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In this paper, we study L2 gain property for a class of switched systems which are composed of
both continuous-time LTI subsystems and discrete-time LTI subsystems. Under the assump-

tion that all subsystems are Hurwitz/Schur stable and have the L2 gain less than �, we discuss
the L2 gain that the switched system could achieve. First, we consider the case where a
common Lyapunov function exists for all subsystems in L2 sense, and show that the switched

system has the L2 gain less than the same level � under arbitrary switching. As an example in
this case, we analyse switched symmetric systems and establish the common Lyapunov func-
tion explicitly. Next, we use a piecewise Lyapunov function approach to study the case where

no common Lyapunov function exists in L2 sense, and show that the switched system achieves
an ultimate (or weighted) L2 gain under an average dwell time scheme.

1. Introduction

In the last two decades, there has been increasing interest
in stability analysis and controller design for switched
systems; see the survey papers Liberzon and Morse
(1999), DeCarlo et al. (2000), the recent book
Liberzon (2003) and the references cited therein. The
motivation for studying switched systems is from
many aspects. It is known that many practical systems
are inherently multimodal in the sense that several
dynamical subsystems are required to describe their
behaviour which may depend on various environmental
factors. Since these systems are essentially switched
systems, powerful analysis or design results of switched
systems are helpful dealing with real systems. Another
important observation is that switching among a set of
controllers for a specified system can be regarded as a
switched system (Hu et al. 2000), and that switching
has been used in adaptive control to assure stability in
situations where stability can not be proved otherwise

(Fu and Barmish 1986, Morse et al. 1992), or to improve
transient response of adaptive control systems
(Narendra and Balakrishnan 1994a). Also, the methods
of intelligent control system design are based on the idea
of switching among different controllers (Morse 1996).
Therefore, study of switched systems contributes
significantly to switching controller and intelligent
controller design.

When focusing on stability analysis of switched
systems, there are many valuable results which have
appeared in the last two decades. For example,
Narendra and Balakrishnan (1994b) showed that when
all subsystems are stable and commutative pairwise,
the switched linear system is stable under arbitrary
switching. Liberzon et al. (1999) extended this result
from the commutation condition to a Lie-algebraic
condition. Zhai et al. (2002a) showed that a class of
switched symmetric systems are asymptotically stable
under arbitrary switching since a common Lyapunov
function, in the form of VðxÞ ¼ xTx, exists for all the
subsystems. Wicks et al. (1994), Hespanha and Morse
(1999), Zhai et al. (2001b), considered the stability
analysis problem using piecewise Lyapunov functions.*Corresponding author. Email: zhai@me.osakafu-u.ac.jp
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Pettersson and Lennartson (1997) considered a stabiliza-
tion problem by dividing the state space associated
with appropriate switching depending on state, and
Wicks et al. (1998) considered quadratic stabilization
for switched systems composed of a pair of unstable
linear subsystems by using a linear stable combination
of unstable subsystems. Zhai (2001), Zhai et al.
(2002a, 2002b) extended the consideration to stability
analysis problems for switched systems composed of
discrete-time subsystems.
Motivated by the observation that all these

references deal with switched systems composed of only
continuous-time subsystems or only discrete-time ones,
the authors considered in the recent papers (Zhai et al.
2004a, 2004b) the new type of switched systems which
are composed of both continuous-time and discrete-
time dynamical subsystems. It was pointed out there
that we can easily find many applications involving
such switched systems. A typical example is a continu-
ous-time plant controlled either by a physically imple-
mented regulator or by a digitally implemented one
together with a switching rule between them.

Motivation Example: Consider the continuous-time
LTI system described by _xxðtÞ ¼ AxðtÞ þ BuðtÞ, where
x(t) is the continuous-time state, u(t) is the control
input in time domain, and A,B are constant matrices.
Suppose that a stabilizing state feedback uðtÞ ¼ KxðtÞ
has been designed so that Aþ BK is Hurwitz stable (all
the eigenvalues of Aþ BK are in the open left complex
plane). It is known that in any computer-aided system,
the controller is implemented in a discrete-time
manner. When the sampling period is small enough,
the closed-loop system can be viewed as a continuous-
time system described by _xxðtÞ ¼ ðAþ BKÞxðtÞ. When
the sampling period does not have to be very small,
we only need to deal with the value change on sampling
points, and thus it is natural to consider the discrete-time
system xðkþ 1Þ ¼ eðAþBKÞ�xðkÞ, where � is the sampling
period and xðkÞ�¼ xðk�Þ. Although we used the same
feedback gain K here for simplicity, we may want to
design different gains for continuous-time domain and
discrete-time one. Therefore, the entire system can be
considered as a switched system composed of a
continuous-time subsystem and a discrete-time one.

