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a b s t r a c t

The paper presents a unified perspective on geometric and algebraic criteria for reachability and
controllability of controlled switched linear discrete-time systems. Direct connections between
geometric and algebraic criteria are established as well as that between the subspace based
controllability/reachability algorithmandKalman-type algebraic rank criteria. Also the existing geometric
criteria is simplified and new algebraic conditions on controllability and reachability are given.
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1. Introduction

Switched systems are control systems that consist of a finite
number of subsystems and a logical rule that orchestrates
switchings among them. The last decade has witnessed a growing
interest in the study of such systems because the study is
significant from both practical and theoretical point of view
(DeCarlo, Branicky, Pettersson, & Lennartson, 2000; Liberzon &
Morse, 1999; Sun & Ge, 2005). A challenging topic in switched
systems is to evaluate the effect of switched control on the system
operation, which is usually formulated as the controllability
problem (Krastanov & Veliov, 2005; Petreczky, 2006a; Yang, 2002).
The switching mechanism involved in the controllability and
reachability was analyzed in Ji, Feng, and Guo (2007), Ji, Wang,
and Guo (2007), Ji, Wang, and Guo (2008), Sun (2004), Sun,
Ge, and Lee (2002) and Xie and Wang (2003a). Most results
along this line were expressed in terms of geometric symbols
(e.g. Cheng, Lin, and Wang (2006), Ge, Sun, and Lee (2001), Sun
and Ge (2005), Sun et al. (2002), Sun and Zheng (2001), Xie
and Wang (2003a)), while a few others algebraic (e.g. Stikkel,

I This paper was presented at Proceedings of the 27th Chinese Control Confer-
ence, July 16–18, 2008, Kunming, Yunnan, China. This paper was recommended for
publication in revised form by Associate Editor Hideaki Ishii under the direction of
Editor André L. Tits.
∗ Corresponding author. Tel.: +86 532 84927689; fax: +86 532 82972727.
E-mail addresses: jizhijian@pku.org.cn (Z. Ji), elelh@nus.edu.sg (H. Lin),

eleleeth@nus.edu.sg (T.H. Lee).

0005-1098/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.automatica.2009.02.024
Bokor, Szabó (2004) and Yang (2002)). The geometric criteria
have the advantage of a straightforward characterization of the
reachable/controllable subspace, while the algebraic criteria can
be checked andmanipulatedmore conveniently. It is worth noting
that there is a lack of systematic perspective on the connections
between these two kinds of results as well as the relevant
subspace-based algorithms. This motivates the study in this note.
Also, the study is fueled by providing computational tools for
reachable/controllable subspace of switched linear discrete-time
systems. We present not only the aforementioned connections
but also some improved geometric and algebraic criteria. Also
the relationship between the existing subspace-based algorithms
is revealed, which leads to a simplified computation method
for controllable subspace. It should be noted that there is a
strong relationship between reachability and minimality of linear
switched systems (Petreczky, 2006b, 2007). In fact, the presented
characterizations of reachability in this note can also be used for
devising characterization ofminimality of switched linear systems.
The paper is organized as follows: Section 2 presents some pre-

liminary definitions and supporting lemmas. A unified perspective
on reachability and controllability criteria is given in Section 3. A
brief conclusion is made in Section 4.

2. Definitions and supporting lemmas

A switched linear discrete-time system is described by

x(k+ 1) = Aσ(k)x(k)+ Bσ(k)u(k) (1)
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where x(k) ∈ Rn is the state, u(k) ∈ Rp the input, σ(k) :
{0, 1, . . .} → Λ := {1, . . . ,m} is the switching path to be
designed, and matrix pairs (Ak, Bk) for k ∈ Λ are referred to as
the subsystems of (1). Moreover, σ(k) = i implies that the ith
subsystem (Ai, Bi) is activated. Throughout the paper, we assume
that the discrete-time switched system (1) is reversible, i.e., Ai is
nonsingular for all i ∈ Λ. The derivation of the following Lemma 2
is based on this assumption (see, e.g. Ge et al. (2001) and Xie and
Wang (2003b)).
For any positive integer k, set k = {0, . . . , k − 1}. Given a

switching sequence π = {(i0, h0) · · · (is−1, hs−1)}, a corresponding
switching path σ(k) : k→ Λ is determined by

σ(0) = σ(1) = · · · = σ(h0 − 1) = i0
σ(h0) = σ(h0 + 1) = · · · = σ(h0 + h1 − 1) = i1

...

