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Abstract— The paper studies a class of formation control
problem, i.e. the controllability for multi-agent systems under
leader-follower framework. A new concept leader-follower con-
nectedness is proposed to deal with what is the desired extent
of connectivity between the leader and follower subgraphs for
a multi-agent system to be controllable. Analysis based on this
concept yields graph theory based characterizations for the
controllability of interconnection dynamic networks with fixed
topologies.

I. INTRODUCTION

Distributed coordination of networks of dynamic agents
has attracted a great deal of attention in recent years [1],
[11], [14], [8], [9], [10], [2], [3], [13], [7]. This is partly
due to broad applications of multi-agent systems in, e.g.
the cooperative control of unmanned aerial vehicles, and
technology improvements allowing smaller, more versatile
robots and other types of agents.

The controllability problem was put forward for the first
time for multi-agent systems by Tanner in [13], and then
developed in [3], [2], [10], [9], [8]. The problem is on
how the interconnected systems can be steered to specific
positions by regulating the motion of a single system that
plays the role of the group leader [13]. This is what the
so-called the group can be controlled. This requires the
characterization of conditions under which the leaders can
move the followers into any desired position or configuration
[3]. That is, to derive conditions for a group of systems
interconnected via neighbor rules, to be controllable by one
of them acting as a leader [13].

It is essentially a kind of formation control problem. The
problem is transformed to a classical notion of controllability
in [13] with respect to a fixed interconnection topology
and a switched controllability problem in [9], [8], [4] with
respect to a switching topology where the results established
in [6], [5], [12] are employed. One of the features for the
controllability problem studied in [13], [9], [8] is that the
leader is assumed unidirectional, i.e. the leader’s neighbors
still obey the interconnection neighbor rules, but the leader is
indifferent, and is free to pick any agent [13]. Accordingly
the leader does not participate in the typical configuration
updates, and merely acts as an external control signals. The

This work was supported by the National Natural Science Foundation of
China (Nos. 60604032, 10601050, 60704039)

Zhijian Ji is with the School of Automation Engineering, Qingdao
University, Qingdao, 266071, China jizhijian@pku.org.cn

Hai Lin and Tong Heng Lee are with the Department of Electrical
and Computer Engineering , National University of Singapore, 117576,
Singapore elelh@nus.edu.sg; eleleeth@nus.edu.sg

leader is not affected by the members whereas each member
is influenced by the leader and the other members.

Central to the investigation of formation control is the
nature of interconnection topologies. Some preliminary re-
sults on formation control were derived with respect to
the fixed topology, which is a necessary step toward the
more realistic dynamic setting. For example, in addition to
[14], [2], the feasibility problem of achieving a specified
geometric formation of a group of unicycles was investigated
in [7], where necessary and sufficient graphical conditions
for the existence of local information controller to assure the
asymptotic convergence of the closed system were derived.
Our goal is to consider the formation control, which is
reformulated as a controllability problem in this paper, where
the dynamics are influenced by multiple leaders. The results
are graph theory based and accordingly provide new insights
into some related algebraic conditions from the viewpoint of
graph theory.

II. GRAPH THEORY PRELIMINARIES

An undirected graph G consists of a node set V =
{v1, · · · , vN} and an edge set E = {(vi, vj)| vi, vj ∈ V},
where an edge is an unordered pair of distinct nodes of V. A
graph with node set V is said to be a graph on V, and it can
be visually depicted by drawing a dot for each node and a
line for each edge. The number of nodes of a graph G is its
order, and its total number of edges is its degree. If we use |·|
to denote cardinality, we have that the order of G is |V(G)|, or
simply |V|, and its degree of G is |E(G)|, or |E|. Two nodes
vi and vj are neighbors if (vi, vj) ∈ E , and the neighboring
relation is indicated with vj ∼ vi. In this case we say that vj

is a neighbor of vi. The number of neighbors of each node
is its valency or degree. If all the nodes of G are pairwise
adjacent, then G is complete. A path vi0vi1 · · · vis is a finite
sequence of nodes such that vik−1 ∼ vik

, k = 1, · · · , s, and
a graph G is connected if there is a path between any pair
of distinct nodes. Let G = (V, E) and G′ = (V ′, E ′) be two
graphs. We call G′ a subgraph of G (and G a supergraph of
G′) if V ′ ⊆ V and E ′ ⊆ E , and we denote this by G′ ⊆ G.
A subgraph G′ is said to be induced from the original graph
G if E ′ = E ∩ V ′ × V ′. In other words, it is obtained by
deleting a subset of nodes and all the edges connecting to
those nodes. G′ ⊆ G is a spanning subgraph of G if V ′ = V.