For stability analysis of such mixed types of switched
systems, Zhai et al. (2004a) gave some analysis and
design results. For example, the case where commuta-
tion condition holds, and the case of switched symmetric
systems, were dealt with there. This paper aims to
extend the results of Zhai et al. (2004a) to L2 gain
analysis for switched input–output systems composed
of both continuous-time and discrete-time dynamical
subsystems. There are a few results concerning L2
gain analysis for switched systems composed of

continuous-time subsystems. Hespanha considered such
a problem in his PhD dissertation (Hespanha 1998), by
using a piecewise Lyapunov function approach. In Zhai
et al. (2001a), a modified approach has been proposed
for more general switched systems and more exact
results have been obtained. In that context, it has been
shown that when all subsystems are Hurwitz stable
and have L2 gains smaller than a positive scalar �0,
the switched system under an average dwell time
scheme (Hespanha and Morse 1999) achieves a weighted
L2 gain �0, and the weighted L2 gain approaches normal
L2 gain if the average dwell time is chosen sufficiently
large. Recently, Hespanha (2003) considered the compu-
tation of L2 gain for switched linear systems with large
dwell time, and gave an algorithm by considering the
separation between the stabilizing and antistabilizing
solutions to a set of algebraic Riccati equations.

Parallel with the discussion in Zhai et al. (2001a), we
study in this paper the L2 gain property for switched
systems which are composed of both continuous-time
LTI subsystems and discrete-time LTI subsystems.
Under the assumption that all subsystems are
Hurwitz/Schur stable and have the L2 gain less than �,
we discuss the L2 gain that the switched system could
achieve. First, we consider the case where a common
Lyapunov matrix (function) exists for all subsystems in
L2 sense, and show that the switched system has the
L2 gain less than the same level � under arbitrary switch-
ing. As an example in this case, we analyse switched
symmetric systems and derive the common Lyapunov
function clearly. Next, we use a piecewise Lyapunov
function approach for the case where no common
Lyapunov function exists in L2 sense, and show that
the switched system achieves an ultimate (or weighted)
L2 gain under an average dwell time scheme.

2. Problem formulation and preliminaries

The switched system we consider in this paper is
composed of a set of continuous-time subsystems

_xxðtÞ ¼ AcixðtÞ þ BciwðtÞ

zðtÞ ¼ CcixðtÞ þDciwðtÞ, i ¼ 1, . . . ,Nc

(
ð1Þ

and a set of discrete-time subsystems

xðkþ 1Þ ¼ AdjxðkÞ þ BdjwðkÞ

zðkÞ ¼ CdjxðkÞ þDdjwðkÞ, j ¼ 1, . . . ,Nd,

(
ð2Þ

where xðtÞðxðkÞÞ 2 Rn is the subsystem state,
wðtÞðwðkÞÞ 2 Rm is the input, zðtÞðzðkÞÞ 2 Rp is the
output. Aci, Bci, Cci, Dci (i ¼ 1, . . . ,Nc) and Adj, Bdj,
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Cdj, Ddj ( j ¼ 1, . . . ,Nd) are constant matrices of appro-
priate dimensions denoting the subsystems, and Nc� 1
and Nd� 1 are the numbers of continuous-time subsys-
tems and discrete-time ones, respectively.
To discuss stability and L2 gain of the overall

switched system, we assume without loss of generality
that the sampling periods of all the discrete-time
subsystems are of the same value �>0 (the discussion
can be easily extended to the case where the discrete-
time subsystems have different sampling periods).
Since the states/inputs/outputs of the discrete-
time subsystems can be viewed as piecewise constant
vectors between sampling points, we can consider
the value of the system states/inputs/outputs in the
continuous-time domain. Therefore, although xðtÞ=
wðtÞ=zðtÞ is not continuous with respect to time t due
to existence of discrete-time subsystems, the vectors
of x(t) and z(t) are uniquely defined at all time instants
for given disturbance vector w(t), and thus stability and
L2 properties can be discussed in the continuous-time
domain.
Focusing on L2 gain analysis, we give the following

definition.

