new features at the 1-eVenergy
resolution used in this study (as we veri®ed by comparison of
ab initio calculations of the ground-state DOS to the EELS spectra
(J. Neaton and D.A.M., unpublished results). This allows a single-
particle interpretation of the EELS spectra, which are proportional
to local densities of states partitioned in three ways: by site (as the
incident probe is localized); chemical species (as each element has
unique core level binding energies); and angular momentum (from
the dipole selection rules)15,16. In a scanning transmission electron
microscope (STEM), the EELS measurements are made at internal
interfaces, not free surfaces, by passing the 100-keV electron beam
(0.2±0.5 nm diameter) through a thin ®lm9±12,17. The ®lm is chosen
to be thick enough that surface states produce a negligible fraction
of the transmitted signal, but also thin enough that multiple
scattering is not signi®cant. The interface is oriented parallel to
the beam, so that a column of atoms in the interface plane can be
measured separately from any atoms in adjacent columns. But
because the interface is viewed in projection, any interfacial rough-
ness (especially on length scales thinner than the sample) can lead to
an apparent broadening of the interface. We therefore also use X-ray
re¯ectivity to obtain independent measurements of the interface
roughness.

We found that the thermal processing needed to grow the gate
oxides roughened the interfaces (possibly by microfaceting as the
step density is not altered). Consequently, we also searched for a
model system containing atomically abrupt interfaces, before
examining the thermal oxides. Native oxides which were formed
in a dry atmosphere on epitaxial silicon layers produced by chemical
vapour deposition (CVD) on [001] silicon could be less than 0.8 nm

thick and have very smooth Si/SiO2 interfaces. The native oxides
were prepared for microscopy by adding a protective overlayer of
amorphous silicon (a-Si), resulting in Si/SiO2/a-Si sandwich. The O
K edge recorded at these smooth interfaces is strikingly different
from that for bulk SiO2 (Fig. 1). First, the edge onset (a in Fig. 1) is
reduced by 3 eV at the interface with respect to the bulk. As the O K
edge re¯ects the portion of the conduction band projected onto the
probed O atom, the reduced edge onset implies a reduced bandgap
(which will probably increase the local dielectric constant and
electrical conductivity6). Second, the sharp peak (b in Fig. 1),
which is the ®rst extended-®ne-structure peak in the bulk near-
edge spectrum, is absent at the interface. X-ray absorption studies
of the O K edge in quartz, crystobalite and coesite (three different
forms of SiO2 which have the same nearest-neighbour topologies
and O±Si±O bond angles but differ mainly in the Si±O±Si bond
angles and dihedral angles) all show the same near-edge structure18.
The same edge shape is also present in GeO2 for the quartz structure,
but not for rutile, suggesting that it is the position of the O atoms
and not the cations that determines the shape of peak b. Generally,
the sharp peak b is identi®ed as arising from O±O scattering and it
decreases in intensity as the number of O second-nearest neigh-
bours around the excited O atom are reduced19. Essentially, silicon
is a much weaker scatterer than O and does not produce strong
extended-®ne-structure oscillations. We expect a reduction in this
peak's intensity even for an atomically abrupt interface as the last
layer of O atoms would always lose half its O second-nearest
neighbours. (A similar effect can be seen at Cu/MgO interfaces17).
However, the almost complete absence of this peak implies that
more O second-nearest neighbours are missingÐthat is, the last
atom is in a silicon-rich environment. We will use this feature later
to estimate the width of the suboxide in the thermally grown gate
oxides.

A similar interfacial spectrum is observed at the interface between
Si and the thermally grown oxides. Figure 2 shows EELS spectra
recorded point by point across a gate stack whose oxide thickness
was nominally measured at 1 nm by ellipsometry. The spectrum
from each point was decomposed into a linear combination of the
bulk and interface signals from Fig. 1, and this decomposition was
used to identify the localized relative fractions of bulk-like and
interfacial oxide signals (plotted in Fig. 3a). We note that 60 6 6%
of the total oxygen signal is generated by the interfacial atoms
(whose local electronic structure is very different from the bulk).
From X-ray re¯ectivity measurements, we ®nd that the substrate/
oxide interface roughness has a standard deviation of jr � 0:1 nm
over length scales from 0.1 to 1,000 nm. The projected peak±peak
roughness (that is, the distance from minimum to maximum
excursion of the silicon substrate) expected in the EELS measure-
ments is then 6jr � 0:6 nm. Such roughness will spread out the
interfacial signal, such as that in Fig. 3a, without changing its total
area. Consequently, the apparent broadness of the lower interface is
dominated by the expected 0.6-nm interface roughness, plus the
chemical width of the interface (and the 0.27-nm-wide probe added
in quadrature). The width of the upper interface between the oxide
and the a-Si is half that of the lower interface, but the interfacial
areas are the same. This suggests that the main difference between
the thermally grown lower interface and the upper interface
produced by CVD of a-Si is that the upper interface is much
smoother.