σ

(
s−2∑
j=0

hj

)
= σ

(
s−2∑
j=0

hj + 1

)
= · · · = σ

(
s−1∑
j=0

hj − 1

)
= is−1.

Definition 1. State x is reachable, if there exist a time instant k >
0, a switching path σ : k→ Λ, and inputs u : k→ Rp, such that
x(0) = 0, and x(k) = x. The reachable set of system (1) is the set
of states which are reachable. System (1) is said to be (completely)
reachable, if its reachable set is Rn.

The controllability counterpart of Definition 1 can be given by
replacing ‘x(0) = 0, and x(k) = x’ with ‘x(0) = x, and x(k) = 0’.
Given amatrix A ∈ Rn×n, and a linear subspaceW ⊆ Rn, we denote
〈A|W 〉 =

∑n
i=1 A

i−1W . It follows that 〈A|W 〉 is a minimum A-
invariant subspace that contains W . Define the subspace sequence
Pj =

∑j
i=1 A

i−1W , j = 1, 2, . . . . Clearly, 〈A|W 〉 = Pn. Let ϑ be
the integer such that ϑ = min{j | Pj = Pj+1, j = 1, 2, . . .}. In
association with A, we denote by ρ(A) the degree of its minimal
polynomial.

Lemma 1 (Chen, Desoer, Niederlinski, & Kalman, 1966). Given a
matrix A ∈ Rn×n, and a linear subspace W ⊆ Rn,Pj = Pϑ holds for
all j ≥ ϑ, with ϑ satisfying ϑ ≤ min{n− dimW + 1, ρ(A)}.

An immediate consequence of this lemma is 〈A|W 〉 =∑ϑ
i=1 A

i−1W . For the convenience of statement, we hereafter call
ϑ the (A,W )-invariant subspace index. For A ∈ Rn×n and B ∈ Rn×p,
set B := Im B. To study the reachability and controllability of
discrete-time switched linear systems, the following recursively
defined subspace sequence was introduced in Ge et al. (2001) and
Sun et al. (2002).

V1 =

m∑
s=1

Bs, Vi =

m∑
s=1

〈As|Vi−1〉 , i = 2, 3, . . . . (2)

The subspace V is defined by V =
∑
∞

i=1 Vi. Furthermore, the
following elegant result holds.

Lemma 2 (Ge et al., 2001; Xie & Wang, 2003b). For discrete-time
switched linear systems (1), T = V = C, where T is the set of all
reachable states of system (1) andC is the set of all controllable states.

Denote by di the dimension of Vi, i.e., di = dim Vi. Let µ =
min{i| Vi = Vi+1, i = 1, 2, . . .}. It can be readily seen that
V1 ⊂ V2 ⊂ · · · ⊂ Vµ, and V = Vµ. Obviously, µ is fixed
once the switched system (1) is given. Furthermore µ ≤ n −
d1 + 1. Hereafter, we call µ the joint invariant subspace index
of (A1, . . . , Am; B1, . . . , Bm).
3. A unified perspective on reachability and controllability
criteria

3.1. Geometric and algebraic criteria

In this subsection we derive at first a simplified geometric cri-
terion for reachability and controllability. Then the corresponding
algebraic criterion is given. Finally the geometric and algebraic cri-
teria are discussed from a unified point of view.
Let ωi,j be the (Ai,Bj)-invariant subspace index, i, j =

1, . . . ,m; and ϑi,j be the (Ai, Vj)-invariant subspace index, i =
1, . . . ,m; j = 1, . . . , µ − 1. Set ϑi = max{ωi,s, ϑi,j; s =
1, . . . ,m; j = 1, . . . , µ − 1}; and define ϑi , {0, 1, . . . , ϑi −
1}, i = 1, . . . ,m. We have the following result.