The adjacency matrix A(G) of G is an |V| × |V| matrix
of whose (i, j)-entry is 1 if (vi, vj) is one of G’s edges and
0 if it is not. Any undirected graph can be represented by
its adjacency matrix, A(G), which is a symmetric matrix
with 0-1 elements. The valency matrix 4(G) of a graph
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G is a diagonal matrix with rows and columns indexed by
V, in which the (i, j)-entry is the valency of node vi. The
incidence matrix In(G) of G is an |V|× |E| matrix, with one
row for each node and one column for each edge. Suppose
edge e = (vi, vj). Then column e of In(G) is zero except for
the ith and jth entries, which are +1 and −1, respectively.
The Laplacian matrix L(G) (simply, L) of a graph G, where
G = (V, E) is an undirected, unweighted graph without graph
loops (i, i) or multiple edges from one node to another, is
an |V|× |V| symmetric matrix with one row and column for
each node defined by

L(G)i,j =





di, if i = j (number of incident edges)
−1, if i 6= j and ∃ edge (vi, vj)
0, otherwise.

Given a graph G, its associated matrices In(G) and L(G) have
the following properties: (a) L(G) is always symmetric and
positive semidefinite; (b) zero is always a eigenvalue of L(G)
with 1n, the vector of ones, being the associated eigenvector,
and the algebraic multiplicity of the zero eigenvalue is equal
to the number of connected components in the graph; (c)
In(G)(In(G))T = L(G), and L(G) = 4(G)−A(G).

III. PROBLEM FORMULATION

Consider a multi-agent system consisting of N +nl agents
with simple, first order dynamics:

M :

{
ẋi = ui, i = 1, . . . , N

ẋN+j = uN+j , j = 1, . . . , nl

(1)

where xi is the state of the ith agent, i = 1, · · · , N + nl.
The dimension of xi could be arbitrary, as long as it is the
same for all agents. In order to facilitate presentation, we
will analyze only the one-dimensional case. The analysis
is valid for any dimension n, with the difference being
that expressions should be rewritten in terms of Kronecker
products. Once the linkages between agents are known,
an interconnection graph can be defined to describe the
interconnection network.

Definition 1: [13] The interconnection graph, G =
{V, E}, is being defined as an undirected graph consisting
of :
• a set of nodes, V = {v1, . . . , vN , vN+1, . . . , vN+nl

},
indexed by the agents in the group, and

• a set of edges, E = {(vi, vj) ∈ V × V| vi ∼ vj},
containing unordered pairs of nodes that correspond to
interconnected agents.

Interconnections come true through the input ui

ui = −
∑

j∈Ni

(xi − xj), i = 1, · · · , N + nl, (2)

where Ni = {j | vi ∼ vj ; j 6= i} is the set of indices
of the agents that are interconnected to vi, i.e., the neigh-
boring set of vi. Under the protocol (2) and with x =
(x1, · · · , xN+nl

)T being the stack vector of all the agent
states, we will have

ẋ = −Lx, (3)

where L is the Laplacian matrix of the interconnection graph.
Let us now select xN+1, · · · , xN+nl

to take the leaders’
role. Interconnections with the leaders are now assumed
unidirectional: the leaders’ neighbors still obey (2), but the
leaders are indifferent, and are free to pick uN+j , j =
1, . . . , nl arbitrarily. Rename the agents and then the multi-
agent system reads

M :

{
yi

∆=xi, i = 1, . . . , N

zj
∆=xN+j , j = 1, . . . , nl

with y being the stack vector of all yi, z the stack vector of
all zj , and u the stack vector of all uN+j , j = 1, . . . , nl,
one can write the system in the form:

[
ẏ
ż

]
= −

[
F R
0 0

] [
y
z

]
+

[
0
u

]

where F is the matrix obtained from L after deleting the
last nl rows and nl columns, and R is the N ×nl submatrix
consisting of the first N elements of the deleted columns.
Then the dynamics of the followers that correspond to the y
component of the equation can be extracted as

ẏ = −Fy −Rz. (4)

It should be noted that the selection of leaders xN+j , j =
1, . . . , nl, is indifferent, and it is free to pick any agents. The
subsequent analysis is effective for any selected leaders.

Definition 2: A follower subgraph Gf of the interconnec-
tion graph is the subgraph induced by the follower set Vf .
Similarly, A leader subgraph Gf is the subgraph induced by
the leader set Vl.

To formulate the problem clearly, we give the following
definition for controllability under fixed topology, where each
agent is interconnected to a fixed number of other agents.

Definition 3: The multi-agent system (1) is said to be
controllable under leaders xN+j , j = 1, . . . , nl, and fixed
topology if system (4) is controllable.

