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Controllability of multi-agent systems with time-delay in state and switching topology
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In this article, the controllability issue is addressed for an interconnected system of multiple agents. The network
associated with the system is of the leader–follower structure with some agents taking leader role and others
being followers interconnected via the neighbour-based rule. Sufficient conditions are derived for the
controllability of multi-agent systems with time-delay in state, as well as a graph-based uncontrollability
topology structure is revealed. Both single and double integrator dynamics are considered. For switching
topology, two algebraic necessary and sufficient conditions are derived for the controllability of multi-agent
systems. Several examples are also presented to illustrate how to control the system to shape into the desired
configurations.
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1. Introduction

In recent years, the decentralised coordinated control of
multi-agent systems has received considerable atten-
tion. This is partly due to the communication of the
technological advances and broad applications of
multi-agent systems in the area of unmanned air and
underwater vehicles, formation control of satellite
clusters and so on. Also, studies in this direction have
been inspired by the cooperative behaviour of biological
swarms, such as ant colonies and bird flocks, where
collective motions may emerge from groups of simple
individuals through limited interactions. To understand
the mechanism inherent in the motion coordination of
agents, the information flow and interaction topologies
among multiple dynamic agents call for an intensive
study. Many researchers have devoted themselves to
modelling and understanding the cooperative principles
of such collective behaviours, as well as their potential
engineering applications (Kozyreff, Vladimirov, and
Mandel 2000; Earl and Strogatz 2003; Jadbabaie, Lin,
and Morse 2003; Moreau 2004; Tanner 2004;
Olfti-Saber and Murray 2004; Amano, Luo, and
Hosoe 2005; Ren and Beard 2005; Liu, Xie, Chu, and
Wang 2006b; Wang and Xiao 2006; Ji, Muhammad,
and Egerstedt 2006; Papachristodoulou and Jadbabaie
2006; Xu and Pei 2006; Sun, Wang, and Xie 2006; Liu,
Chu, Wang, and Xie 2006a; Ghabcheloo, Aguiar,

Pascoal, and Silvestre 2007; Ji and Egerstedt 2007; Hu

and Hong 2007; Ji, Lin, and Lee 2008b; Liu, Zou,

Zhang, Chu, and Wang 2008b; Gazi 2008; Liu, Chu,

Wang, and Xie 2008a; Bliman and Ferrari-Trecate

2008; Ji, Lin, and Lee 2008a; Rahmani, Ji,Mesbahi, and

Egerstedt 2009).
The controllability of a multi-agent system means

that the system can be steered from any one state to

any other one through certain regulations. The inves-

tigation of formation control in terms of controllability

has been proved to be advisable for multi-agent

systems (see e.g. Ji et al. (2006), Ji and Egerstedt

(2007), Liu et al. (2006b), Liu et al. (2008), Tanner

(2004), Liu et al. (2006)). The controllability problem

was put forward for the first time by Tanner (2004) for

multi-agent systems, where necessary and sufficient

conditions were derived with respect to fixed topology.

The idea is to transform the formation control into a

classical controllability problem for fixed topology as

well as a switched controllability problem for switching

topology. After that, the controllability was charac-

terised from a graphical point of view (Ji et al. 2006;

Ji and Egerstedt 2007; Rahmani et al. 2009). Inspired

by the above work, graph-based properties were inves-

tigated for the controllability of multi-agent systems

with respect to fixed topology in Ji et al. (2008a) as well

as algebraic conditions were derived for switching
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topology in Ji et al. (2008b). The controllability
problem was also studied under fixed and switching
topologies for continuous-time case in Liu et al.
(2006b, 2008a), and in Liu et al. (2006a) for discrete-
time case. In spite of this progress, much work remains
to be done to cope with the controllability problem in
the presence of e.g. information transmission time-
delays. This motivates the present study.

It is well recognised that time-delay phenomenon
is ubiquitous in nature and engineering, including
mechanical engineering, aeronautics and astronautics,
ecology, biology, information technology, economics,
etc. (Xu and Pei 2006). Time-delay effect may occur
naturally because of the physical characteristics of
information transmitting, diversity of signals, as well as
the bandwidth of communication channels. In parti-
cular, communication delays occur frequently in net-
works. Many results on multi-agent systems with
communication delays have been obtained. For exam-
ple, consensus problems with communication delays
were studied in Moreau (2004), Olfti-Saber and
Murray (2004), Sun et al. (2006), Wang and Xiao
(2006), Hu and Hong (2007), Bliman and Ferrari-
Trecate (2008). The stability with time delays was
analysed in Kozyreff et al. (2000), Earl and Strogatz
(2003), Amano et al. (2005), Papachristodoulou and
Jadbabaie (2006), Ghabcheloo et al. (2007), Gazi
(2008), and two sufficient conditions were recently
reported in Liu et al. (2008b) with respect to the
controllability of multi-agent systems with single time-
delay. In this article, we consider a multi-agent system
in the leader–follower framework, with both single and
double integrator dynamics. The leaders are unidirec-
tional, unaffected by the followers whereas the
followers are influenced by leaders directly or indir-
ectly. The leaders play the role of external input to
control the subsystem consisting of the followers. Each
follower updates its state based on the current infor-
mation available from its neighbouring agents and the
leaders. We introduce time-delay models for the multi-
agent system, and derive sufficient conditions for the
system to be controllable. Also, a graph-based neces-
sary characterisation is presented for the controllability
of delayed multi-agent systems with respect to fixed
topology, and necessary and sufficient conditions are
derived for the system to be controllable under
switching topology.

This article is organised as follows. Section 2 is a
brief review of graph theoretic terminologies. Section 3
follows with the system model with delay in state for
both single and double integrator dynamics. In
Section 4, we analyse the controllability for delayed
system and switching topology. Numerical examples
are included in Section 5. Finally, the results are briefly
summarised in Section 6.

2. Preliminaries

In this section, we briefly recall some basic concepts
and notations in graph theory which will be used in this
article. The reader is referred to Godsil and Royle
(2001) for details.

