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In this paper, we consider a controller failure time analysis problem for a class of symmetric linear time-invariant (LTI)
systems controlled by a pre-designed symmetric static output feedback controller. We assume that the controller fails
from time to time due to a physical or purposeful reason, and we analyse stability and H1 disturbance attenuation
properties of the entire system. Our aim is to find conditions concerning controller failure time, under which the system’s
stability and H1 disturbance attenuation properties are preserved to a desired level. For both stability and H1

disturbance attenuation analysis, we show that if the unavailability rate of the controller is smaller than a specified
constant, then global exponential stability of the entire system and a reasonable H1 disturbance attenuation level is
achieved. The key point is to establish a common quadratic Lyapunov-like function for the entire system in two different
situations.

1. Introduction

In this paper, we consider some quantitative proper-

ties for linear time-invariant (LTI) control systems with

controller failures. The motivation of studying such

problems stems from the fact that controller failures

always exist in any real control systems due to various

environmental factors. For example, for the feedback

control system depicted in figure 1, which is composed

of a system and a feedback controller, controller failures

occur when the signals are not transmitted perfectly on

the route (a) or (b), or when the controller (c) itself is not

available sometimes due to some known or unknown

reason. Another important motivation concerning

controller failures is that we can think about ‘failure’

in a positive way: ‘suspension’, i.e. in the situation

where economical issue or system life consideration

is concerned, we desire to suspend the controller

purposefully from time to time.

For feedback control systems, the problem of posses-

sing integrity was considered in Shimemura and Fujita

(1987), where it was proposed to design a state feedback

controller so that the closed-loop system remains stable

even when some part of the controller fails. In Hassibi

and Boyd (1999), similar control systems were dealt with

using asynchronous dynamical systems (ADS), and two

real systems, the control over asynchronous network

and the parallelized algorithm, were discussed. In that

context, a Lyapunov-based approach was proposed to

construct the controller so that the system has the

desired properties. Zhang et al. (2001) stated similar

control problems in the framework of networked con-

trol systems (NCS), where information (reference input,

plant output, control input, etc.) is exchanged through a

network among control system components (sensors,

controller, actuators, etc.), and thus packet dropouts

occurring inevitably due to unreliable transmission

paths lead to controller failures. Certainly, we can

think of package dropouts positively in the sense that

we expect to use a limited rate of data and information

to control our system. The control problems in that case

also fall in the framework of feedback control systems

with controller failures.

In our recent work, we have considered several

analysis problems for control systems with occasional

controller failures. First, we considered in Zhai et al.

(2000) a controller failure time analysis problem for

exponential stability of LTI continuous-time systems

with state feedbacks. By using a piecewise Lyapunov

function, we showed that if the unavailability rate of

the controller is smaller than a specified constant and

the average time interval between controller failures

is large enough, then global exponential stability of the

system is guaranteed. In Zhai et al. (2001 a), the result

of Zhai et al. (2000) was extended to LTI discrete-time

systems. Furthermore, the authors extended the consid-

eration to L2 gain analysis for LTI continuous-time

systems with controller failures in Zhai et al. (2001 b).

Recently, we extended the results in Zhai et al.

(2000, 2001 a) to a dynamical output feedback case in

Zhai (2002). In that context, we showed that if the

unavailability rate of the controller is smaller than a

specified constant and the average time interval between

controller failures (ATBCF) is large enough, then expo-

nential stability of the system is guaranteed. For H1
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disturbance attenuation, we showed that if the unavail-
ability rate of the controller is smaller than a specified
constant, then the system with an ATBCF achieves
a reasonable weighted H1 disturbance attenuation
level, and the weighted H1 disturbance attenuation
approaches normal H1 disturbance attenuation when
the ATBCF is sufficiently large. However, the results
in Zhai (2002) are quite conservative, and the reason is
supposed to be in the use of piecewise Lyapunov func-
tions. This observation motivates us to think about the
following question: What kind of feedback control
systems have a common quadratic Lyapunov-like function
(Hu et al. 2002) for the two cases where respectively
the controller works or the controller fails? What kind
of properties can be obtained for such systems?