IV. SUPPORTING LEMMAS

Denote by Gc1 , . . . , Gcγ , the γ connected components in
the follower subgraph Gf , we give the following definition.

Definition 4: (leader-follower connected topology) A
graph G is said to be leader-follower connected if for each
connected component Gci in the follower subgraph Gf , there
exists a leader in the leader subgraph Gl, so that there is an
edge between this leader and a node in Gci

, i = 1, · · · , γ.
If there is no leader in Gl, so that there is an edge

between the leader and a node in Gci
. We say that Gci

is
not connected to Gl. Throughout the paper, we make the
following assumption.

Assumption 1: The interconnection graph G is leader-
follower connected.

It is worth noting that the assumption does not require
the interconnection graph G be connected.Accordingly it is
a less conservative condition than connectedness. Note that
the interconnection graph being connected is a prerequisite
for derivations of all the existing results on controllability,
see e.g. [13], [3], [2], [10], [9], [8].
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Let L = (aij) be the (N + nl) × (N + nl) Laplacian
matrix of G associated with multi-agent systems (1). As-
sume that Li1,...,iη is such a submatrix obtained by deleting
the i1th,. . . , iηth rows and i1th,. . . , iηth columns of L,
i1, . . . , iη ∈ {1, . . . , N + nl}. The following is required for
investigation of the controllability.

Lemma 1: Under Assumption 1, LN+1,...,N+nl
is a pos-

itive definite N ×N matrix.
Proof: Assume, without loss of generality, that

Gf consists of γ connected components, Gc1 , . . . ,
Gcγ

, with {v1, . . . , vn1}, {vn1+1, . . . , vn2}, . . . , and
{vnγ−1+1, . . . , vN} being their node sets, respectively. For
the convenience of statement and the notational simplicity,
the result will be proved only for the situation that the
leader set contains two agents xN+1, and xN+2. That is to
say, it will be shown that LN+1,N+2 is positive definite.
The general case can be proved in the same way.

Since the leader subgraph Gl is connected to Gc1 , it can
be assumed that there are τ1 nodes vh1,1 , . . . , vh1,τ1

in the
node set of Gc1 , with both (vh1,1 , vN+1), . . . , (vh1,τ1

, vN+1)
and (vh1,1 , vN+2), . . . , (vh1,τ1

, vN+2) are edges in the
interconnection graph G. In other words, vh1,1 , . . . , vh1,τ1

are the nodes which constitute edges with both xN+1

and xN+2. At the same time one can assume that
there are nodes vi1,1 , . . . , vi1,ξ1

and vj1,1 , . . . , vj1,η1
in the

node set of Gc1 , with (vi1,1 , vN+1), . . . , (vi1,ξ1
, vN+1) and

(vj1,1 , vN+2), . . . , (vj1,η1
, vN+2) being edges, where vi1,k

6=
vj1,t

,∀k = 1, . . . , ξ1; t = 1, . . . , η1, i.e. any two nodes in the
set {vi1,1 , . . . , vi1,ξ1

, vj1,1 , . . . , vj1,η1
} are not identical.

Similarly, one can assume, with respect to Gcs , s =
2, . . . , γ, that there are τs nodes vhs,1 , . . . , vhs,τs

in the
node set of Gcs

, with both (vhs,1 , vN+1), . . . , (vhs,τs
, vN+1)

and (vhs,1 , vN+2), . . . , (vhs,τs
, vN+2) are edges. Meanwhile,

it can be assumed that there are nodes vis,1 , . . . , vis,ξs

and vjs,1 , . . . , vjs,ηs
in the node set of Gcs , with

(vis,1 , vN+1), . . . , (vis,ξs
, vN+1) and (vjs,1 , vN+2), . . . ,

(vjs,ηs
, vN+2) being edges, where vis,k

6= vjs,t
,∀k =

1, . . . , ξs; t = 1, . . . , ηs.

Since LN+1,N+2 is a submatrix which is obtained by
deleting the (N +1)-th, (N +2)-th rows and the (N +1)-th,
(N + 2)-th columns of L(G), it follows from the definition
of L(G) that LN+1,N+2 has the following property for
l, p = 1, . . . , N,

all+
∑

p6=l
alp =





0, l 6= hs,q, l 6= is,r, l 6= js,w;
s = 1, . . . , γ; q = 1, . . . , τs;
r = 1, . . . , ξs;w = 1, . . . , ηs