A directed graph (digraph) G consists of a vertex
set V(G)¼ {v1, v2, . . . , vn} and an arc set E(G)¼
{eij¼ (vi, vj) : vi, vj2V(G)}, where an arc is an ordered
pair of distinct vertices in V(G). An arc (vi, vj) in a
digraph denotes that agent j can obtain information

from agent i, but not necessarily vice versa. In contrast,
the pairs of vertices in an undirected graph are
unordered, where an edge (vi, vj) denotes that agents i
and j can obtain information from one another. An
undirected graph can be considered a special case of a
directed graph, where an edge (vi, vj) in the undirected
graph corresponds to arcs (vi, vj) and (vj, vi) in the
digraph. If there is an arc from vi to vj, vi is defined as
the parent vertex and vj is defined as the child vertex.
The set of neighbours of vi in G is denoted by
Ni¼ {vj : (vi, vj)2E(G)}. The number of elements in
the set Ni is called out-degree of vertex vi. Similarly, the
number of elements in the set Ñi¼ {vj : (vj, vi)2E(G)} is
called in-degree of vertex vi. A path from vi to vj is
meant that there is a sequence of distinct arcs in E(G),

(vi, v1), (v1, v2), � � � , (vr, vj). Here we exclude self-loops
and multiple arcs between a pair of distinct vertices.
A directed graph is called to be strongly connected if
there exists a path between any two distinct vertices of
the graph. For undirected graph, the strongly con-
nected property is usually called connected. Let
G¼ (V,E ) and Gs¼ (Vs,Es) be two directed graphs.
A subgraph Gs of a directed graph G is a digraph such
that the vertex set V(Gs)�V(G) and the arc set
E(G)s�E(G). If V(Gs)¼V(G), we call Gs a spanning
subgraph of G. For any vi, vj2V(Gs), if (vi, vj )2E(Gs) if
and only if (vi, vj)2E(G), we call Gs an induced
subgraph of G. In this case, we also say that Gs is
induced by V(Gs). An induced subgraph of an

undirected graph G, which is maximal and connected,
is said to be a connected component of the undirected
graph.

A weighted directed graph G(A) is a digraph G plus
a nonnegative weight matrix A¼ [aij]2R

n�n such that
for any i 6¼ j, (vi, vj)2E(G), aji40. Here A is called the
weighted adjacency matrix of the directed graph G, and
aji is said to be the weight of arc (vi, vj). Particularly, if
A is a 0–1 matrix (entries of which are 0 or 1), then we
say G(A) is an unweighed directed graph, or say G(A)
depicts the directed graph structure G(V,E ). If G is an
undirected graph, the associated weighted adjacency
matrix A is symmetric, i.e. AT

¼A. Throughout this
article, we always use G to represent a graph structure
and G(A) to represent a graph with unweighed
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adjacency matrix A. The Laplacian matrix L(G)¼

(lij)2R
n�n of an unweighed directed graph G(A),

abbreviated as L, is defined as: lij¼�aij, if i 6¼ j;

otherwise, lij¼
P

vj2Ni aij. For an undirected graph,

the Laplacian matrix L is always symmetric and

positive semidefinite. However, the matrix L for a

directed graph does not have this property. And the

Laplacian matrix could also be defined as: L¼D�A,

in which D¼diag(A � 1) is the in-degree matrix of G

with diagonal elements di¼
P

vj2Ni aij. For undirected

graph, the in-degree matrix is usually called degree

matrix. In the case of undirected graph, all of the

eigenvalues of L are nonnegative. In the case of directed

graph, all of the eigenvalues of L have nonnegative real

parts. In cases of both directed graph and undirected

graph, 0 is an eigenvalue of L with an associated

eigenvector 1, where 1 is an n� 1 column vector of all

ones.

3. Problem formulation and models

3.1 Single-integrator dynamics agents

The multi-agent system consists of Nþ l dynamic

agents, in which the agents indexed by Nþ i,

i¼ 1, . . . , l, are assigned as leaders; the others indexed

by 1, . . . ,N are referred to as followers. A continuous-

time system model, with single-integrator dynamic, is

described by

_xi ¼ ui, i ¼ 1, . . . ,N

_xNþj ¼ uNþj, j ¼ 1, . . . , l

�
ð1Þ

where xi2R
n is the state of agent i and ui2R

n is the

input, i¼ 1, . . . ,Nþ l. The directed graph G¼ (V,E )

is employed to depict the communication relations

among agents of such a system. We begin with defining

the directed interconnection graph to describe the

multi-agent system.

Definition 1 (Directed interconnection graph (Tanner

2004)): The directed interconnection graph,

G¼ (V,E ), is being defined as a directed graph

consisting of

. a set of vertices, V¼ {v1, . . . , vN, vNþ1, . . . ,

vNþl}, indexed by the agents in the system, and
. a set of arcs, E¼ {eij¼ (vi, vj) : vi, vj2V }, con-

taining ordered pairs of vertices that corre-

spond to interconnected agents.

Denote by Ni¼ {vj : (vi, vj)2E(G)} the neighbouring

set of agent i. The topology of an interconnection

graph is said to be fixed if each vertex of the graph has

a fixed neighbour set. If agent j is not a neighbour of
agent i, we denote this by vj � vi. The communication

among agents is realised through the control input ui,

defined by

ui ¼ �
X
vj2Ni

wijðxi � xj Þ, i 2 f1, . . . ,Nþ lg,

where W¼ (wij), wij� 0, is the interactive matrix. Here

wij¼wji is not required, i.e. the system is general

anisotropic. With x¼ [x1, . . . , xNþ1]
T being the stack

vector of all the agent states, the interconnected

system (1) can be written in a matrix form

_x ¼ �Hx, ð2Þ

where the matrix H¼ [hij](Nþl )�(Nþl ) is defined by

hij ¼

�wij, if i 6¼ j and vj 2 Ni,P
vj2Ni

wij, if i ¼ j,

0 otherwise.

8><>:
It can be readily seen that in association with the

matrix H, its off-diagonal elements are all negative or

zero, and its row sums are all equal to zero. If the

directed or undirected graph is unweighed, i.e. wij¼ 1

for any j2Ni, then H degenerates into the Laplacian

matrix L of the directed or undirected interconnection

graph, and accordingly, (2) becomes

_x ¼ �Lx: ð3Þ

If x is n-dimensional, (2) would be changed into the

form _x ¼ �ðH� InÞx, where In is the n� n identity

matrix, and the symbol � denotes the Kronecker

product of matrices. If for any eij2E, the arc eji2E as

well, the communication is said to be bidirectional. That

is, if agent i can receive information from agent j, agent

j can receive information from agent i as well. In this

case, we use an edge (represented by —) to depict it;

otherwise, the communication is said to be unidirec-

tional and we use an arc (represented by!) to depict it.

Assumption 1: The communication between leaders

and followers is unidirectional, i.e. the leaders are

unaffected by the followers whereas a follower may be

influenced by leaders as well as other followers, and the

leaders are governed by some exogenous control inputs

which can drive the states of leaders to be arbitrary

values.

Rewrite the agents as

yi¼
4
xi, i ¼ 1, . . . ,N,

zj¼
4
xNþj, j ¼ 1, . . . , l:

(
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With y and z being the stack vectors of all followers yi
and leaders zi, respectively, we can rewrite system (3) in
the form

_y

_z

� �
¼ �

F R

0 L

� �
y

z

� �
þ

0

u

� �
,

where F and L are N�N and l� l matrices
corresponding to the indexes of followers and leaders,
respectively; F, L and R are submatrices inherited
from Laplacian matrix L, and u2R

l is the collection
of exogenous control inputs for leaders. Then the
dynamics of the followers corresponding to the y
component can be extracted as

_y ¼ �Fy�Rz, ð4Þ

with the control inputs being the leaders’ states. In
what follows, to facilitate presentation, we first state
the single time-delayed model. The multiple time-
delayed one can be formulated in the same manner. It
is assumed that the delay only affects the information
transmitted from one agent to another, i.e. �ii¼ 0,
i¼ 1, . . . ,N; and �ij¼ � for any i 6¼ j (i, j¼ 1, . . . ,N ),
where � is a positive integer. It follows from (4) that

_yiðtÞ ¼ �fi1y1ðtÞ � fi2y2ðtÞ � � � � � fiNyNðtÞ

� ri1z1ðtÞ � � � � � rilzl ðtÞ, i ¼ 1, . . . ,N,

where the coefficients are the elements inherited from
L. Accordingly, the dynamics with time-delays reads

_y1ðtÞ ¼ �f11y1ðtÞ � f12y2ðt� �Þ � � � � � f1NyNðt� �Þ

� r11z1ðtÞ � � � � � r1lzl ðtÞ,

..