In this paper, we give a clear (though not complete)
answer to the above question. More exactly, we will
show that a class of symmetric LTI control systems,
which are composed of a symmetric open-loop LTI
system and a symmetric static output feedback con-
troller, will have a common quadratic Lyapunov-like
function for the case where the controller works and
the case where the controller fails. Furthermore, we
will show that if the unavailability rate of the controller
is small, then the original systems’ exponential stabilities
and L2 gain properties will be preserved to a reasonable
level. We take symmetric systems into consideration
since such systems appear quite often in many engineer-
ing disciplines (e.g. electrical and power networks,
structural systems, viscoelastic materials, etc.) and thus
belong to an important class in control engineering
(Ikeda 1995, Ikeda et al. 2001).

The system we consider is described by equations of
the form

x½kþ 1� ¼ Ax½k� þ B1w½k� þ B2u½k�

z½k� ¼ C1x½k� þDw½k�

y½k� ¼ C2x½k�

9>=
>; ð1Þ

where x½k� 2 <
n is the state, u½k� 2 <

m is the control
input, w½k� 2 <

r is the disturbance input, y½k� 2 <
p is

the measurement output, z½k� 2 <
q is the controlled

output, and A,B1,B2,C1,C2 and D are constant
matrices of appropriate dimension. Throughout this
paper, we assume

(i) the system is symmetric in the sense

A ¼ AT, B1 ¼ CT
1 , B2 ¼ CT

2 , D ¼ DT
ð2Þ

(ii) A is not Schur stable and a symmetric static
output feedback

u ¼ Ksy, Ks ¼ KT
s ð3Þ

has been designed so that the closed-loop system
composed of (1) and (3) has the desired property
(exponential stability with certain decay rate
or certain H1 disturbance attenuation level).

However, due to physical or purposeful reasons, the
designed controller sometimes fails with a (not necess-
arily constant) time interval until we recover it. In this
setting, we derive the condition of controller failure
time, under which the system’s exponential stability or
its H1 disturbance attenuation property is preserved to
a desired level. As in Zhai et al. (2000, 2001 a,b), we use
the word ‘controller failure’ in this paper to mean com-
plete breakdown of the controller (u¼ 0) on a certain
time interval, neither as the one in Shimemura and
Fujita (1987) where part of the controller fails, nor as
the one in Hassibi and Boyd (1999) where the controller
decays slowly at a rate.

To analyse stability and H1 disturbance attenuation
properties of the symmetric system with controller fail-
ures, we utilize a common quadratic Lyapunov-like
function approach. It is well known that Lyapunov
function theory is the most general and useful approach
for studying qualitative properties of various control
systems. However, for the system in hand, traditional
Lyapunov functions do not exist since the system is
unstable when the controller fails. Instead of traditional
single Lyapunov functions, we construct a common
quadratic Lyapunov-like function along with the situa-
tion of the controller. Although the common quadratic
Lyapunov-like function proposed in this paper is similar
to traditional Lyapunov functions in form, it does not
meet the requirement for traditional Lyapunov func-
tions, and thus is called a common quadratic Lyapunov-
like function in this paper. It should be noted here that
the idea of a common quadratic Lyapunov-like function
for H1 control systems with controller failures in this
paper originates from the recent paper Zhai et al. (2002)
by the authors, where stability and L2 gain of switched
systems composed of stable symmetric LTI subsystems
was analysed. In this paper, we extend the approach in
that context to the symmetric H1 control systems which
include the unstable situation when the controller fails.

(c)

(b) (a)

yu

K(s)

P(s)

w z

Figure 1. Controller failures occur in feedback control
systems.
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2. Stability analysis

In this section, we set w½k� � 0 in the system (1) to
analyse stability for the system with controller failures.
More precisely, we assume that the controller (3) has
been designed so that the closed-loop system

x½kþ 1� ¼ Asx½k�, As ¼ Aþ B2KsC2 ð4Þ

is exponentially stable.
We first give a definition concerning exponential

stability of an autonomous system quantitatively.

Definition 1: The system x½kþ 1� ¼ f ðx½k�Þ with
f ð0Þ ¼ 0 is said to be exponentially stable with decay
rate 0 < � < 1 if kx½k�k � c�k

kx½0�k holds for any x½0�,
any k� 1 and a constant c>0.

We suppose that the designed controller (3) some-
times fails and we need a (not definitely constant) time
interval to recover it. Obviously, when the controller
fails, the closed-loop system assumes the form of

x½kþ 1� ¼ Ax½k� ð5Þ

which is obtained by substituting u¼ 0 in (1). Hence, the
performance of the entire system is dominated by the
following piecewise difference equation

x½kþ 1� ¼
Asx½k� when the controller works
Ax½k� when the controller fails:

�
ð6Þ

The next definition is about the unavailability rate of
the controller, which plays a crucial role in this paper.