Definition 1: The switched system is said to have L2
gain less than � if

ðt
0

zTðsÞzðsÞds � �2
ðt
0

wTðsÞwðsÞds ð3Þ

holds for any t>0 when the initial state is zero.

The above definition is given in the continuous-time
domain form. On the time interval where discrete-time
subsystems are activated, the two integral terms are
understood as impulsive forms like

Pk1þm�
k1

zTðkÞzðkÞ
and

Pk1þm�
k1

wTðkÞwðkÞ.
We now list two well known bounded real lemmas

dealing with L2 gain analysis of continuous-time
system and discrete-time system, respectively.

Lemma 1 (Boyd et al. 1994, Iwasaki et al. 1998):
Consider the continuous-time system

_xxðtÞ ¼ AcxðtÞ þ BcwðtÞ
zðtÞ ¼ CcxðtÞ þDcwðtÞ,

�
ð4Þ

where x(t), w(t) and z(t) are the same as in (1), and Ac, Bc,
Cc, Dc are constant matrices of appropriate dimensions.
The system (4) is Hurwitz stable and has L2 gain less
than � if and only if there exists Pc>0 satisfying the
LMI

AT
c Pc þ PcAc PcBc CT

c

BT
c Pc ��I DT

c

Cc Dc ��I

2
4

3
5 < 0 ð5Þ

or equivalently

AT
c Pc þ PcAc þ

1

�
CT

c Cc PcBc þ
1

�
CT

c Dc

BT
c Pc þ

1

�
DT

c Cc ��Iþ
1

�
DT

c Dc

2
664

3
775 < 0: ð6Þ

Lemma 2 (Boyd et al. 1994, Iwasaki et al. 1998):

Consider the discrete-time system

xðkþ 1Þ ¼ AdxðkÞ þ BdwðkÞ

zðkÞ ¼ CdxðkÞ þDdwðkÞ,

(
ð7Þ

where x(k), w(k) and z(k) are the same as in (2), and Ad,

Bd, Cd, Dd are constant matrices of appropriate dimen-

sions. The system (7) is Schur stable and has L2 gain

less than � if and only if there exists Pd>0 satisfying

the LMI

�Pd PdAd PdBd 0

AT
dPd �Pd 0 CT

d

BT
d Pd 0 ��I DT

d

0 Cd Dd ��I

2
66664

3
77775 < 0 ð8Þ

or equivalently

AT
d PdAd�Pdþ

1

�
CT

dCd AT
d PdBdþ

1

�
CT

dDd

BT
d PdAdþ

1

�
DT

dCd ��Iþ
1

�
DT

dDdþBT
dPdBd

2
6664

3
7775< 0:

ð9Þ

3. Analysis using common Lyapunov function

In this section, we consider the case where all the

subsystems are Hurwitz/Schur stable and have L2 gain

less than � in the sense that there exists a common

solution P>0 satisfying (6) and (9) for all the

subsystems. More precisely,

AT
ciPþ PAci þ

1

�
CT

ciCci PBci þ
1

�
CT

ciDci

BT
ciPþ

1

�
DT

ciCci ��Iþ
1

�
DT

ciDci

2
664

3
775 < 0 ð10Þ
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holds for all i ¼ 1, . . . ,Nc, and

AT
djPAdj�Pþ

1

�
CT

djCdj AT
djPBdjþ

1

�
CT

djDdj

BT
djPAdjþ

1

�
DT

djCdj ��Iþ
1

�
DT

djDdjþBT
djPBdj

2
664

3
775< 0

ð11Þ

holds for all j ¼ 1, . . . ,Nd. It is easy to understand that
in this situation there is a common (quadratic)
Lyapunov function VðxÞ ¼ xTPx for all the subsystems
in L2 sense. Also, it is noted that the existence of
common Lyapunov function is readily checked by
solving the LMIs (10) and (11) with respect to the
matrix variable P>0.
We state and prove the main result in this section.