.

_yNðtÞ ¼ �fN1y1ðt� �Þ � fN2y2ðt� �Þ � � � � � fNNyNðtÞ

� rN1z1ðtÞ � � � � � rNlzl ðtÞ, ð5Þ

which can be written into the matrix form

_y1ðtÞ

_y2ðtÞ

..

.

_yNðtÞ

2666664

3777775 ¼ �
f11

f22

. .
.

fNN

2666664

3777775
y1ðtÞ

y2ðtÞ

..

.

yNðtÞ

2666664

3777775

�

0 f12 � � � f1N

f21 0 � � � f2N

..

. ..
. . .

. ..
.

fN1 fN2 � � � 0

2666664

3777775
y1ðt� �Þ

y2ðt� �Þ

..

.

yNðt� �Þ

2666664

3777775
�RzðtÞ:

Since L¼D�A, it can be readily seen that
F¼D�A, where D and A are the N�N matrix
obtained from in-degree matrix D and unweighed

adjacency matrix A after deleting the last l rows and
l columns, respectively. With control inputs being the
leaders’ states, we have the model of multi-agent
system with time-delay in state as below

_yðtÞ ¼ �DyðtÞ þAyðt� �Þ �RzðtÞ, t4 t0: ð6Þ

To state the problem clearly, we give the following
definition for System (6).

Definition 2 (Controllability with delay): System (6) is
said to be controllable, if for any initial state y(t),
t2 [��, t0] and any final state yf, there exist a finite time
tf4t0 and an admissible input z(t) defined on [t0, tf ]
such that y(tf)¼ yf.

With respect to multiple time-delays, it is assumed
that �ii¼ 0, i¼ 1, . . . ,N; and there exists a positive
integer �max such that �ij� �max for any i 6¼ j,
(i, j¼ 1, . . . ,N ). In this case, communication delays
may be different. It can be seen that all time-delays �ij
belong to the set {0, 1, 2, . . . , �max}. Under this setup,
the model with multiple time-delays in state reads

_yðtÞ ¼ ð�DþA�0Þ yðtÞ þA�1yðt� �1Þ þ � � �

þA�max
yðt� �maxÞ �RzðtÞ, t4 t0, ð7Þ

where �max4�max�14� � �4�14�0¼ 0; the initial func-
tion y(t)¼ ’(t) is given for t2 [��max, t0]; Ak corre-
sponds to the part of dynamics with time-delay k, andP�max

�i¼0
A�i ¼A:

Definition 3 (Controllability with multiple
delays): System (1) is said to be controllable on
[t0, tf ] if for any specified initial state y(t), t2 [��max, t0]
and any final state yf, there exist a finite time tf4t0 and
an admissible input z(t) defined on [t0, tf ] such that
y(tf)¼ yf.

3.2 Double-integrator dynamics agents

In this subsection, we consider the following contin-
uous-time system of Nþ l agents with double-integra-
tor dynamics

_xi ¼ vi, _vi ¼ ui, i ¼ 1, . . . ,Nþ l, ð8Þ

where xi2R
n and vi2R

n are, respectively, the position
and velocity of agent i, and ui2R

n is the control input.
We study the controllability problem under the
following two protocols (Jiang, Wang, Xie, Ji, and
Jia, 2009): one is with the feedbacks of relative
velocities

ui ¼�
X
j2Ni

ðxi� xj Þ � k
X
j2Ni

ðvi� vj Þ, i 2 f1, . . . ,Nþ l g,

ð9Þ
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and the other is with the feedbacks of absolute velocity

ui ¼ �
X
j2Ni

ðxi � xj Þ þ kvi, i 2 f1, . . . ,Nþ l g,
ð10Þ

where k 6¼ 0 is a feedback gain.
The terminologies and notations appearing in this

section have the same meaning as those in Section 3.1.

So the System (8) with double-integrator dynamics

under protocol (9) can be written in the form of

_y

_z

_vy

_vz

26664
37775 ¼

0 0 IN 0

0 0 0 Il

�F �R �kF �kR

0 �L 0 �kL

26664
37775

y

z

vy

vz

26664
37775þ

0

0

0

u

26664
37775,

where y ¼ ½xT1 , . . . , xTN	
T is the stacked vector of

followers’ positions, z ¼ ½xTNþ1, . . . , xTNþl	
T is the

stacked vector of leaders’ positions, vy ¼ ½v
T
1 , . . . , vTN	

T

and vz ¼ ½v
T
Nþ1, . . . , vTNþl	

T are the corresponding veloc-

ity vector and u2R
l is the collection of exogenous

control inputs for leaders. Consequently, we can

induce the dynamics of followers into the following

LTI system:

_y

_vy

� �
¼

0 IN

�F �kF

� �
y

vy

� �
þ

0 0

�R �kR

� �
z

vz

� �
,

ð11Þ

with the control inputs being the leaders’ states

(positions and velocities). By repeating the same

arguments as those in Section 3.1, the double-

integrator dynamics (11) with single time-delay in

state reads

_yðtÞ

_vyðtÞ

� �
¼

0 IN

�D �kD

� �
yðtÞ

vyðtÞ

� �
þ

0 0

A kA

� �
yðt� �Þ

vyðt� �Þ

� �
þ

0 0

�R �kR

� �
zðtÞ

vzðtÞ

� �
, t4 t0: ð12Þ

If protocol (10) is employed, the closed-loop system

of multi-agent system (8) is

_y

_z

_vy

_vz

26664
37775 ¼

0 0 IN 0

0 0 0 Il

�F �R kIN 0

0 �L 0 kIl

26664
37775

y

z

vy

vz

26664
37775þ

0

0

0

u

26664
37775,

where y, z, vy, vz, u are defined as above. This yields the

following dynamics of followers:

_y

_vy

� �
¼

0 IN

�F kIN

� �
y

vy

� �
þ

0 0

�R 0

� �
z

vz

� �
, ð13Þ

with the control inputs being the leaders’ states

(positions). Then the double-integrator dynamics (13)

with delay in state can be written as

_yðtÞ

_vyðtÞ

� �
¼

0 IN

�D kIN

� �
yðtÞ

vyðtÞ

� �
þ

0 0

A 0

� �
yðt� �Þ

vyðt� �Þ

� �
þ

0 0

�R 0

� �
zðtÞ

vzðtÞ

� �
, t4 t0: ð14Þ

Definition 4: System (12) or (14) is said to be

controllable if for any initial state ½ yTðtÞ, vTy ðtÞ	
T,

t2 [��, t0] and any final state ½ yT, vTy 	
T
f , there exist a

finite time tf4t0 and an admissible input ½zTðtÞ, vTz ðtÞ	
T

defined on [t0, tf ] such that ½ yTðtf Þ, v
T
y ðtf Þ	

T
¼ ½ yT, vTy 	

T
f .