Theorem 1. The switched linear discrete-time system (1) is reachable
if and only if M = Rn, where

M ,

j1∈ϑi1 ,...,jµ−1∈ϑiµ−1∑
i0,...,iµ−1∈Λ

A
jµ−1
iµ−1
· · · Aj1i1Bi0 . (3)

Proof 1. Denote by ρ(Ai) the degree of the minimal polynomial of
Ai. It follows from Lemma 1 that Vi, i = 2, . . . , µ, can be written in
the form

Vi =

m∑
s=1

〈As|Vi−1〉 =
m∑
s=1

ϑs,i−1∑
j=1

Aj−1s Vi−1, (4)

where ϑs,i−1 is the (As, Vi−1)-invariant subspace index, satisfying

ϑs,i−1 ≤ min{n− di−1 + 1, ρ(As)}, (5)

with s = 1, . . . ,m; i = 2, . . . , µ; and ωi,j satisfying

ωi,j ≤ min{n− dimBj + 1, ρ(Ai)}. (6)

Denote β , min{dimBj, j = 1, . . . ,m}, ρ , max{ρ(As), s =
1, . . . ,m}. By (5) and (6), and 1 ≤ β ≤ d1 < d2 < · · · < dµ−1 <
dµ = dim V , one has ϑi ≤ min{n − β + 1, ρ}, i = 1, . . . ,m.
We then associate with each subsystem matrix Ai a nonnegative
integer set ϑi. Since ϑs ≥ ϑs,i−1, it follows from Lemma 1 that

ϑs,i−1∑
j=1

Aj−1s Vi−1 =

ϑs∑
j=1

Aj−1s Vi−1. (7)

On the other hand, a nested subspace is defined by (2). It can be
verified directly from (2) that Vµ is a sum of various adding terms
with each one in the form of A

jµ−1
iµ−1
· · · Aj1i1Bi0 . Equalities (4) and (7)

imply that 0 ≤ js ≤ ϑs − 1, s = 1, . . . , µ − 1. Accordingly,
computations according to (2) give rise to Vµ = M, where M
is given by (3). Since V = Vµ, the result then follows from
Lemma 2. �

Remark 1. The contribution of Theorem 1 consists in providing a
simplified geometric characterization for the reachability subspace
T , i.e. T = M. More specifically, T was written in Sun and Ge
(2005) in the form

T =

j1,...,jn−1∈{0,...,n−1}∑
i0,...,in−1∈Λ

Ajn−1in−1
· · · Aj1i1Bi0 , (8)

The difference between (3) and (8) lies in: (i) The number of
multiplying matrices in each adding term in (3) is µ (≤n − d1 +
1), which is not greater than n, the same kind of number in (8)
as µ in (3). Hence, the number of adding terms in (8) is greatly
reduced in (3), especially when µ is much less than n; (ii) The
maximum amount of power in association with each multiplying
system matrix Ais in (8) is n − 1, which is reduced to ϑis − 1
in (3), is ∈ Λ. Note that by (5) and (6), ϑis ≤ min{n −
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dimBis + 1, ρ(Ais)}. These arguments indicate that Theorem 1
presents a simplified geometric criteria for system (1) and the
concept of (A,W )-invariant subspace index plays an important
role in characterization of the reachable subspace.

Next, we demonstrate the corresponding algebraic criteria for
Theorem 1. Let i1, . . . , iµ−1 ∈ Λ be given. Define at first the
followingmmatrices for s = 1, . . . ,m

Eµ−1(s, i1, . . . , iµ−1) ,
[
A
jµ−1
iµ−1
· · · Aj1i1Bs

]
j1∈ϑi1 ,...,jµ−1∈ϑiµ−1

. (9)

Then define

Aµ−1(s) ,
[
Eµ−1(s, i1, . . . , iµ−1)

]
i1,...,iµ−1∈Λ

, (10)

where s = 1, . . . ,m. Let

M =
[
Aµ−1(1) Aµ−1(2) · · · Aµ−1(m)

]
. (11)

The following is a Kalman-type rank criterion.

Theorem 2. The switched linear discrete-time system (1) is reachable
if and only if the controllable matrix M is of full row rank,
i.e. rankM = n.