Theorem 1: If all the subsystems are stable and have L2
gain less than � in the sense that a common solution P> 0
satisfies (10) for all i’s and (11) for all j’s, then the
switched system is stable and has L2 gain less than �
under arbitrary switching.

Proof: Since the stability part can be referred to in
Zhai et al. (2004a), we focus our attention on L2 gain
analysis.
Without loss of generality, we assume that before any

given time instant t>0, subsystem Ac1 was activated
during ½0 ¼ t0, t1Þ, subsystem Ad1 was activated during
½t1, t2 ¼ t1 þm1�Þ, and subsystem Ac2 is now being acti-
vated from t2. It can be seen that any other case can be
analyzed in the same way.
During the time interval ½t2, t�, we compute the

derivative of VðxÞ ¼ xTPx along the trajectory of Ac2 as

_VVðxÞ ¼ xTðtÞPðAc2xðtÞ þ Bc2wðtÞÞ þ ðAc2xðtÞ

þ Bc2wðtÞÞ
TPxðtÞ

¼
xðtÞ

wðtÞ

" #T
AT

c2Pþ PAc2 PBc2

BT
c2P 0

" #
xðtÞ

wðtÞ

" #

� �
xðtÞ

wðtÞ

" #T
1

�
CT

c2Cc2
1

�
CT

c2Dc2

1

�
DT

c2Cc2
1

�
DT

c2Dc2 � �I

2
664

3
775 xðtÞ

wðtÞ

" #

¼ �
1

�
�ðtÞ, ð12Þ

where �ðtÞ�¼ zTðtÞzðtÞ � �2wTðtÞwðtÞ and (10) was used to
obtain the inequality. Integrating the above
inequality from t2 to t results in

ðt
t2

�ðsÞds � � Vðxðt2ÞÞ � VðxðtÞÞð Þ: ð13Þ

During the time interval ½t1, t2 ¼ t1 þm1�Þ, Ad1 is
supposed to be activated. We compute the difference
of the Lyapunov function VðxÞ ¼ xTPx along the
trajectory of Ad1 to obtain

Vðxðt1þ �ÞÞ �Vðxðt1ÞÞ

¼ Ad1xðt1Þð þBd1wðt1ÞÞ
TP Ad1xðt1Þ þBd1wðt1Þð Þ

� xTðt1ÞPxðt1Þ

¼
xðt1Þ

wðt1Þ

" #T
AT

d1PAd1�P AT
d1PBd1

BT
d1PAd1 BT

d1PBd1

" #
xðt1Þ

wðt1Þ

" #

��
xðt1Þ

wðt1Þ

" #T
1

�
CT

d1Cd1
1

�
CT

d1Dd1

1

�
DT

d1Cd1
1

�
DT

d1Dd1� �I

2
6664

3
7775

xðt1Þ

wðt1Þ

" #

¼�
1

�
�ðt1Þ, ð14Þ

where (11) was used to obtain the inequality. Similarly,
we obtain

Vðxðt1þ2�ÞÞ�Vðxðt1þ �ÞÞ ��
1

�
�ðt1þ �Þ

..

. ..
. ..

.

Vðxðt1þm�ÞÞ�Vðxðt1þðm�1Þ�ÞÞ ��
1

�
�ðt1þðm�1Þ�Þ,

9>>>>=
>>>>;

ð15Þ

and thus

Xm�1
j¼0

�ðt1 þ j�Þ � � Vðxðt1ÞÞ � Vðxðt2ÞÞð Þ: ð16Þ

Adding (13) and (16) with the description in Definition 1,
we obtain

ðt
t1

�ðsÞds � � Vðxðt1ÞÞ � VðxðtÞÞð Þ: ð17Þ

Same as for the interval ½t2, tÞ, we obtain for the time
interval ½t0, t1Þ that

ðt1
t0¼0

�ðsÞds � � Vðxðt0ÞÞ � Vðxðt1ÞÞð Þ ð18Þ

and thus

ðt
0

�ðsÞds � � Vðxð0ÞÞ � VðxðtÞÞð Þ: ð19Þ
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Using VðxðtÞÞ � 0 and x0¼ 0 in the above leads to

ðt
0

zTðsÞzðsÞds � �2
ðt
0

wTðsÞwðsÞds: ð20Þ

This completes the proof.