Under protocol (9), the model with multiple delays

reads

_yðtÞ

_vyðtÞ

" #
¼

0 IN

�DþA�0 �kDþ kA�0

" #
yðtÞ

vyðtÞ

" #

þ
0 0

A�1 kA�1

" #
yðt� �1Þ

vyðt� �1Þ

" #
þ � � �

þ
0 0

A�max
kA�max

" #
yðt� �maxÞ

vyðt� �maxÞ

" #

þ
0 0

�R �kR

" #
zðtÞ

vzðtÞ

" #
, t4 t0, ð15Þ

and under protocol (10), the model reads

_yðtÞ

_vyðtÞ

� �
¼

0 IN

�DþA�0 kIN

� �
yðtÞ

vyðtÞ

� �
þ

0 0

A�1 0

� �
yðt� �1Þ

vyðt� �1Þ

� �
þ � � �

þ
0 0

A�max
0

� �
yðt� �maxÞ

vyðt� �maxÞ

� �
þ

0 0

�R 0

� �
zðtÞ

vzðtÞ

� �
, t4 t0, ð16Þ

where �max4�max�14� � �4�14�0¼ 0, the initial func-

tion y(t)¼�(t) is given for t2 [��max, t0], Ak corre-

sponds to the part of dynamics with time-delay k andP�max

�i¼0
A�i ¼A.

Definition 5 (Controllability with multiple

delays): System (15) or (16) is said to be controllable

on [t0, tf ] if for any specified initial state ½ yTðtÞ, vTy ðtÞ	
T,

t2 [��max, t0] and any final state ½ yT, vTy 	
T
f , there exist a

finite time tf4t0 and an admissible input ½zTðtÞ, vTz ðtÞ	
T

defined on [t0, tf ] such that ½ yTðtf Þ, v
T
y ðtf Þ	

T
¼ ½ yT, vTy 	

T
f .
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4. Main results

4.1 Controllability of the delayed system with single
integrator dynamics

It has been shown in Bellman and Cooke (1963) that

the solution of (6) can be represented as

yðt, t0, ’, zÞ ¼ yðt, t0, ’, 0Þ þ

Z t

t0

Kðt, sÞð�RÞzðsÞds,

where y(t, t0, ’, z) denotes the solution to (6) at time t

corresponding to the initial time t0, y(t, t0, ’, 0) denotes
the free solution and K(t, s) is the N�N fundamental

matrix of (6) which satisfies the following equations:

(1) @K(t, s)/@s¼K(t, s)D�K(t, sþ �)A, s2 [t0, t� �]
(2) K(t, t)¼ I
(3) K(t, s)¼ 0, for all s4t.

As presented in Chyung and Lee (1966), system (6)

is controllable to the origin from time t0 if there

exists a finite value of time t14t0 such that

rank
R t1
t0
Kðt1, sÞRR0K0ðt1, sÞds ¼ N, which is the con-

trollable Gramian for the delayed system (6). Due to

the difficulty of computing K(t, s), some algebraic

criteria on controllability of linear systems with time-

delay have been established in Chyung and Lee (1966),

Kirillova and Curakova (1967), Weiss (1970), where a

matrix only consisted with the coefficients of differen-

tial equations is constructed for the delayed system,

and the delayed system is controllable if the matrix has

full rank. So the controllability problem of the delayed

system is transformed to the one without time-delay

through judging the rank of the matrix. To formulate

the problem clearly, we denominate the matrix as the

controllable matrix. The following controllability

matrix Q is constructed for the multi-agent system

with state delay described by (6).

Q ¼ Q1
1,Q

2
1, . . . ,QN

1 ,Q
2
2, . . . ,QN

2 , . . . ,QN
N

� �
, ð17Þ

where Q1
1 ¼ �R, Qk

j ¼ 0 for j4k or j¼ 0, and Qkþ1
j ¼

�DQk
j þAQk

j�1, j¼ 1, 2, . . . , k, k¼ 1, 2, . . . ,N.
The controllability of delayed system (6) relies on

the rank of controllability matrix Q. If Q has full row

rank, i.e. rank(Q)¼N, system (6) is controllable. To

simplify the computation for the rank of Q with

l�N(Nþ 1)/2 columns, we will give sufficient condi-

tions for the delayed system to be controllable. The

following lemma will be used in the derivation of the

result.

Lemma 1 (Hewer 1972): The identity

ð�DþAÞNð�RÞ ¼QNþ1
1 þQNþ1

2 þ �� �þQNþ1
N þQNþ1

Nþ1

is valid.

If the communications between followers are

bidirectional, they will be depicted by edges except

those between leaders and followers. In this case, the

interconnection graph is undirected and the following

theorem can be derived to guarantee the delayed

system to be controllable. Here the associated

unweighed adjacent matrix A, in-degree matrix D and

Laplacian matrix L are denoted by adding the inverse-

orientation links of unidirectional arcs between the

leaders and followers of the original graph G. So, A, D

and L are all symmetric.

Theorem 1: The delayed multi-agent system (6), with

undirected interconnection graph G, l leaders and N

followers, is controllable for �40 if any of the following

five conditions is fulfilled:

(I) (i) The eigenvalues of A are all distinct.
(ii) The eigenvectors of A are not orthogonal

to at least one column of R.
(II) A and A share no common eigenvalues.
(III) (i) The eigenvalues, i.e. the diagonal elements

of D are all distinct.
(ii) At least all the elements in one column of

R are nonzero.
(IV) (i) The eigenvalues of F are all distinct.

(ii) The eigenvectors of F are not orthogonal

to at least one column of R.
(V) L and F share no common eigenvalues.

Proof: We shall show that rank(Q)¼N under each of

Conditions (I)–(V). Accordingly, system (6) is con-

trollable since the controllability matrix Q is full

row rank.