The gate stack was then annealed at 1,050 8C for 10 sÐa thermal
budget typical of that used in device processing. Figure 3b shows
that after annealing, the upper interface (which has now been
converted to polycrystalline silicon) becomes as rough as the
lower. However, the fraction of interfacial signal is essentially
unchanged at 50 6 5%. The most signi®cant difference is that the
two interfacial regions now overlap. As the interfacial signal (feature
a of Fig. 1) is associated with tunnelling states (discussed below), a
large leakage current is expected and observed. This leakage current
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over many lattice spacings. The measurements were performed on the Cornell
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style parallel EELS spectrometer. The microscope has been modi®ed to achieve
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of 10 A cm-2 is higher than desirable for use in integrated circuits1,
but the device is still able to function as a transistor2, producing
drive currents in excess of 1 mA per mm. By increasing the gate oxide
thickness to a point where the two interfacial regions no longer
overlap, the tunnelling can be reduced. Figure 3c shows a thicker
gate oxide (1.8 nm ellipsometric thickness) where the measured
electrical-leakage current has been suppressed by 6±7 orders of
magnitude. The width of the interface region is not increased in the
thicker oxide.

We now estimate the width of the suboxide (that is, the region of
substoichiometric oxide) from the line pro®le of the interface states
by recalling that the extended ®ne structure on the O K edge
(especially peak b) is sensitive to the number of second-nearest
neighbours that are O atoms19. We need to correct for both the
interfacial roughness and the fact that the EELS signal is sensitive
to second-nearest neighbours as well as nearest neighbours (unlike
X-ray photoelectron spectroscopy, XPS). The roughness (and ®nite
instrument resolution) can be accounted for by using the full-width
at half-maximum (FWHM) of the total oxygen line-scan (Fig. 3) as
a measure of the spatial width of the oxide.

The FWHM of the line pro®le is independent of interfacial
roughness and instrumental spatial resolution, provided that the
roughness pro®le is symmetric about the centre of each interface (as
is the case in Fig. 3). For Fig. 3b, the FWHM of the bulk-like oxide is
0:85 6 0:05 nm. From the ratio of areas of interface and bulk-like

oxide, each interfacial region (de®ned as that region lacking peak b
on the O K edge and hence having fewer oxygen second-nearest
neighbours) has a FWHM of 0:43 6 0:05 nm. The interface thus
de®ned can never be sharper than 0.27 nm (as this is the distance
between O second-nearest neighbours, and the last O atom in
contact with the bulk Si will always be missing some second-nearest
neighbours even at a perfect interface). Consequently, the suboxide
cannot be thicker than 0:43±0:27 � 0:16 nm (that is, 1±2 mono-
layers thick). This upper limit placed by the EELs measurements is
consistent with the suboxide thickness inferred indirectly from
XPS5.

The additional electronic states at the interface (feature a in Fig. 1)
which appear at energies below the bulk SiO2 conduction band edge
are roughly aligned with the bulk silicon conduction band. We
identify these as induced gap states20 resulting from the exponential
decay of the silicon conduction band wavefunctions into the oxide
(consequently there will be no states in the bandgap of bulk silicon).
These evanescent states should be a general feature of any Si/SiO2

interface and should not be very sensitive to the detailed atomic
structure. The additional states in the SiO2 bandgap near the
interface also imply an altered dielectric constant there. The
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interfacial dielectric constant will probably be between that of Si and
SiO2. The altered dielectric layers are not accounted for in our
ellipsometric measurements, in which we assume that the oxide has
only the dielectric constant of bulk SiO2. This is probably why
ellipsometry has underestimated the width of the oxides in Fig. 3.