1, l = is,r or l = js,w; s = 1, . . . , γ;
r = 1, . . . , ξs; w = 1, . . . , ηs

2, l = hs,q; s = 1, . . . , γ; q = 1, . . . , τs

(5)
Because Gc1 , . . . , Gcγ

are connected components of Gf , it
can be concluded from (5) and the definition of LN+1,N+2

that

xT LN+1,N+2 x

=
∑

i,j=1,...,n1;i 6=j

(xi − xj)2 +
∑

i,j=n1+1,...,n2;i 6=j

(xi − xj)2

+ · · ·+
∑

i,j=nγ−1+1,...,N ;i 6=j

(xi − xj)2 +
r=1,...,ξs∑

k=is,r ;s=1,...,γ

x2
k

+
w=1,...,ηs∑

k=js,w;s=1,...,γ

x2
k +

q=1,...,τs∑

k=hs,q ;s=1,...,γ

2x2
k, (6)

where x = [x1, . . . , xN ]T . Denote

X
∆=

r=1,...,ξs∑

k=is,r;s=1,...,γ

x2
k+

w=1,...,ηs∑

k=js,w;s=1,...,γ

x2
k+

q=1,...,τs∑

k = hs,q

s = 1, . . . , γ

2x2
k

X can be written as

X = X1 + · · ·+ Xγ ,

where

Xs
∆=

r=1,...,ξs∑

k=is,r

x2
k +

w=1,...,ηs∑

k=js,w

x2
k +

q=1,...,τs∑

k=hs,q

2x2
k, s = 1, . . . , γ.

Obviously, the sum Xs corresponds to the connected com-
ponent Gcs , s = 1, . . . , γ. This is because each adding term
xk in Xs corresponds to a node of Gcs .

The sum X of the last three adding terms in the equation
(6) originates from the fact that if xk corresponds to the
node vk, and there are % leaders with each one of them
constituting an edge together with vk, then the number of
x′ks appeared in X is also %. In other words, the number
of x′ks in the sum X equals the number of leaders which
constitute edges together with the node corresponding to xk.
For example, for k = hs,q, the node corresponding to xk

is vhs,q
. Because the number of leaders constituting edges

together with vhs,q is two, then there are two x′ks, i.e. x′hs,q
s

included in X. On the other hand, Assumption 1 implies
that for each connected component Gcs

of Gl, there exists at
least one leader which constitutes an edge together with a
follower in the very connected component Gcs

. This, together
with the definition of Xs, shows that there is at least one
adding term xk in the sum Xs for each s = 1, . . . , γ. Hence
it can be said in this sense that each Xs is not ‘empty’.
At the same time, it can be observed that the sth adding
term in the first γ adding terms in (6) corresponds to the
sth connected component Gcs

. Combining these analyses
with equation (6) give rise to xT LN+1,N+2 x ≥ 0, and
xT LN+1,N+2 x = 0 ⇐⇒ x = 0. So, LN+1,N+2 is positive
definite. The assertion that LN+1,...,N+nl

is positive definite
can be proved in the same way.

Suppose the connected component Gci
of follower sub-

graph Gf is on the node set {vni−1+1, . . . , vni
}, i =

1, . . . , γ, with n0 = 1, nγ = N. Denote by Sni−1+1,...,ni

the submatrix which is obtained by selecting the (ni−1 +1)-
th,. . . , ni-th rows and (ni−1 + 1)-th,. . . , ni-th columns of
L. The following result can be derived.

Lemma 2: LN+1,...,N+nl
= diag{S1,...,n1 , Sn1+1,...,n2 ,

. . . , Snγ−1+1,...,N}, and under Assumption 1, each
Sni−1+1,...,ni+1 is positive definite, i = 1, . . . , γ.
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Proof: The equality LN+1,...,N+nl
=

diag{S1,...,n1 , Sn1+1,...,n2 , . . . , Snγ−1+1,...,N} follows
from the following observations (i)-(iii):
(i) LN+1,...,N+nl

is obtained by selecting the first N rows
and N columns of L, and these rows and columns
correspond to the node set {v1, . . . , vN} of the follower
subgraph Gf .

(ii) Sni−1+1,...,ni
corresponds to the connected component

Gci
, i = 1, . . . , γ, in the sense that Sni−1+1,...,ni

is
obtained by selecting the (ni−1 + 1)-th,. . . , ni-th rows
and (ni−1 + 1)-th,. . . , ni-th columns of L, and these
rows and columns correspond to the node set {vni−1+1,
. . . , vni} of Gci .

(iii) The follower subgraph Gf constitutes of the connected
components Gc1 , . . . ,Gcγ

, and there are no common
nodes between any two connected components Gci

and
Gcj

, i 6= j.