Conditions (I) and (III): In view of the expression (17)

for the controllability matrix Q, calculations show that

Q1
1 ¼ �R, Q2

2 ¼ �AR, . . . , QN
N ¼ �A

N�1R,

and

Q1
1 ¼ �R, Q2

1 ¼ DR, . . . , QN
1 ¼ ð�1Þ

NDN�1R:

Set Q1 ¼
D
½Q1

1,Q
2
2, . . . ,QN

N	, Q2 ¼
D
½Q1

1,Q
2
1, . . . ,QN

1 	, it

follows that Q1 and Q2 are the controllability matrices

of the following non-delayed systems, respectively,

_yðtÞ ¼AyðtÞ �RzðtÞ, ð18Þ

_yðtÞ ¼ �DyðtÞ �RzðtÞ: ð19Þ

The idea is that since Q consists of Q1 (or Q2) and other

matrices, the controllability matrix Q is full row rank if

so is for matrix Q1 (or Q2). The remaining argument in

this part of proof is then to show that the non-delayed

system (18) and (19) are controllable under Conditions

(I) and (III), respectively, as follows.
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Let �1� �2� � � � � �N be the eigenvalues of A.

Since A is symmetric, there exists an orthogonal

matrix U such that A¼U�UT, where U consists of

the orthogonal eigenvectors of A and �¼diag{�1,
�2 , . . . , �N}. Denote UTR¼

4
[r1 , . . . , rl] with

ri¼
4
[r1i , . . . , rNi]

T, i¼ 1, . . . , l. Then

Q1 ¼ �U UTR,�UTR, . . . ,�N�1UTR
� �

¼ �U ½r1, . . . , rl 	,�½r1, . . . , rl 	, . . . ,�N�1½r1, . . . , rl 	
� �

:

Consider the following matrix:

eQ1 ¼ ½r1,�r1, . . . ,�N�1r1	, . . . , ½rl,�rl, . . . ,�N�1rl 	
� �
¼ diagfr11, . . . , rN1g�, . . . , diagfr1l, . . . , rNlg�½ 	,

ð20Þ

where

� ¼

1 �1 � � � �N�11

..

. ..
.
� � � ..

.

1 �N � � � �N�1N

264
375

is a Vandermonde matrix. Since eQ1 is obtained by

rearranging the columns of Q1 and U is an orthogonal

matrix, we have

rankðQ1Þ ¼ rankðeQ1Þ: ð21Þ

By (i) of Condition (I), �1, . . . , �N are all distinct. As a

consequence, � is nonsingular. By (ii) of Condition (I),

it can be assumed, without loss of generality, that r1 is

not orthogonal to the eigenvectors of A. Accordingly,

r11, . . . , rN1 are nonzero and then diag{r11, . . . , rN1} is

nonsingular. Therefore, it follows from (20) and (21)

that eQ1 and then Q1 is full row rank if Condition (I) is

fulfilled. So, under Condition (I), the controllability

matrix Q is full row rank, that is, the state delayed

system (6) is controllable.
With respect to the Condition (III), we denote

R¼ [�1, . . . , � l]. Then Q2 can be written as

Q2¼ �½�1, . . . ,�l 	,D½�1, . . . ,�l 	, . . . , ð�1Þ
NDN�1½�1, . . . ,�l 	

� �
,

which has the same rank as eQ2, where

eQ2 ¼
�
½��1,D�1, . . . , ð�1ÞNDN�1�1	, . . . ,

½��l,D�l, . . . , ð�1ÞNDN�1�l 	
�

¼
�
diagf��11, . . . , ð�1ÞN�N1ge�, . . . ,

diagf��1l, . . . , ð�1ÞN�Nlge��,
� i¼
4
[�1i, . . . , �Ni]

T, i¼ 1, . . . , l, and

e� ¼ 1 d1 � � � dN�11

..

. ..
.
� � � ..

.

1 dN � � � dN�1N

264
375:

By repeating the same lines of arguments as those for
the system (18) in the proof concerning Condition (I),
it can be seen that system (19), and then system (6),
is controllable if Condition (III) is fulfilled.

Condition (II): Since A is obtained by deleting the
last l rows and l columns of A, the adjacency matrix A
can be partitioned as

A ¼
A A12

A21 A22

� �
:

With respect to the nondelayed system (18), the control
input matrix R is obtained by deleting the last l rows
and the first N columns of the Laplacian matrix L.
This, together with the observation that L¼D�A and
D is a diagonal matrix, yields that A12¼R. Noticing
that A is symmetric since it is the adjacency matrix of
the undirected interconnection graph G, we have
A21¼RT.

Next, we shall prove that the non-delayed system
(18) is controllable under Condition (II). We are to
show this by contradiction. Suppose that system (18) is
uncontrollable. It follows from the controllability PBH
criteria that there exists a vector p2R

N such that
A p¼�p for some �2R, with RT p¼ 0. Accordingly,

A
q

0

� �
¼

A R

RT A22

� �
q

0

� �
¼ �

q

0

� �
,

implying that � is a common eigenvalue of A and A.
Hence, the fulfilment of Condition (II) leads to the
controllability of system (18). By following the argu-
ments in the first part of proof for Condition (I), the
original system (6) is then controllable.

Condition (IV): Consider the following matrix Q̂3

derived from the controllability matrix Q of the
delayed system (6) by elementary column operations:

Q̂3 ¼

�
Q1

1,Q
2
1 þQ2

2, . . . ,QN
1 þQN

2 þ � � � þQN
N�1

þQN
N,Q

2
2, . . . ,QN

2 , . . . ,QN
N

�
:

Since elementary column operations do not affect the
rank of a matrix, Q̂3 has the same row rank with Q. By
Lemma 1, we have

Q̂3 ¼
�
ð�RÞ, ð�DþAÞð�RÞ, . . . , ð�DþAÞN�1

� ð�RÞ,Q2
2, . . . ,QN

2 , . . . ,QN
N

�
¼
�
�R,FR, �F2R, . . . , ð�1ÞN

�FN�1R,Q2
2, . . . ,QN

2 , . . . ,QN
N

�
:

Note that Q3¼
4
[�R, FR, . . . , (�1)NFN�1R] is the

controllability matrix with respect to the following
nondelayed system:

_yðtÞ ¼ �FyðtÞ �RzðtÞ:
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The controllability matrix Q is full row rank if so is

matrix Q3. The remaining argument is a repetition of

the same part in the proof of Condition (I), with the

only difference being to replace A by F.

Condition (V): The proof in this part can be carried

on in the same way as that for Condition (II) by

replacing A with F.
The proof is completed. œ

The advantage of Conditions (I)–(III) in Theorem 1

consists in the independence of matrices D and A.

Corollary 1: The nondelayed system (4) with multiple

leaders is controllable if the eigenvalues of F are all

distinct and the eigenvectors of F are not orthogonal to

at least one column of R.

Proof: The assertion is a direct consequence of proof

with respect to Condition (I) in Theorem 1. œ

In practice, the information channels among agents

are influenced by environment, obstacles along the

trajectories of agents, etc. So, not all the communica-

tions between followers are bidirectional. Some agents

could only send information to others or receive

information from others. Accordingly, there only

exist unidirectional communications between some

followers. In this case, we use directed graph to

describe the system. The following result is on the

controllability under directed interconnection graph.