One may ask whether the situation in Theorem 1
really exists in real systems. In fact, it has been pointed
out in Tan and Grigoriadis (2001a, b), Zhai et al.
(2002a) that symmetric systems have good properties.
Such symmetric systems appear quite often in many
engineering disciplines (for example, RC or RL electrical
networks, viscoelastic materials and chemical reactions)
(Willems 1976), and thus belong to an important class in
control engineering.

Lemma 3 (Tan and Grigoriadis 2001a): Assume that
the continuous-time system

_xxðtÞ ¼ AxðtÞ þ BwðtÞ

zðtÞ ¼ CxðtÞ þDwðtÞ

�
ð21Þ

is symmetric in the sense of A¼AT, B¼C
T

, D¼DT.
Then, the system (21) is Hurwitz stable and has L2 gain
less than � if and only if

2A B CT

BT ��I D
C D ��I

2
4

3
5 < 0: ð22Þ

Lemma 4 (Tan and Grigoriadis 2001b, Zhai et al.
2002a): Assume that the discrete-time system

xðkþ 1Þ ¼ AxðkÞ þ BwðkÞ

zðkÞ ¼ CxðkÞ þDwðkÞ

�
ð23Þ

is symmetric in the sense of A¼AT, B¼CT, D¼DT.
Then, the system (21) is Schur stable and has L2 gain
less than � if and only if

�I A B 0
A �I 0 CT

BT 0 ��I DT

0 C D ��I

2
664

3
775 < 0: ð24Þ

It is obvious that (22) and (24) mean that a common
solution P¼ I satisfies the matrix inequalities (5) and
(8) respectively, for all the subsystems. Then, based on
Theorem 1 and Lemmas 3 and 4, the following result
is straightforward.

Corollary 1: If all the subsystems are symmetric, stable
and have L2 gain less than �, then the switched system

is stable and has L2 gain less than � under arbitrary
switching.

Another class of switched systems for which there exist
common Lyapunov functions in L2 sense has been
established in our recent paper (Zhai et al. 2005),
where we show that if for each subsystem an expanded
matrix, including the subsystem’s coefficient matrices,
is normal and Schur stable, then VðxÞ ¼ xTx serves
as a common Lyapunov function in L2 sense for all
subsystems.

The next section will discuss how to deal with the
switched systems where there does not exist a common
Lyapunov function in L2 sense for the subsystems.

4. Analysis using piecewise Lyapunov function

In this section, we loosen the requirement in the
previous section that a common Lyapunov function
should exist in L2 sense, and consider the case where
all the subsystems are stable and have the L2 gain less
than the same �, but the Lyapunov matrices do not
have to be same. Then, according to Lemmas 1 and 2,
there exist a set of positive definite matrices Pci’s,
i ¼ 1, . . . ,Nc, satisfying

AT
ciPci þ PciAci þ

1

�
CT

ciCci PciBci þ
1

�
CT

ciDci

BT
ciPci þ

1

�
DT

ciCci ��Iþ
1

�
DT

ciDci

2
664

3
775 < 0

ð25Þ

and there exist a set of positive definite matrices Pdj’s,
j ¼ 1, . . . ,Nd, satisfying

AT
djPdjAdj � Pdj þ

1

�
CT

djCdj AT
djPdjBdj þ

1

�
CT

djDdj

BT
djPdjAdj þ

1

�
DT

djCdj

��Iþ
1

�
DT

djDdj

þBT
djPdjBdj

8<
:

9=
;

2
666664

3
777775 < 0:

ð26Þ

Noting that (25) and (26) are LMIs with respect to
Pci > 0 and Pdj > 0, respectively, and thus are readily
solved by the existing LMI softwares.