Next, we show the second part of the result. Since each
adding term xk in Xi corresponds to a node of Gci

, it follows
from the definitions of Sni−1+1,...,ni+1 and Xi that

xT Sni−1+1,...,nix =
∑

i,j=ni−1+1,...,ni;i 6=j

(xi − xj)2 + Xi,

(7)
where x = [xni−1+1, . . . , xni ]. Noticing that Assumption 1
implies that for each connected component Gcj

of Gl, there
exists at least one leader which constitutes an edge with
a follower in Gcj

, it can be claimed that there is at least
one adding term xk in the sum Xj for each j = 1, . . . , γ.
This, together with (7), yields that Sni−1+1,...,ni is positive
definite.

V. MAIN RESULTS

Lemma 3: If multi-agent system (1) with fixed topology
is controllable, then the interconnection graph G is leader-
follower connected.

Proof: The proof is conducted by contradiction. Let
Gc1 , . . . ,Gc%

, . . . , Gcϕ
, . . . , Gcγ

represent the γ connected
components of Gf , where 1 ≤ % < ϕ ≤ γ. Denote by
{vn%−1+1, . . . , vn%} and {vnϕ−1+1, . . . , vnϕ} the node sets
of Gc%

and Gcϕ
, respectively, where n0 = 1, nγ = N. For

notational simplicity, we assume that there are only two
connected components Gc%

and Gcϕ
not connected to the

leader subgraph Gl. The general case can be shown in the
same manner.

Since R is the N × nl submatrix consisting of the first
N elements of the deleted last nl columns of the Laplacian
matrix L, and Gc% , Gcϕ are not connected to Gl, R can be
expressed as

R =
[
R̃T

1 , · · · , R̃T
%−1, 0̃

T
% , R̃T

%+1, · · · , 0̃T
ϕ , · · · , R̃T

γ

]T

(8)

with R̃i : (ni − ni−1) × nl, ∀i ∈ {1, . . . , γ; i 6= %, ϕ}; 0̃% :
(n% − n%−1)× nl; and 0̃ϕ : (nϕ − nϕ−1)× nl. Accordingly,
it follows from Lemma 2 that matrix F can be partitioned
as

F = diag
{

F̃1, · · · , F̃%, · · · , F̃ϕ, · · · , F̃γ

}
(9)

where F̃i : (ni − ni−1) × (ni − ni−1) plays the same role
as Sni−1+1,...,ni

in Lemma 2. Denote by C the controllable
matrix of system (4). From (8) and (9), it can be readily seen
that

C =




−R̃1 F̃1R̃1 −F̃ 2
1 R̃1 · · · (−1)N F̃N−1

1 R̃1

...
...

... · · · ...
0̃% 0̃% 0̃% · · · 0̃%

...
...

... · · · ...
0̃ϕ 0̃ϕ 0̃ϕ · · · 0̃ϕ

...
...

... · · · ...
−R̃γ F̃γR̃γ −F̃ 2

γ R̃γ · · · (−1)N F̃N−1
γ R̃γ




.

As a consequence,

rankC ≤ N − (n% − n%−1)− (nϕ − nϕ−1), (10)

where n% − n%−1 ≥ 1, nϕ − nϕ−1 ≥ 1, as the node sets
of Gc%

and Gcϕ
are both nonempty. Hence, the multi-agent

system (1) is not controllable. This completes the proof.
The following observation is a direct consequence of the

result.
Corollary 1: In case of a single leader, a necessary con-

dition for the controllability under fixed topology is that the
interconnection graph G is connected.

Proof: The result comes from the fact that under the
circumstance of a single leader, Assumption 1 is equivalent
to the connectedness of G.

Corollary 2: If Assumption 1 is not satisfied, with δ
connected components Gci1

, . . . , Gciδ
of Gf not connected

to Gl, where i1, . . . , iδ ∈ {1, . . . , γ}, then the dimen-
sion of the controllable subspace is not more than N −∑δ

j=1 (nij − nij−1), where it is assumed that Gcij
is on the

node set
{

vnij−1+1, . . . , vnij

}
.

Proof: The result can be proved in the same manner
as that for (10), which is a special case of δ = 2.

Lemma 4: If multi-agent system (1) with fixed topology
is controllable, so is the matrix pair (−F̃i,−R̃i), ∀i ∈
{1, . . . , γ}.

Proof: Set ñi
∆=ni − ni−1, i = 1, . . . , γ, and denote

C̃i
∆=

[
−R̃i, F̃iR̃i,−F̃ 2

i R̃i, · · · , (−1)N F̃N−1
i R̃i,

]
,

Ci
∆=

[
−R̃i, F̃iR̃i,−F̃ 2

i R̃i, · · · , (−1)ñi F̃ ñi−1
i R̃i,

]
.