Corollary 2: The delayed multi-agent system (6), with

undirected interconnection graph G, l leaders and N

followers, is controllable for �40 if any of the two

matrices Q1, Q3 has full row rank or Condition (III) in

Theorem 1 is fulfilled, where

Q1 ¼ ½�R, �AR, �A2R, . . . , �AN�1R	,

Q3 ¼ ½�R,FR, �F2R, . . . , ð�1ÞNFN�1R	:

Proof: Set Q2¼ [�R,DR, �D2R , . . . , (�1)NDN�1R],

it follows from the proof of Theorem 1 that the

controllability matrix Q of the state delayed system (6)

is full row rank if so is any of the matrices Q1, Q2

andQ3. Furthermore, if Condition (III) in Theorem 1 is

fulfilled, Q2 is full row rank. Hence, the assertion

holds. œ

Since the solution to (7) can be written in the form

of y(t, t0, ’, z)¼ y(t, t0, ’, 0)þ
R t
t0
Kðt, sÞð�RÞzðsÞds,

the results in Buckalo (1968) can be employed to

cope with the controllability problem with multiple

time-delays.

Theorem 2: The delayed multi-agent system (7), with

undirected interconnection graph G, l leaders and N

followers, is controllable for �140, . . . , �max40 if the

following conditions are fulfilled:
(I) (i) The eigenvalues, i.e. the diagonal elements

of �DþA0 are all distinct.
(ii) At least all the elements in one column ofR

are nonzero.
(II) A�max

y(t� �max)�Rz(t)
 0 admits to a piece-
wise continuous solution z(t) for
t2 [t1, t1þ �max].

Proof: Thematrix [R,(�DþA0)R, . . . , (�DþA0)
N�1R]

has full row rank of N if (i) and (ii) of Condition (I) are
fulfilled. The rest of the proof is a direct consequence of
the result in Buckalo (1968). œ

4.2 Controllability of the delayed system with double
integrator dynamics

The terminologies and notations in this section have
the same meanings as those in Section 4.1. The
controllable matrices for the delayed systems (12) and
(14) have the same structure as those for system (6).
The only difference consists in the following specific
forms of the associated matrices in the controllability
matrix:

Q1
1 ¼

0 0

�R �kR

� �
, Qkþ1

j ¼
0 IN

�D �kD

� �
Qk

j

þ
0 0

A kA

� �
Qk

j�1;

Q1
1 ¼

0 0

�R 0

� �
, Qkþ1

j ¼
0 IN

�D kIN

� �
Qk

j

þ
0 0

A 0

� �
Qk

j�1:

Theorem 3: For the state-delayed system described by
(12) or (14), with undirected interconnection graph G, l
leaders and N followers, the dimension of the control-
lable subspace of system (12) or (14) is not less than N if
the following conditions are both fulfilled:

(i) The eigenvalues of A are all distinct.
(ii) The eigenvectors of A are not orthogonal to at

least one column of R.

Proof: Consider the following nondelayed system:

_yðtÞ

_vyðtÞ

� �
¼

0 0

A kA

� �
yðtÞ

vyðtÞ

� �
þ

0 0

�R �kR

� �
zðtÞ

vzðtÞ

� �
, t4 t0: ð22Þ

By following the same reasonings as those in the proof
of Condition (I) in Theorem 1, we see that the
controllable matrix of the nondelayed system (22)
constitutes part of that of the state-delayed system (12).
So the dimension of the controllable subspace
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associated with system (12) is always greater than that

of system (22). Computations show that the controll-

ability matrix C1 of system (22) is

Accordingly, the rank of C1 equals that of matrixeC1 with

eC1 ¼ ½eC11, keC11	,

where

eC11 ¼ ½�R, �kAR, �k2A2R, . . . , �k2N�1A2N�1R	:

Since A is symmetric, it can be assumed that

A¼U�UT, with U being an orthogonal matrix.

Denote UTR¼
4
[r1, . . . , rl] with ri¼

4
[r1i, . . . , rNi]

T,

i¼ 1, . . . , l. There exists a permutation matrix P

such that

eC11 ¼�U
�
½r1, . . . , rl 	,k�½r1, . . . , rl 	,k

2�2½r1, . . . , rl 	, . . . ,

k2N�1�2N�1½r1, . . . , rl 	
�

¼�U
�
½r1,k�r1, . . . ,k

2N�1�2N�1r1	, . . . ,

½rl,k�rl, . . . ,k
2N�1�2N�1rl 	

�
¼�U diagfr11, . . . , rN1ge�, . . . , diagfr1l, . . . , rNlge�h i

P,

where

e�¼D 1 k�1 � � � k2N�1�2N�11

..

. ..
.
� � � ..

.

1 k�N � � � k2N�1�2N�1N

2664
3775:

It can be seen from the preceding arguments that under

Condition (I), eC11 and then eC1 is full row rank, which

leads to rankC1¼N. Consequently, the dimension of

the state-delayed system (12) is not less than N under

the two conditions. œ

It can be seen from the proof of Theorem 3 that the

velocities of the followers are controllable states.

Theorem 4: The state-delayed system described by (12)

or (14) with undirected interconnection graph G, l leaders

and N followers, is controllable for any �40 if G1 has

nonzero eigenvalues and L and F share no common

eigenvalues, where G1 ¼
0 IN
�F �kF

� �
:

Proof: Denote H1 ¼
�
0 0
�R �kR	, and consider the

system

_y

_vy

� �
¼ G1

y

vy

� �
þH1

z

vz

� �
: ð23Þ

By repeating the same lines of proof for Condition (IV)

in Theorem 1, we see that system (12) is controllable if

so is system (23).

Next, we are to show that if G1 has nonzero

eigenvalues and L and F share no common eigenva-

lues, system (23) is controllable. We show this by

contradiction. Suppose system (23) is uncontrollable.

By the controllability Popov–Belevitch–Hautus (PBH)

criteria, there exist an eigenvalue � of G1 and an

associated left eigenvector [�T, �T] such that

½�T, �T	G1 ¼ �½�
T, �T	 and ½�T, �T	H1 ¼ 0: ð24Þ

The first equality of (24) gives rise to

��TF ¼ ��T,

�TIN � k�TF ¼ ��T:

�
ð25Þ

Then

�2�T ¼ �Tð�1� k�ÞF: ð26Þ

We claim that 1þ k� 6¼ 0. Otherwise, if 1þ k�¼ 0, it

follows from � 6¼ 0 and (26) that �T¼ 0. This, together

with the second equality of (25) results in �T¼ 0, which

contradicts to the fact that the eigenvector [�T, �T] is
nonzero. Accordingly, one has �TF¼��T with

� ¼ � �2

1þk� : So, � is an eigenvalue of F. On the

other hand, the second equality of (24) implies

�TR¼ 0. We have

½�T, 0T	L ¼ ½�T, 0T	
F R

RT L22

� �
¼ �½�T, 0	:

That is, � is also an eigenvalue of L. This contradicts

to the assumption that L and F share no common

eigenvalues. The above analysis shows that if G1 has

nonzero eigenvalues and L and F share no common

eigenvalues, system (23) and then system (12) is

controllable. œ

Remark 1: The latter part of proof in this theorem is

inspired by the proof of Theorem 3 in Jiang et al.