Definition 2: For any k>1, we denote by Tu(k) the
total time interval of controller failures during ½0, kÞ,
and call the ratio TuðkÞ=k the unavailability rate of the
controller in the system.

Since As is Schur stable and A is not Schur stable,
we can always find two positive scalars �s > 1 and
�u > 1 such that �sAs remains Schur stable and
ð1=�uÞA becomes Schur stable. As can be seen later,
large �s and small �u are desirable. Furthermore, since
now �sAs and ð1=�uÞA are Schur stable, and both
matrices are symmetric, we obtain

ð�sAsÞ
2
¼ �2sA

2
s < I ,

1

�u
A

� �2

¼ ð�uÞ
�2A2 < I : ð7Þ

Now, we define the common quadratic Lyapunov-like
function candidate

VðkÞ ¼ xT½k�x½k� ð8Þ

for the system in the two situations.
Without loss of generality, we assume that the

designed controller works during ½k2j, k2jþ1Þ, and the
controller fails during ½k2jþ1, k2jþ2Þ, j ¼ 0, 1, . . . , where
k0¼ 0. Then, we get for any k > 1 that

VðkÞ �
�
�2ðk�k2jÞ
s Vðk2jÞ if k2j � k < k2jþ1

�
2ðk�k2jþ1Þ
u Vðk2jþ1Þ if k2jþ1 � k < k2jþ2

(
ð9Þ

and by induction that for any k>1

VðkÞ � ��2ðk�TuðkÞÞ
s �2TuðkÞ

u Vð0Þ ð10Þ

which is equivalent to

kxðkÞk � ��ðk�TuðkÞÞ
s �TuðkÞ

u kx½0�k: ð11Þ

If there exists a positive scalar � satisfying � < 1
such that

TuðkÞ

k
�

ln �s þ ln �

ln �s þ ln �u
ð12Þ

which is a condition on the unavailability rate of the
controller, then we obtain easily from (12) that

ð�s�uÞ
TuðkÞ � ð�s�Þ

k
() ��ðk�TuðkÞÞ

s �TuðkÞ
u � �k ð13Þ

and thus

kxðkÞk � �kkx½0�k: ð14Þ

This implies that the entire system is globally exponen-
tially stable with decay rate � .

Theorem 1: If the unavailability rate of the controller in
the system (1) is small in the sense of satisfying (12) for
some positive �<1, then the system (1) is exponentially
stable with decay rate �.

Remark 1: According to the unavailability rate con-
dition (12), we see that comparatively long controller
failure time Tu(k) is tolerable for large �s and small �u.
This is reasonable since the closed-loop system has a
large decay rate (thus a good stability property) when
the controller works with large �s, and the open-loop
system does not diverge greatly when the controller
fails with small �u. Therefore, if we concentrate on the
stability property of the system, we should design the
original output feedback controller so that a large �s can
be obtained.

Remark 2: Although we concentrated on the case of
complete controller breakdown (u¼ 0) in this paper, it is
an easy matter to extend the discussion to the case where
for various reasons the output feedback controller (3)
decays in the sense of u ! �u with � being a fixed con-
stant satisfying 0 � � < 1. This is very common in
recent a works on control systems which are controlled
by a limited rate of data or information. In that case, if
the closed-loop system composed of (1) and u ¼ �Ksy
is unstable, the discussions up to now are the same
by making some notation modification. If this is not
the case, then the entire system can be considered as
a switched system composed of two stable subsystems,
and thus it is always exponential stable no matter
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how long the unavailability time of the controller; see
detailed discussions in Zhai et al. (2002).

3. H1 disturbance attenuation analysis

In this section, we assume that the symmetric static
output feedback (3) has been designed so that the
closed-loop system

x½kþ 1� ¼ Asx½k� þ B1w½k�

z½k� ¼ C1x½k� þDw½k�

)
ð15Þ

is Schur stable and theH1 norm of the transfer function
from w to z is less than a prespecified constant �. Since
our interest in this section is to analyse the H1 disturb-
ance attenuation property of the system, we assume
x½0� ¼ 0 in (15).