Using the solution Pci’s of (25) and Pdj’s of (26),
we define the following piecewise Lyapunov function
candidate

V�ðxÞ ¼ xTP�x ð27Þ

for the switched system, where P� is switched among the
solution Pci’s and Pdj’s in accordance with the piecewise

1202 G. Zhai et al.
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constant switching signal. Then, the piecewise Lyapunov
function (27) has the following properties:

(i) When subsystem Aci is activated, Vci ¼ xTPcix in
(27) is continuous and its derivative along the
trajectories of Aci satisfies

_VVci ¼ xTðtÞPciðAcixðtÞ þ BciwðtÞÞ

þ ðAcixðtÞ þ BciwðtÞÞ
TPcixðtÞ

¼ xTðtÞðPciAci þ AT
ciPciÞxðtÞ

þ xTðtÞPciBciwðtÞ þ wTðtÞBT
ciPcixðtÞ

� �
1

�
ðzTðtÞzðtÞ � �2wTðtÞwðtÞÞ, ð28Þ

where the inequality is obtained using the matrix
inequality (25), as done in the previous section.

(ii) When subsystem Adj is activated, Vdj ¼ xTPdjx
in (27) is continuous and its difference along the
trajectories of Adj satisfies

Vdjðxðkþ 1ÞÞ � VdjðxðkÞÞ

¼ ðAdjxðkÞ þ BdjwðkÞÞ
TPdjðAdjxðkÞ þ BdjwðkÞÞ

� xTðkÞPdjxðkÞ

¼ xTðkÞðAT
djPdjAdj � PdjÞxðkÞ

þ xTðkÞAT
djPdjBdjwðkÞ þ wTðkÞBT

djPdjAdjxðkÞ

� �
1

�
ðzTðkÞzðkÞ � �2wTðkÞwðkÞÞ, ð29Þ

where the inequality is obtained using the matrix
inequality (26).

(iii) There exist constant scalars �1 > 0, �2 > 0 such
that

�1kxk
2 � fVciðxÞ,VdjðxÞg � �2kxk

2 ð30Þ

holds for all x 2 Rn and all i, j. It is easy to
see that (30) is true if we choose �1 ¼ infi, j
f�mðPciÞ, �mðPdjÞg, �2 ¼ supi, jf�MðPciÞ, �MðPdjÞg,
where �MðPÞ (�mðPÞ) denotes the largest (smallest)
eigenvalue of a symmetric matrix P.

(iv) There exists a constant scalar �� 1 such that

V�ðxÞ � �V��ðxÞ ð31Þ

holds for all x 2 Rn, where ‘‘�’’ and ‘‘��’’ can be
any subsystem index. It is easy to see that one
choice of such � is ðsupi, jf�MðPciÞ, �MðPdjÞgÞ=
ðinfi, jf�mðPciÞ, �mðPdjÞgÞ. Since �¼ 1 is the case
where all positive definite matrices are the same
(and thus a common Lyapunov matrix exists as

discussed in the previous section), we exclude
such case and assume �>1 here.

For simplicity, let us now consider the same switching
signal as we used before: subsystem Ac1 on ½0 ¼ t0, t1Þ,
subsystem Ad1 on ½t1, t2 ¼ t1 þm1�Þ, and subsystem
Ac2 on ½t2, tÞ. Then, we obtain from (28) and (29) that

ðt1
0

�ðsÞds � �ðVc1ð0Þ � Vc1ðxðt1ÞÞÞ

Xm�1
j¼0

�ðt1 þ j�Þ � �ðVd1ðxðt1ÞÞ � Vd1ðxðt2ÞÞÞ

ðt
t2

�ðsÞds � �ðVc2ðxðt2ÞÞ � Vc2ðxðtÞÞÞ:

ð32Þ

Using Vc2ðxðt2ÞÞ � �Vd1ðxðt2ÞÞ, Vd1ðxðt1ÞÞ � �Vc1ðxðt1ÞÞ,
and xð0Þ ¼ 0, Vc2ðxðtÞÞ � 0 to add the above three
inequalities, we obtain

ðt1
0

�2�ðsÞdsþ
Xm�1
j¼0

��ðt1 þ j�Þ þ

ðt
t2

�ðsÞds � 0: ð33Þ

If we denote by N(t) the number of switchings that
occurred during ½0, tÞ, then the above inequality can be
rewriten as

ðt
0

�NðtÞ�NðsÞ�ðsÞds � 0, ð34Þ

or equivalently

ðt
0

��NðsÞ�ðsÞds � 0: ð35Þ

It is not difficult to confirm that the above inequality
holds for any other switching signal.