(2009).

Next, we present a result on multiple time-delays.

Theorem 5: The state delayed system described by (12)

or (14), with undirected interconnection graph G, l

leaders and N followers, is controllable for �140, . . . ,

�max40 if the following conditions are fulfilled:

(1) The matrix ~C ¼ �,��, � � ��N�1�
� �

has full

row rank.

C1 ¼
0 0 0 0 0 0 0

�R �kR �kAR �k2AR � � � �k2N�1A2N�1R �k2NA2N�1R

� �
:
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(2) �
�
yðt��maxÞ

vyðt��maxÞ

�
��

�
zðtÞ
vzðtÞ

�

 0 admits to a piecewise

continuous solution
�
zðtÞ
vzðtÞ

�
for t2 [t1, t1þ �max],

where for system (15),

� ¼
0 IN

�DþA�0 �kDþ kA�0

� �
,

� ¼
0 0

�R �kR

� �
� ¼

0 0

A�k kA�k

� �
;

and for (16),

� ¼
0 IN

�DþA�0 kIN

� �
, � ¼

0 0

�R 0

� �
,

� ¼
0 0

A�k 0

� �
:

Proof: The proof can be conducted in the same way

as that in Theorem 2. œ

The controllability problem has been studied here-

inbefore for the delayed multi-agent system (12). The

same idea can be employed in the investigation of

controllability for system (14) with the establishment

of similar results. In the sequel, we focus on a graph-

based perspective for the controllability of system (4)

and (6). To this end, we first introduce the following

definition.

Definition 6: For a multi-agent system with directed

or undirected interconnection graph G, any two agents

are said to have the same direct neighbour set of parent

vertices if the two parent vertex sets associated with

these two agents are identical; and are said to have the

same indirect neighbour set of parent vertices if the two

sets obtained by adding themselves to each set of their

parent vertices are identical.

For example, in Figure 1, the direct parent vertex

sets of agents 3 and 4 are, respectively, S3¼ {2, 4} and

S4¼ {2, 3}. By adding agent 3 to its direct parent vertex

set S3 and 4 to its direct parent vertex set S4, one can

get the indirect parent vertex of agents 3 and 4, which

are, respectively, eS3 ¼ f2, 3, 4g and eS4 ¼ f2, 3, 4g: So,
with respect to Figure 1, agents 3 and 4 have the same
indirect neighbour set of parent vertices. At the same

time, it can be readily seen that agents 1 and 2 have the
same direct neighbour set of parent vertices, which is
S1¼S2¼ {5, 6}.

Theorem 6: The multi-agent system with or without
delay in state, described by (4) or (6), is uncontrollable if
at least two followers have the same direct or indirect

neighbour set of parent vertices.

Proof: For the convenience of presentation, we
assume that there are two followers, say the i-th and

j-th followers, having the same direct or indirect
neighbour set of parent vertices. Since F is obtained
by deleting the last l rows and l columns of the
Laplacian matrix L and R is obtained by deleting the

last l rows and the first N columns of L, it follows that

F ¼

� � � � � � � � � � � � �

..

. ..
. ..

. ..
.

� � � � 	 � � � " � � � �

..

. ..
. ..

. ..
.

� � � � " � � � 	 � � � �

..

. ..
. ..

. ..
.

� � � � � � � � � � � � �

266666666666664

377777777777775

i

j

i j

,

R ¼

� � � � �

..

. ..
.

� � � � �

..

. ..
.

� � � � �

..

. ..
.

� � � � �

266666666666664

377777777777775

i

j

,

where "¼ 0 if followers i and j have the same direct

neighbour set of parent vertices and "¼�1 if they have
the same indirect neighbour set of parent vertices.
Furthermore, the i-th row inF is identical with the j-th

row if the i-th and j-th elements are exchanged from
each other. Since the i-th and j-th followers have the
same direct or indirect neighbour set of parent vertices,

the i-th and j-th rows in R are also identical. Recall
that the controllability matrix of system (4) is C¼ [�R,
FR, . . . , (�1)NFN�1R]. It can be seen from the

specific structure of F and R that the i-th and j-th
rows of the controllability matrix are identical. As a
consequence, the controllability matrix is rank defi-
cient, i.e. the system is uncontrollable. œ

Figure 1. Agents 3 and 4 have the indirect same set of parent
vertices.
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The above theorem presents a method to decide the
uncontrollability directly from the interconnection
graph itself by searching for some followers with the
same direct or indirect neighbour set of parent vertices.

4.3 Controllability under switching topology

Since the interconnection graph G is time-variant, the
dynamic (4) can be viewed more reasonably as a
system in switching networks, which can be written in
the form

_y ¼ �F
ðtÞy�R
ðtÞz, ð27Þ

where 
(t) : R
þ
!M¼

4
{1, 2, . . . ,M} is the switching

signal/sequence to be designed. Given a switching
signal 
(t) : [t0, tf ]!M, we refer to t0, t1, . . . , ts�1 with
t05 t15 � � �5 ts�1 as the switching time sequence, and

(t0)¼ i0, 
(t1)¼ i1, . . . , 
(ts�1)¼ is�1 as the switching
index sequence. Let hi¼

4
tiþ1� ti, i¼ 0, 1, . . . , s� 1, and

ts¼
4
tf. We denote by �¼

4
{(i0, h0). . .(is�1, hs�1)} a

switching signal. (F
(t), R
(t)) is said to be the system
and control input matrix pair (in short matrix pair) of
the multi-agent system (1) with switching topology.
In particular, (F,R) is said to be the matrix pair of
system (1) with fixed topology.

Definition 7: The multi-agent system (1) is said to be
controllable under leaders xNþj, j¼ 1, . . . , l and switch-
ing topology if system (27) is controllable.

The system (27) is controllable if for any nonzero
state y2R

N, there exist a switching sequence � and
input z such that y(0)¼ y, and y(tf)¼ 0. We denote by C
the controllable state set of system (27). To derive
conditions for the controllability of multi-agent systems
under switched dynamic networks, results on the
controllability of switched linear systems (27) are first
recalled in the sequel. Given a matrix A2R

N�N, and a
linear subspace W�R

N, we denote hAjWi ¼
DPN

i¼1 A
i�1W: It follows that hA|Wi is a minimum

A-invariant subspace that containsW. Given B2R
N�p,

let ImB denote the image space of B. For notational
simplicity, we denote by hA|Bi the hA|ImBi. For system
(27), we denote by C the set of all its controllable states
and consider the nested subspace sequence defined by

W1 ¼
XM
k¼1

�Fkj �Rkh i, Wsþ1 ¼
XM
k¼1

�FkjWsh i,

ð28Þ

with s¼ 1, 2, . . . . Let W ¼ lims!1Ws, and �¼min{s|
Ws¼Wsþ1, s¼ 1, 2, . . . }. It follows that ��N�
dimW1þ 1. The following result is on the controll-
ability of system (27).