Also, we suppose that the designed controller (3)
sometimes fails and we need a (not necessarily constant)
time interval to recover it. When the controller fails,
the closed-loop system assumes the form of

x½kþ 1� ¼ Ax½k� þ B1w½k�

z½k� ¼ C1x½k� þDw½k�

)
: ð16Þ

Then, the behaviour of the entire system is dominated
by the piecewise LTI system: the system (15) when the
controller works and the system (16) when the controller
fails.

Since As is Schur stable and kC1ðzI � AsÞ
�1B1þ

Dk1 < �, according to the bounded real lemma (Boyd
et al. 1994, Iwasaki et al. 1998), we know immediately
that there exists Ps >0 such that

�Ps PsAs PsB1 0

AT
s Ps �Ps 0 CT

1

BT
1Ps 0 ��I D

0 C1 D ��I

2
666664

3
777775 < 0 ð17Þ

and thus

�Ps PsAs PsB1 0

AsPs �Ps 0 B1

BT
1Ps 0 ��I D

0 BT
1 D ��I

2
666664

3
777775 < 0 ð18Þ

according to the symmetry condition.
To proceed, we need the following lemma. We note

that the idea of this lemma and its proof are motivated
by Lemma 2 of Tan and Grigoriadis (2001), where
continuous-time symmetric systems are dealt with.

Lemma 1: Ps ¼ I also satisfies (18), i.e.

�I As B1 0

As �I 0 B1

BT
1 0 ��I D

0 BT
1 D ��I

2
666664

3
777775 < 0: ð19Þ

Proof: Since Ps >0, there always exists a non-singular
matrix U satisfying UT

¼ U�1 such that

UTPsU ¼ S0 ¼ diagf�1, �2, . . . , �ng

�i > 0, i ¼ 1, 2, . . . , n: ð20Þ

Pre- and post-multiplying (18) by diagfUT,UT, I , Ig and
diagfU,U, I , Ig, respectively, we obtain

�S0 S0
�AAs S0

�BB1 0

�AAsS0 �S0 0 �BB1

�BBT
1S0 0 ��I D

0 �BBT
1 D ��I

2
6666664

3
7777775

< 0 ð21Þ

where �AAs ¼ UTAsU, �BB1 ¼ UTB1. Furthermore, pre- and
post-multiplying the first and second rows and columns
in (21) by S�1

0 leads to

�S�1
0

�AAsS
�1
0

�BB1 0

S�1
0

�AAs �S�1
0 0 S�1

0
�BB1

�BBT
1 0 ��I D

0 �BBT
1S

�1
0 D ��I

2
666664

3
777775 < 0: ð22Þ

In (22), we exchange the first and second rows and
columns, and then exchange the third and fourth rows
and columns, to obtain

�S�1
0 S�1

0
�AAs S�1

0
�BB1 0

�AAsS
�1
0 �S�1

0 0 �BB1

�BBT
1S

�1
0 0 ��I D

0 �BBT
1 D ��I

2
666664

3
777775 < 0: ð23Þ

Since �1 > 0, there always exists a scalar �1 such that

0 < �1 < 1, �1�1 þ ð1� �1Þ�
�1
1 ¼ 1: ð24Þ

Then, by computing �1 � ð21Þ þ ð1� �1Þ�(23), we
obtain

�S1 S1
�AAs S1

�BB1 0

�AAsS1 �S1 0 �BB1

�BBT
1S1 0 ��I D

0 �BBT
1 D ��I

2
6664

3
7775 < 0 ð25Þ
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where

S1 ¼ diag �1�1 þ ð1� �1Þ�
�1
1 ,

�
�1�2 þ ð1� �1Þ�

�1
2 , . . . , �1�n þ ð1� �1Þ�

�1
n

�
¼
4
diag 1, ���2, . . . , ���n

� �
> 0: ð26Þ

In a similar way to obtain (23), we can obtain

�S�1
1 S�1

1
�AAs S�1

1
�BB1 0

�AAsS
�1
1 �S�1

1 0 �BB1

�BBT
1S

�1
1 0 ��I D

0 �BBT
1 D ��I

2
6664

3
7775 < 0 ð27Þ

from (25). Since ���2 > 0, there exists a scalar �2 such that

0 < �2 < 1, �2 ���2 þ ð1� �2Þ ���
�1
2 ¼ 1: ð28Þ

Then, the linear combination of (25) and (27) results in

�S2 S2
�AAs S2

�BB1 0

�AAsS2 �S2 0 �BB1

�BBT
1S2 0 ��I D

0 �BBT
1 D ��I

2
666664

3
777775 < 0 ð29Þ

where

S2 ¼ diag 1, �2 ���2 þ ð1� �2Þ ���
�1
2 , . . . ,

�
�2 ���n þ ð1� �2Þ ���

�1
n

�
¼
4
diag 1, 1, . . . , ~��n

� �
> 0: ð30Þ

By repeating this process, we see that Sn ¼ I also
satisfies (21), i.e.