It can be seen that Ci is the controllable matrix of systems
(−F̃i,−R̃i). Noticing that R̃i is a ñi×ñi matrix and ñi ≤ N,
one can get from the Cayley-Hamilton theorem that

rankCi = rank C̃i.

On the other hand, it follows from the proof of Lemma 3
that the controllable matrix C of multi-agent systems (1) is
given by

C =
[
C̃T

1 , . . . , C̃T
i , . . . , C̃T

γ

]T

. (11)

So, if the system (−F̃i,−R̃i) is uncontrollable, rankCi <
ñi. This, together with (11), give rise to rankC < N. The
conclusion is then proved by contradiction.
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Definition 5: (controllable interconnection graph) An in-
terconnection graph G is said to be controllable if its cor-
responding multi-agent system is controllable. The eigenval-
ues(eigenvectors) of the matrix F introduced in (4) are said
to be the eigenvalues(eigenvectors) of the interconnection
graph G.

As mentioned above, let Gc1 , . . . , Gcγ
be the γ connected

components of Gf , with Gci on the node set {vni−1+1,
. . . , vni}, i = 1, . . . , γ, n0 = 1, nγ = N ; and Gl on
the node set Vl = {vN+1, . . . , vN+nl

}. Denote by G(i) an
induced subgraph of G, which is on the node set {vni−1+1,
. . . , vni

, vN+1, . . . , vN+nl
}. That is, the node set of G(i) is

the union of the node sets of Gci and Gl. It can be seen
that G(i) is the interconnection subgraph associated with a
‘smaller’ multi-agent system with its follower set being Gci

and leader set still being Gl. Specifically, the multi-agent
system is described as follows:

M(i) :

{
y1

∆=xni−1+1, . . . , yñi

∆=xni ,

zj
∆=xN+j , j = 1, . . . , nl,

(12)

where ñi = ni − ni−1, and the linkages between agents
in the system M(i) are described by the subgraph G(i).
Accordingly, (F̃i, R̃i) is the matrix pair of the induced
submulti-agent system M(i).

Definition 6: The multi-agent system M(i) defined in (12)
with its interconnection graph being G(i) is said to be the
induced submulti-agent system of the original multi-agent
system M.

Theorem 1: If multi-agent system (1) with fixed topology
is controllable, then the interconnection graph is leader-
follower connected, and each subgraph G(i) is controllable,
i ∈ {1, . . . , γ}; γ is the number of connected components
in Gf .

Proof: The conclusion that Gl is linked to Gf fol-
lows from Lemma 3. Since (F̃i, R̃i) is the matrix pair of
the induced submulti-agent system M(i), by Lemma 4,
(−F̃i,−R̃i) is controllable, ∀i ∈ {1, . . . , γ}. So M(i), and
accordingly the corresponding subgraph G(i) is controllable.

As for sufficient conditions, we have the following.
Theorem 2: The multi-agent system (1) with fixed topol-

ogy is controllable under Assumption 1, if the following
conditions are fulfilled:

1) The eigenvalues of each induced subgraph G(i) and
those between any two different subgraphs G(i) and
G(j), are distinct from each other, ∀i, j ∈ {1, . . . , γ};

2) There exists an index l such that for each subgraph
G(i), the eigenvectors of G(i) are not orthogonal to
the l-th linking vector of G(i), i = 1, . . . , γ; l ∈
{1, · · · , nl}.

Proof: Set B̃
∆=−R, H̃

∆=−F. In the sequel, we shall
calculate the controllable matrix C first. Since F is symmet-
ric, it can be assumed that H̃

∆= ŨD̃ŨT with Ũ being an
orthogonal matrix. The controllable matrix is thus given by

C = Ũ
[
B, D̃B, . . . , D̃N−1B

]
, (13)

where B
∆= ŨT B̃. For simplicity of presentation, we prove

the result only for nl = 2, γ = 2. The general case can be
verified in the same way. In this case, B can be assumed to
be

B =
[
B

T

1 , B
T

2

]T

(14)

with B1 =
[
b11, b12

]
: ñ1 × nl, B2 =

[
b21, b22

]
: ñ2 × nl,

where

bi1 =




b
(1)

i1
...

b
(ñi)

i1


 , bi2 =




b
(1)

i2
...

b
(ñi)

i2


 ,

ñ1
∆=n1 − n0, ñ2

∆=n2 − n1;n0 = 0, n2 = N. Denote by

D̃
∆=

[
D̃1

D̃2

]
, with

D̃1
∆=




d11

. . .
d1ñ1


 , D̃2

∆=




d21

. . .
d2ñ2


 .