Proof 2. From (3), Vµ can be written in the form

Vµ =
∑

i1,...,iµ−1∈Λ

∑
j1∈ϑi1 ,...,jµ−1∈ϑiµ−1

A
jµ−1
iµ−1
· · · Aj1i1B1

+ · · · +

∑
i1,...,iµ−1∈Λ

∑
j1∈ϑi1 ,...,jµ−1∈ϑiµ−1

A
jµ−1
iµ−1
· · · Aj1i1Bm. (12)

By (9), it can be seen that for a group of given i1, . . . , iµ−1 and
s = 1, . . . ,m

ImEµ−1(s, i1, . . . , iµ−1) =
∑

j1∈ϑi1 ,...,jµ−1∈ϑiµ−1

A
jµ−1
iµ−1
· · · Aj1i1Bs.

Furthermore, it follows from (10) that for s = 1, . . . ,m

ImAµ−1(s) =
∑

i1,...,iµ−1∈Λ

∑
j1∈ϑi1 ,...,jµ−1∈ϑiµ−1

A
jµ−1
iµ−1
· · · Aj1i1Bs.

Combining this with (11) and (12) yields ImM = Vµ. The result
then follows from Lemma 2. �

The algebraic conditions on controllability were recently
studied by Stikkel et al. (2004) and Yang (2002) by employing a
concept of joint controllability matrices of switched linear systems.
To proceed, let us revisit this concept used by them. Define

æk(i1, . . . , ik) ,
[
Ajkik · · · A

j2
i2
Aj1i1Bi1

]
j1,...,jk∈{0,1,...,n−1}

.

Then let Æ0(i) = æ1(i), . . ., and

Æk(i) = [æk+1(i, i1, . . . , ik)]i1,···,ik∈Λ.

The joint controllability matrices can be iteratively defined as
W 0 = [Æ0(1)Æ0(2) · · ·Æ0(m)], . . . ,W k = [Æk(1)Æk(2) · · ·
Æk(m)]. There exists a joint controllability coefficient kr of the
system, defined in Yang (2002) by kr = argminl{rankW l =
rankW l+1}. Yang proved that a necessary condition for the
controllability is rankW kr = n. Then Stikkel, Bokor and
Szabó showed that this condition is also sufficient provided the
persistency of excitation assumption on switching signals. So
the algebraic criterion on controllability has not been solved
completely. In particular, few properties are known on kr ,
especially the exact value. So we want to know whether there
are any other characterizations for kr . To analyze this problem,
we present a modified version of joint controllability matrices. Let
E0(i) , Bi, i = 1, . . . ,m; and
Ek(i, i1, . . . , ik) ,
[
Ajkik · · · A

j1
i1
Bi
]
j1∈ϑi1 ,...,jk∈ϑik

.

Define A0(i) = E0(i), . . . ,

Ak(i) =
[
Ek(i, i1, . . . , ik)

]
i1,...,ik∈Λ

andW 0 =
[
A0(1)A0(2) . . . A0(m)

]
, · · · ,

W k =
[
Ak(1)Ak(2) . . . Ak(m)

]
. (13)

It can be seen that the joint controllability matrices defined in
this way have the property of ImW k = Vk+1, k = 0, 1, . . . . An
immediate consequence of this observation is the following result.

Theorem 3. The relationship between the joint controllability coeffi-
cient kr and the joint invariant subspace index of system (1) is kr =
µ− 1.

Remark 2. The modified version (13) of joint controllability
matrices allows one to take advantage of the nested subspace
sequence (2) to get Theorem 3. This characterization enables
people to understand kr via a geometric rather than only an
algebraic point of view.

Remark 3. Theorems 1 and 2 exhibit a direct connection and
correspondence between the geometric and algebraic criteria.
Theorems 1–3 not only present simplified geometric and algebraic
criteria for controllability and reachability of switched linear
discrete-time systems, but also demonstrate these two criteria in a
systematic and unified way for the first time. At the same time the
relationship between the joint controllability coefficient and the
joint invariant subspace index is revealed.