�I �AAs
�BB1 0

�AAs �I 0 �BB1

�BBT
1 0 ��I D

0 �BBT
1 D ��I

2
6664

3
7775 < 0: ð31Þ

Pre- and post-multiplying this inequality by
diagfU,U, I , I g and diagfUT,UT, I , I g, respectively,
we obtain (19). This completes the proof. œ

We rewrite (19) as

�I As B1 0

As �I 0 CT
1

BT
1 0 ��I D

0 C1 D ��I

2
666664

3
777775 < 0 ð32Þ

and can easily confirm that this inequality is equiva-
lent to

A2
s � I AsB1 CT

1

BT
1As BT

1B1 � �I D

C1 D ��I

2
664

3
775 < 0 ð33Þ

or

A2
s þ ð1=�ÞCT

1C1 � I AsB1 þ ð1=�ÞCT
1D

BT
1As þ ð1=�ÞDC1 BT

1B1 þ ð1=�ÞD2
� �I

" #
< 0:

ð34Þ

Thus, there always exists a positive scalar �s < 1

such that

A2
s þ ð1=�ÞCT

1C1 � �sI AsB1 þ ð1=�ÞCT
1D

BT
1As þ ð1=�ÞDC1 BT

1B1 þ ð1=�ÞD2
� �I

" #
< 0:

ð35Þ

Now we consider the case when the controller fails.

In this case, we can always find a scalar � satisfying

0 < � < 1 such that �A is Schur stable and the H1

norm of the system �A, �B1, �C1, �Dð Þ is smaller than �.
Since symmetricity of this adjusted system remains the

same, we use the proof of Lemma 1 to get

�I �A �B1 0

�A �I 0 �CT
1

�BT
1 0 ��I �D

0 �C1 �D ��I

2
666664

3
777775 < 0 ð36Þ

or equivalently

ð�AÞ2þ ð1=�Þð�C1Þ
T
ð�C1Þ �I ð�AÞð�B1Þ þ ð1=�Þð�C1Þ

T
ð�DÞ

ð�B1Þ
T
ð�AÞ þ ð1=�Þð�DÞð�C1Þ ð�B1Þ

T
ð�B1Þþð1=�Þð�DÞ

2
� �I

" #
< 0:

ð37Þ

Thus, we obtain

A2
þ ð1=�ÞCT

1C1 � ��2I AB1 þ ð1=�ÞCT
1D

BT
1Aþ ð1=�ÞDC1 BT

1B1 þ ð1=�ÞD2
� ���2I

" #
< 0:

ð38Þ

In this inequality, we find a positive scalar �u � ��2 > 1

such that

A2
þ ð1=�ÞCT

1C1 � �uI AB1 þ ð1=�ÞCT
1D

BT
1Aþ ð1=�ÞDC1 BT

1B1 þ ð1=�ÞD2
� �I

" #
< 0:

ð39Þ

This is always possible since BT
1B1 þ ð1=�ÞD2

� �I < 0

has been guaranteed by (34) and the (1, 1)-block of

the left side A2
þ ð1=�ÞCT

1C1 � �uI in (39) will be ‘suffi-

ciently’ negative definite for a large scalar �u.
Now, we consider the difference of the common

quadratic Lyapunov-like function (8) along the

602 G. Zhai and H. Lin

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
U
n
i
v
e
r
s
i
t
y
 
O
f
 
S
i
n
g
a
p
o
r
e
]
 
A
t
:
 