It follows from (13) and (14) that

ImC = ImŨ
[
Λ1Ξ,Λ2Ξ

]
, (15)

where Im(·) denotes the image space of a matrix,

Λ1
∆= diag

{
b
(1)

11 , · · · , b
(ñ1)

11 , b
(1)

21 , · · · , b
(ñ2)

21

}
,

Λ2
∆= diag

{
b
(1)

12 , · · · , b
(ñ1)

12 , b
(1)

22 , · · · , b
(ñ2)

22

}
,

Ξ
∆=




1 d11 d
2

11 · · · d
N−1

11
...

...
... · · · ...

1 d1ñ1 d
2

1ñ1
· · · d

N−1

1ñ1

1 d21 d
2

21 · · · d
N−1

21
...

...
... · · · ...

1 d2ñ2 d
2

2ñ2
· · · d

N−1

2ñ2




.

On the other hand, since γ = 2, matrix F and R
can be partitioned, respectively, as F = diag{F̃1, F̃2},
F̃1 : ñ1 × ñ1; F̃2 : ñ2 × ñ2, and −R = [−R̃T

1 ,−R̃T
2 ]T =

[B̃T
1 , B̃T

2 ]T ; R̃i : ñi × nl; i = 1, 2. Accordingly, H̃ and
Ũ can be partitioned, respectively, as H̃ = diag{H̃1, H̃2},
with H̃i = −F̃i, i = 1, 2; and Ũ = diag{Ũ1, Ũ2}. Because
−F̃i = H̃i = ŨiD̃iŨ

T
i , and the matrix pair (−F̃i,−R̃i)

corresponds to G(i), it follows from Lemma 1 that all the
eigenvalues of F̃i, i.e., −di1, . . . ,−diñi

, are nonzero.
At the same time, since (F̃i, R̃i) is the matrix pair of

G(i), i = 1, 2, one can conclude from Conditions 1 that
the numbers in the set {d11, . . . , d1ñ1 , d21, . . . , d2ñ1} are
different from each other. As a consequence, the Vander-
monde matrix Ξ is nonsingular. Noticing that ŨT

i B̃i
∆=Bi =[

bi1, bi2

]
, i = 1, 2, it follows from Condition 2 that

for the index l ∈ {1, 2}, each number in the set
{b(1)

1l , · · · , b
(ñ1)

1l , b
(1)

2l , · · · , b
(ñ2)

2l } is nonzero. Accordingly,
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the diagonal matrix Λl is nonsingular. Therefore, if Condi-
tions 1,2 are satisfied, it can be seen from (15) that rankC =
N, k i.e system (1) with fixed topology is controllable.

Theorem 3: The multi-agent system (1) with single leader
and fixed topology is controllable if and only if each induced
subgraph G(i) is controllable, and there are no common
eigenvalues between any two different subgraphs G(i) and
G(j), where i, j ∈ {1, . . . , γ}, γ is the number of connected
components in Gf .

Proof: (Sufficiency) Since the leader is single, the
matrix pair of G(i) is denoted by (F̃i, r̃i) with F̃i : ñi × ñi,
r̃i : ñi×1, where ñi = ni−ni−1 is the number of elements
in the node set of Gci

, which is, by definition, the follower
subgraph of G(i). The controllability of G(i) implies

rankCi = rank
[
b̃i, H̃ib̃i, . . . , H̃

ñi−1
i b̃i

]
= ñi, (16)

where H̃i
∆=−F̃i; b̃i

∆=−r̃i; Since H̃i = ŨiD̃iŨ
T
i , with Ũi

being an orthogonal matrix, and
[
b̃i, H̃ib̃i, . . . , H̃

ñi−1
i b̃i

]
= Ũi

[
bi, D̃ibi, . . . , D̃

ñi−1
i bi

]
,

bi
∆= ŨT

i b̃i, it follows from some computations that

Ci = ŨiΛiΞi, (17)

where bi = [bi1, · · · , biñi
]T , D̃i = diag{di1, · · · , diñi

}, and

Λi = diag{bi1, · · · , biñi
},Ξi =




1 di1 · · · dñi−1
i1

...
... · · · ...

1 diñi
· · · dñi−1

iñi




Combining (16) with (17) yields
(i) bij 6= 0, i = 1, . . . , γ; j = 1, . . . , ñi; and

(ii) dij 6= dik, for an arbitrary given i ∈ {1, · · · , γ}, where
∀j 6= k; j, k ∈ {1, · · · , ñi}.