The probe localization is obtained by constructing a wavepacket
with a transverse momentum spread of more than a reciprocal
lattice vector, and consequently all electronic momentum informa-
tion is lost (as required by the uncertainty principle). Therefore
these evanescent states responsible for tunnelling through the oxide
and the states from the extended conduction band are treated on an
equal footing, and cannot be separated in such a local measurement.
In the simplest model, the silicon wavefunctions decay exponen-
tially into the oxide barrier with a decay length for the evanescent
states, l(E), determined by the energy difference between the
interfacial state (E) and the conduction band edge of bulk SiO2,
(Ec), as l�E� � ~=Î�Ec 2 E�. The tunnelling current depends on the
overlap of the evanescent states from either interface. A satisfactory
tunnelling barrier is formed when the oxide thickness t is 6l. This
sets an absolute minimum thickness of tmin � 0:7 nm for an ideal
SiO2 gate oxide. Interfacial roughness adds another 6jr to tmin. The
smallest roughness for our thermally grown oxides was
6jr � 0:6 nm which puts a lower limit of 1.2 nm on the practical
SiO2 gate oxide thickness. The induced gap states also place severe
constraints on the minimum allowed thickness for alternative
dielectrics, many of which have large dielectric constants, but
reduced bandgaps and hence longer decay lengths. Furthermore,
there is the possibility of a reaction between the dielectric and the
silicon substrate to form a silicon oxide interlayer. If the interlayer
thickness exceeds 1.3 nm (and a typical native oxide is 2 nm thick),
the gate capacitance is less than what could be obtained with a pure
SiO2 gate oxide. M
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Natural materials are renowned for their strength and tough-
ness1±5. Spider dragline silk has a breakage energy per unit weight
two orders of magnitude greater than high tensile steel1,6, and is
representative of many other strong natural ®bres3,7,8. The abalone
shell, a composite of calcium carbonate plates sandwiched
between organic material, is 3,000 times more fracture resistant
than a single crystal of the pure mineral4,5. The organic compon-
ent, comprising just a few per cent of the composite by weight9, is
thought to hold the key to nacre's fracture toughness10,11. Cera-
mics laminated with organic material are more fracture resistant
than non-laminated ceramics11,12, but synthetic materials made of
interlocking ceramic tablets bound by a few weight per cent of
ordinary adhesives do not have a toughness comparable to nacre13.
We believe that the key to nacre's fracture resistance resides in the
polymer adhesive, and here we reveal the properties of this
adhesive by using the atomic force microscope14 to stretch the
organic molecules exposed on the surface of freshly cleaved nacre.
The adhesive ®bres elongate in a stepwise manner as folded
domains or loops are pulled open. The elongation events occur
for forces of a few hundred piconewtons, which are smaller than
the forces of over a nanonewton required to break the polymer
backbone in the threads. We suggest that this `modular' elonga-
tion mechanism might prove to be quite general for conveying
toughness to natural ®bres and adhesives, and we predict that it
might be found also in dragline silk.

We have looked for the mechanism behind the toughness of the
organic adhesives and ®bres, and, in particular, at the nacre in
abalone shells. Analysis of the insoluble organic matrix from the
abalone shell revealed a ®brous core in the interlamellar sheets
placed between successive nacre tablets5,15,16, which probably serve as
an adhesive holding the tablets together. The organic adhesive is
readily apparent when the tablets are pulled apart (Fig. 1). At least
one protein, lustrin A, has been isolated from this insoluble organic
matrix. The complementary DNA and translated protein sequence
reveal that the structure of this protein consists of about 10 alternating
and highly conserved cysteine-rich and proline-rich domains,
demonstrating that the structure is highly modular17. Immuno-
histochemical analysis of the ®bres (Fig. 1) revealed lustrin A to be a
component of the adhesive between the nacre mineral tablets.

Rief et al.18,19 demonstrated that the modular structure of a single
molecule can be examined by attaching the molecule between a ¯at
surface and a cantilever of an atomic force microscope (AFM). By
pulling on the protein titin and plotting the force versus extension
curves, these authors measured the force required to break open
the individual subunit in its modular structure. As the titin