1
5
:
0
8
 
9
 
O
c
t
o
b
e
r
 
2
0
0
9



trajectories of the system. When the controller works

Vðkþ1Þ�VðkÞ

¼xT½kþ1�x½kþ1��xT½k�x½k�

¼ Asx½k�þB1w½k�ð Þ
T Asx½k�þB1w½k�ð Þ�xT½k�x½k�

¼ xT½k� wT
½k�

� � A2
s �I AT

s B1

BT
1As BT

1B1

" #
x½k�

w½k�

� 	
� xT½k� wT

½k�
� �

�
�ð1=�ÞCT

1C1þð�s�1ÞI �ð1=�ÞCT
1D

�ð1=�ÞDC1 �ð1=�ÞD2
þ�I

" #
x½k�

w½k�

� 	

¼�
1

�
GðkÞ�ð1��sÞVðkÞ ð40Þ

where GðkÞ ¼4 zT½k�z½k� � �2wT
½k�w½k� and (35) was used

to obtain the inequality. Therefore, in the case where the
designed controller works, we obtain

Vðkþ 1Þ � �sVðkÞ �
1

�
GðkÞ: ð41Þ

When the controller fails,

Vðkþ 1Þ � VðkÞ

¼ xT½kþ 1�x½kþ 1� � xT½k�x½k�

¼ Ax½k� þ B1w½k�ð Þ
T Ax½k� þ B1w½k�ð Þ � xT½k�x½k�

¼ xT½k� wT
½k�

� � A2
� I ATB1

BT
1A BT

1B1

" #
x½k�

w½k�

� 	

� xT½k� wT
½k�

� �
�

�ð1=�ÞCT
1C1 þ ð�u � 1ÞI �ð1=�ÞCT

1D

�ð1=�ÞDC1 �ð1=�ÞD2
þ �I

" #

�
x½k�

w½k�

� 	

¼ �
1

�
GðkÞ � ð1� �uÞVðkÞ ð42Þ

where (39) was used to obtain the inequality. Therefore,
in the case where the designed controller fails, we obtain

Vðkþ 1Þ � �uVðkÞ �
1

�
GðkÞ: ð43Þ

As done in the previous section, we assume that the
designed controller works during ½k2j, k2jþ1Þ, and the
controller fails during ½k2jþ1, t2jþ2Þ, j ¼ 0, 1, . . . , where
k0¼ 0. Then, for any k� 1 in the interval ½k2j, k2jþ1Þ,
we use the well-known difference theory (for example,
Khalil 1996) to obtain from (41) that

VðkÞ � �
k�k2j
s Vðk2jÞ �

1

�

Xk�1

m¼k2j

�k�1�m
s GðmÞ ð44Þ

and similarly for any k 2 ½k2jþ1, t2jþ2Þ

VðkÞ � �
k�k2jþ1
u Vðk2jþ1Þ �

1

�

Xk�1

m¼k2jþ1

�k�1�m
u GðmÞ: ð45Þ

By induction, we obtain that for any k� 1

VðkÞ � �k�TuðkÞ
s �TuðkÞ

u Vð0Þ

�
1

�

Xk�1

m¼0

�k�1�m�ðTuðkÞ�TuðmÞÞ
s �TuðkÞ�TuðmÞ

u GðmÞ ð46Þ

and thus from xð0Þ ¼ 0 and VðkÞ � 0 that

Xk�1

m¼0

�k�1�m�ðTuðkÞ�TuðmÞÞ
s �TuðkÞ�TuðmÞ

u GðmÞ

¼
Xk�1

m¼0

ð��1
s Þ

� k�1�m�ðTuðkÞ�TuðmÞÞð Þ�TuðkÞ�TuðmÞ
u GðmÞ � 0:

ð47Þ

According to the discussion in the previous section,
if the unavailability rate of the controller satisfies the
inequality

TuðkÞ

k
�

lnð��1
s Þ þ ln �

lnð��1
s Þ þ ln �u

¼
ln �� ln �s
ln �u � ln �s

ð48Þ

for some positive scalar �s � � < 1, then

�k�1�m�ðTuðkÞ�TuðmÞÞ
s �TuðkÞ�TuðmÞ

u � �k�1�m: ð49Þ

Combining (47) and (49), we obtain

Xk�1

m¼0

�k�1�m
s zT½m�z½m� � �2

Xk�1

m¼0

�k�1�mwT
½m�w½m�: ð50Þ

Summing both sides of the above inequality from k¼ 1
to k ¼ 1 (by rearranging the double-summation area)
leads to

1

1� �s

X1
m¼0

zT½k�z½k� �
�2

1� �

X1
m¼0

wT
½k�w½k� ð51Þ

which means the H1 disturbance attenuation levelffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s
1� �

r
�

is achieved under the unavailability rate condition (48).
We summarize the above discussions in the following

theorem.