On the other hand, some computations show that the
controllable matrix C can be expressed as

C = ŨΛΞ, (18)

where Ũ = diag{Ũ1, · · · , Ũγ}, Λ = diag{b11, · · · , b1ñ1 ,
· · · , bγ1, · · · , bγñγ

},

Ξ =




1 d11 · · · dN−1
11

· · · · · · · · · · · ·
1 d1ñ1 · · · dN−1

1ñ1· · · · · · · · · · · ·
1 dγ1 · · · dN−1

γ1

· · · · · · · · · · · ·
1 dγñγ

· · · dN−1
γñγ




.

By Lemma 1, the controllability of G(i) means F̃i is pos-
itive definite, and consequently dij is nonzero, for ∀ i =
1, · · · , γ; j = 1, · · · , ñi. Since there are no common eigen-
values between any two different subgraphs G(i) and G(j),
i, j ∈ {1, . . . , γ}, it follows from (ii) that the Vandermonde
matrix Ξ is nonsingular. Combing this with (i) and (18) gives
rise to rankC = N. That is, the system is controllable.

(necessity) The controllability of each induced subgraph
comes from Theorem 1. Because a real number is an
eigenvalue of G if and only if it is an eigenvalue of some
induced subgraph G(i), it can be concluded that if there is a
common eigenvalue between two subgraphs G(i) and G(j),
the Vandermonde matrix Ξ is singular, which, due to (18),
contradicts the controllability of the multi-agent system.

VI. CONCLUSIONS

The paper reveals a class of controllable interconnection
topologies for a group of systems to be controllable by some
of them acting as a leader, which is characterized by the
concept of linking between the leader and follower subgraphs
and some induced subgraphs G(i), i = 1, . . . , γ. The results
indicate to a certain degree how the controllability of the
overall interconnected systems can be affected by the struc-
ture of the interconnection topology.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the help of three ref-
erees for their constructive comments and recommendations.

REFERENCES

[1] Y. Hong, L. Gao, D. Cheng, and J. Hu. Lyapunov-based approach to
multiagent systems with switching jointly connected interconnection.
IEEE Transactions on Automatic Control, 52(5):943–948, 2007.

[2] M. Ji and M. Egerstedt. A graph-theoretic characterization of
controllability for multi-agent systems. In Proceedings of the 2007
American Control Conference, pages 4588–4593, Marriott Marquis
Hotel at Times Square, New York City, USA, July 11-13 2007.

[3] M. Ji, A. Muhammad, and M. Egerstedt. Leader-based multi-agent
coordination: Controllability and optimal control. In Proceedings of
the 2006 American Control Conference, pages 1358–1363, Jun. 2006.

[4] Z. Ji, H. Lin, and T. Lee. Controllability of multi-agent systems with
switching toplogy. Pro. the 2008 IEEE International Conferences on
CIS& RAM, to appear.

[5] Z. Ji, L. Wang, and X. Guo. Design of switching sequences for
controllability realization of switched linear systems. Automatica,
43(4):662–668, 2007.

[6] Z. Ji, L. Wang, and X. Guo. On controllability of switched linear
systems. IEEE Transactions on Automatic Control, 53(3):796-801,
2008.

[7] Z. Lin, B. Francis, and M. Maggiore. Necessary and sufficient graph-
ical conditions for formation control of unicycles. IEEE Transactions
on Automatic Control, 50(1):121–127, 2005.

[8] B. Liu, T. Chu, L. Wang, and G. Xie. Controllability of a class of
multi-agent systems with a leader. In Proceedings of the American
Control Conference, pages 2844–2849, Minneapolis, Minnesota, USA,
2006.

[9] B. Liu, G. Xie, T. Chu, and L. Wang. Controllability of interconnected
systems via switching networks with a leader. In IEEE International
Conference on Systems, Man and Cybernetics, pages 3912–3916,
Taipei, Taiwan, 2006.

[10] A. Rahmani and M. Mesbahi. On the controlled agreement problem. In
Proceedings of the 2006 American Control Conference, pages 1376–
1381, Minneapolis, Minnesota, USA, Jun. 14-16 2006.

[11] H. Shi, L. Wang, and T. Chu. Virtual leader approach to coordinated
control of multiple mobile agents with asymmetric interactions. Phys-
ica D, 213:51–65, 2006.

[12] Z. Sun, S. Ge, and T. Lee. Controllability and reachability criteria for
switched linear systems. Automatica, 38(5):775–786, 2002.

[13] H. Tanner. On the controllability of nearest neighbor interconnections.
In Proceedings of the 43rd IEEE Conference on Decision and Control,
pages 2467–2472, Dec. 2004.

[14] H. Tanner, A. Jadbabaie, and G. Pappas. Flocking in fixed and switch-
ing networks. IEEE Transactions on Automatic Control, 52(5):863–
868, 2007.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC06.4

5267