3.2. Computational issues and other algebraic rank conditions

To calculate ImW kr , Stikkel et al. introduced the following
subspace algorithm

W0 =

m∑
j=1

Bj, Wk+1 = W0 +

m∑
j=1

AjWk. (14)

Let W ∗ = limk→∞ Wk, it is proved in Stikkel et al. (2004) that
ImW kr = W ∗. With respect to the subspace sequence (14), we
have the following observation.

Proposition 1. The subspace sequence (14) can be equivalently
written as

W0 =

m∑
j=1

Bj, Wk+1 = Wk +

m∑
j=1

AjWk. (15)

As a consequence, if a nonnegative number γ is defined by γ =
min{k | Wk = Wk+1, k = 0, 1, . . .}, then

W0 ⊂ W1 ⊂ · · · ⊂ Wγ = Wγ+1 = · · · = W ∗ = T . (16)

Proof 3. We show it by induction. Clearly, W1 = W0 +
∑m
j=1 AjW0.

Suppose Wk+1 = Wk +
∑m
j=1 AjWk. We have

Wk+2 = W0 +

m∑
j=1

AjWk+1

= W0 +

m∑
j=1

Aj

(
Wk +

m∑
l=1

AlWk

)

= W0 +

m∑
j=1

(
AjWk + Aj

m∑
l=1

AlWk

)
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=

(
W0 +

m∑
j=1

AjWk

)
+

m∑
j=1

Aj

(
Wk +

m∑
l=1

AlWk

)

= Wk+1 +

m∑
j=1

AjWk+1.

So (15) holds. By (15) and the definition of γ ,W0 ⊂ W1 ⊂ · · · ⊂

Wγ = Wγ+1 = · · · = W ∗. The equality W ∗ = T follows by
combining (8), Lemma 2 and the proof of Proposition 1 in Stikkel
et al. (2004). The proof is completed. �

Remark 4. The subspace sequence (15) is exactly the one used
by Sun et al. in Sun et al. (2002). Proposition 1 tells us that the
subspace sequences (14) and (15) are actually equivalent to each
other. The advantage of (14) lies in its simple form while the
subspace (15) possesses good Proposition (16). By Proposition 1,
these two advantages can be combined together when one tries to
calculate the reachable/controllable subspace for switched linear
systems. In other words, one can start computing Wk, k =
0, 1, 2, . . ., according to (14) which is simpler than (15), and stop
the algorithm at most within n − dimW0 steps because according
to (16), γ ≤ n− dimW0.

Now we state another algebraic criterion for reachability and
controllability. Let

Γ , [B1, . . . , Bm, A1B1, . . . , A1Bm, . . . , AmB1, . . . ,

AmBm, . . . , A
γ

1 B1, . . . , A
γ

1 Bm, A
γ−1
1 A2B1, . . . ,

Aγ−11 A2Bm, . . . , AγmB1, . . . , A
γ
mBm].

That is, Γ consists of block matrices Ail · · · Ai1Bi0 with 0 ≤ l ≤
γ ; i0, i1, . . . , il ∈ {1, . . . ,m}, and i0, i1, . . . , il are not necessarily
distinct discrete modes.

Theorem 4. The switched linear discrete-time system (1) is reachable
if and only if the matrix Γ is of full row rank, i.e. rankΓ = n.

Proof 4. It follows from (14)(refer to the proof of Proposition 1
in Stikkel et al. (2004) for detail) that an arbitrary subspace Wk can
be written as

Wk =

m∑
j=1

Bj +
k∑
l=1

∑
i0,...,il∈Λ

Ail · · · Ai1Bi0 .

In particular, with respect to Wγ , one has Wγ = Im Γ . This,
together with (16) gives rise to the result. �

Since γ ≤ n − dimW0, Theorem 4 still holds when γ in Γ is
replaced by n.

4. Conclusions

The paper contributes to the field by providing a unified
perspective for controllability and reachability algebraic and
geometric criteria as well as the corresponding subspace based
algorithms. Connections between the algebraic and geometric
criteria are revealed as well as those between the algorithms
and algebraic rank conditions, which gain an insight into the
significance of some existing criteria for controllability and
reachability of controlled switched linear discrete-time systems.
The contribution also includes simplified geometric criteria and
new Kalman-type algebraic rank criterion.
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