Theorem 2: If the unavailability rate of the controller in
the system (1) is small in the sense of satisfying (48) for
some 0 < � < 1, then the entire system achieves an H1

disturbance attenuation levelffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s
1� �

r
�:
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Remark 3: If � ! �s, which means from (48) that the
controller’s failure time is close to zero, then we obtain
from Theorem 2 that the achieved H1 disturbance
attenuation level ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �s
1� �

r
�

also approaches the original �. Thus,ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �s
1� �

r
�

is a reasonable estimation in the case where controller
failures exist.

Remark 4: It is an easy task to extend the discussions
here to the case where the output feedback controller (3)
decays in the sense of u ! �u with � being a fixed con-
stant satisfying 0 � � < 1. In that case, if the closed-
loop system composed of (1) and u ¼ �Ksy is unstable,
the discussions up to now are the same by making some
notation change. If this is not the case, then the entire
system can be viewed as a switched system composed
of two stable subsystems, and thus a reasonable H1

disturbance attenuation level is achieved without
considering the unavailability rate of the controller;
refer to the detailed discussions in Zhai et al. (2001 c,
2002).

Remark 5: Different from our other works on control-
ler failure time analysis for various control systems
(Zhai et al. 2000, 2001 a,b) we do not require any
condition in Theorems 1 and 2 about the average time
interval between controller failures (ATBCF). In Zhai
et al. (2000, 2001 a,b), we used a piecewise Lyapunov
function

VðxÞ ¼
xTPsx when the controller works

xTPux when the controller fails

(
ð52Þ

where Ps > 0, Pu > 0 . Since generally Ps and Pu are
different, we have to use a scalar �>1, which satisfies
both xTPsx � �xTPux and xTPux � �xTPsx for 8x
(one such choice is

� ¼
maxf�MðPsÞ, �MðPuÞg

minf�mðPsÞ, �mðPuÞg

where �Mð�Þ (�mð�Þ) denotes the largest (smallest) eigen-
value of a symmetric matrix), in order to estimate the
value change of the piecewise Lyapunov function when
switchings occur. Usually � is much larger than 1, and
thus leads to quite conservative results and the require-
ment of ATBCF in Zhai et al. (2000, 2001 a,b). In this
paper, we have shown that by now we can use
Ps¼Pu¼ I in (52) for symmetric control systems with
controller failures. Therefore, we obtain �¼ 1 in this
case, and thus the condition of ATBCF is not necessary
again and less conservative results are obtained.

4. Conclusion

We have studied a controller failure time analysis
problem for a class of symmetric H1 control systems,
which are composed of a symmetric LTI system and
a symmetric static output feedback. The attention has
been focused on analysing stability and H1 disturbance
attenuation properties when the pre-designed controller
fails from time to time due to physical or purposeful
reasons. We have shown that if the unavailability rate
of the controller is smaller than a specified constant,
then the entire system has a common quadratic
Lyapunov-like function VðkÞ ¼ x½k�Tx½k� for the case
where the controller works and the case where the con-
troller fails, and the system’s exponential stability and
H1 disturbance attenuation properties are preserved to
a reasonable level.

Finally we note that the results of this paper can
easily be extended to the symmetric dynamical output
feedback case with some notation change. We also note
that the present results can be extended to more general
symmetric control systems. More precisely, if the equa-
tions TA ¼ ATT , TB1 ¼ CT

1 , TB2 ¼ CT
2 , D¼DT are

satisfied for a constant matrix T>0, then we consider
the similarity transformation A? ¼ T1=2AT �1=2,
B?1 ¼ T1=2B1, B?2 ¼ T1=2B2, C?1 ¼ C1T

�1=2, C?2 ¼

C2T
�1=2, D? ¼ D. Since the stability and H1 disturb-

ance attenuation properties of the entire system in this
transformation do not change and we can
easily confirm that A? ¼ AT

? , B?1 ¼ CT
?1 and B?2 ¼ CT

?2,
we can apply the results we have obtained up to now for
the systems represented by A?,B?1,B?2,C?1,C?2,D?ð Þ

and derive corresponding results for the original sym-
metric H1 control system with controller failures.
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