If the switching signal satisfies

c1e
��1s � ��NðsÞ � c2e

��2s ð36Þ

with positive scalars c1, c2, �1, �2, we obtain from (35)
that

c1

ðt
0

e��1szTðsÞzðsÞds � c2�
2

ðt
0

e��2swTðsÞwðsÞds: ð37Þ

Integrating (37) from t¼ 0 to t ¼ 1 (by rearranging the
double-integral area) leads to

ð1
0

zTðsÞzðsÞds �
�1c2
�2c1

�2
ð1
0

wTðsÞwðsÞds, ð38Þ
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which implies that an ultimate L2 gain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1c2=�2c1

p
Þ� is

achieved.
We observe that the inequality (36) is exactly an

average dwell time scheme since it can be rewriten as

a2 þ
s

�a2
� NðsÞ � a1 þ

s

�a1
ð39Þ

where

a1 ¼ �
ln c1
ln�

, �a1 ¼
ln�

�1

a2 ¼ �
ln c2
ln�

, �a2 ¼
ln�

�2
:

ð40Þ

We summarize the above discussion in the following
theorem.

Theorem 2: Assume that all the subsystems are
Hurwitz/Schur stable and have the L2 gain less than �.
Then, the switched system under the average dwell time
scheme (39) achieves the ultimate L2 gain less thanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�1c2Þ=ð�2c1

p
Þ�.

This theorem only gives a kind of ‘‘worst’’ estimation of
L2 gain property for the switched systems under a wide

class of switching law. A more practical problem is to
design the class of switching signal so that the switched
system can achieve the L2 gain close to the original level.
This is an interesting problem in our future research.
We observe that the inequality (39) gives an upper

bound together with a lower bound for the average

dwell time and thus the number of switchings. In
many applications, it is not desirable to set a lower
bound for N(s). Thus, we consider the switching signal
satisfying

e��s � ��NðsÞ ð41Þ

which is rewritten as

NðsÞ �
s

�a
, �a ¼

ln�

�
, ð42Þ

which is also an average dwell time scheme, specifying
the lower bound of the dwell time averagely between

the subsystems (�a � s=NðsÞ). Then, we obtain from
(35) that

ðt
0

e��szTðsÞzðsÞds � �2
ðt
0

wTðsÞwðsÞds: ð43Þ

Due to the existence of the term e��s, we see that the
switched system achieves a weighted L2 gain � under
the average dwell time scheme (47).

Theorem 3: Assume that all the subsystems are
Hurwitz/Schur stable and have the L2 gain less than �.
Then, the switched system under the average dwell time
scheme (42) achieves a weighted L2 gain � in the sense
of (43).

It is important to point out that if � is chosen close
enough to zero, which means the average dwell time
in (42) is chosen sufficiently large, then the inequality
(43) approaches the normal L2 gain definition. This
observation is consistent with the results in the case of
switched continuous-time systems (Zhai et al. 2001a)
and the case of switched discrete-time systems (Zhai
et al. 2002b).

Finally we note that using the approach in this paper
together with Zhai et al. (2001a, 2002b), we can also
analyse L2 gain properties for the case where unstable
subsystems exist and the case where perturbations exist
in all subsystems.

5. Conclusion

In this paper, we have studied L2 gain property for a
class of switched systems which are composed of both
continuous-time subsystems and discrete-time subsys-
tems. Under the assumption that all subsystems are
Hurwitz/Schur stable and have the L2 gain less than �,
we have discussed the L2 gain that the switched system
could achieve. We have shown that when a common
Lyapunov function exists for all subsystems in L2
sense, the switched system has the L2 gain less than
the same level � under arbitrary switching. As an exam-
ple, we have established a common Lyapunov function
in L2 sense for switched symmetric systems. In the
case where no common Lyapunov function exists in
L2 sense, we have proposed a piecewise Lyapunov
function to show that the switched system achieves an
ultimate (or weighted) L2 gain under an average dwell
time scheme.

We observe that when there does not exist a common
Lyapunov function in L2 sense, the results involving the
average dwell time scheme in this paper are still conser-
vative. One possible solution to this problem may be the
use of the controller realization strategy proposed in
Hespanha and Morse (2002), although the extension
from stabilization to L2 gain analysis and design is a
difficult task. We also note that the results in this
paper can be applied to the multi-controller design
problem in digital control systems and furthermore
networked control systems.
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