Lemma 2: For system (27), C¼W�¼WN¼W.

Proof: It is a direct consequence of Theorem 1 in

Sun, Ge, and Lee (2002) and Ji, Wang, and Guo

(2008d). œ

To calculate the controllable subspace C, the

following subspace sequence E0,E1, . . . is defined:

E0 ¼
XM
k¼1

Imð�RkÞ, Esþ1 ¼ E0 þ
XM
k¼1

ð�FkÞEs,

s ¼ 0, 1, 2, . . . : ð29Þ

Let �¼min {s|Es¼Esþ1, s¼ 0, 1, 2, . . .}, and

�¼
D �

B1, . . . ,BM,H1B1, . . . ,H1BM, . . . ,HMB1, . . . ,

HMBM, . . . ,H�
1B1, . . . ,H�

1BM,H��1
1 H2B1, . . . ,

H��1
1 H2BM, . . . ,H�

MB1, . . . ,H�
MBM

�
, ð30Þ

where Hi¼
4
�Fi, Bi¼

4
�Ri, i¼ 1,. . . ,M. Below is a

Kalman-type rank criteria.

Theorem 7: The interconnected system with nl leaders

and switching networks described by (27) is controllable

if and only if matrix � is full row rank, i.e.

rank� ¼ N:

Proof: By the proof of Proposition 1 in Ji, Lin, and

Lee (2008c), the subspace W coincides with the image

space of �, i.e. W¼ Im �. The result then follows from

Lemma 2. œ

Since � �N�dimE0, the theorem still holds if � is

replaced by N. In the sequel, we derive directly from

the nested subspace sequence (28) rather than (29). To

facilitate statement, we begin with the situation nl¼ 2,

�¼N¼ 3 and M¼ 2. The remainder is to calculate

W�. By (28),

W� ¼W2 þH1W2 þH2
1W2 þH2W2 þH2

2W2

¼W�1 þW�2,

where

W�1¼
D
H1jB1h i þH2 H1jB1h i þH2

2 H1jB1h i

þH1H2 H1jB1h i þH1H
2
2 H1jB1h i

þH2
1H2 H1jB1h i þH2

1H
2
2 H1jB1h i,

W!�2¼
D
H2jB2h i þH1 H2jB2h i þH2

1 H2jB2h i

þH2H1 H2jB2h i þH2H
2
1 H2jB2h i

þH2
2H1 H2jB2h i þH2

2H
2
1 H2jB2h i:
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Since Fi is symmetric, it can be expressed as

�Fi ¼ �UiDiU
T
i ¼ Ui

bDiU
T
i ¼

D
Hi, i ¼ 1, . . . ,M,

ð31Þ

where bDi¼
D
�Di, Ui is an orthogonal matrix. Denote

(�Fi, �Ri)¼
4
(Hi,Bi), one has

HijBih i ¼
XN
j¼1

Hj�1
i ImBi ¼ Ui

XN
j¼1

bDj�1
i Im bBi,

where bBi¼
D
UT

i Bi: Set bDi¼
D
diag

�
d̂1i, . . . , d̂Ni

�
, bBi¼

D�bbi1,bbi2�, and bbik¼D �b̂ð1Þik , . . . , b̂
ðNÞ
ik

�T
, i¼ 1, . . . ,M;

k¼ 1, . . . , nl. Some calculations show that

HijBih i ¼ Im�i, ð32Þ

where

�i¼
D
Ui

b̂
ð1Þ
i1 d̂1ib̂

ð1Þ
i1 � � � d̂N�1

1i b̂
ð1Þ
i1

b̂
ð2Þ
i1 d̂2ib̂

ð2Þ
i1 � � � d̂N�1

2i b̂
ð2Þ
i1

..

. ..
. . .

. ..
.

b̂
ðNÞ
i1 d̂Nib̂

ðNÞ
i1 � � � d̂ N�1

Ni b̂
ðNÞ
i1

266666664

377777775
,

266666664
b̂
ð1Þ
i2 d̂1ib̂

ð1Þ
i2 � � � d̂N�1

1i b̂
ð1Þ
i2

b̂
ð2Þ
i2 d̂2ib̂

ð2Þ
i2 � � � d̂N�12i b̂

ð2Þ
i2

..

. ..
. . .

. ..
.

b̂
ðNÞ
i2 d̂Nib̂

ðNÞ
i2 � � � d̂ N�1

Ni b̂
ðNÞ
i2

266666664

377777775

377777775
¼ Ui,Ui½ 	

�i1

�i2

" #
�i

�i

" #
,

�ik ¼

b̂
ð1Þ
ik

. .
.

b̂
ðNÞ
ik

26664
37775,

�i ¼

1 d̂1i � � � d̂N�11i

1 d̂2i � � � d̂N�12i

..

. ..
. . .

. ..
.

1 d̂Ni � � � d̂N�1Ni

26666664

37777775,

i ¼ 1, . . . ,M; k ¼ 1, . . . , nl: ð33Þ

Let UT
ij ¼

D
UT

i Uj: Then Uij is an orthogonal matrix since

Ui,Uj are orthogonal. To express W� further, the

following two matrices are introduced:

��1 ¼ �
ð1Þ
�1�

ð2Þ
�1�

ð3Þ
�1,

where

�
ð1Þ
�1¼

h
U1,U1,U2

bD2U
T
21,U2

bD2U
T
21,U2

bD2
2U

T
21,

U2
bD2
2U

T
21U1

bD1U21
bD2U

T
21,U1

bD1U21
bD2U

T
21,

U1
bD1U21

bD2
2U

T
21,U1

bD1U21
bD2
2U

T
21U1

bD2
1U21

bD2U
T
21,

U1
bD2
1U21

bD2U
T
21,U1

bD2
1U21

bD2
2U

T
21,U1

bD2
1U21

bD2
2U

T
21

i
,

�
ð2Þ
�1¼ diag

�
�11,�12,�11,�12,�11,�12,�11,

�12,�11,�12,�11,�12,�11,�12,
�
,

�
ð3Þ
�1¼ diag

�
�1,�1,�1,�1,�1,�1,�1,�1,

�1,�1,�1,�1,�1,�1

�
,

and

��2 ¼ �
ð1Þ
�2�

ð2Þ
�2�

ð3Þ
�2,

where

�
ð1Þ
�2 ¼

h
U2,U2,U1

bD1U
T
12,U1

bD1U
T
12,U1

bD2
1U

T
12,U1

bD2
1U

T
12,

U2
bD2U12

bD1U
T
12,U2

bD2U12
bD1U

T
12,U2

bD2U12
bD2
1U

T
12,

U2
bD2U12

bD2
1U

T
12,U2

bD2
2U12

bD1U
T
12,U2

bD2
2U12

bD1U
T
12,

U2
bD2
2U12

bD2
1U

T
12,U2

bD2
2U12

bD2
1U

T
12

i
�
ð2Þ
�2 ¼�diag

n
�21,�22,�21,�22,�21,�22,�21,�22,

�21,�22,�21,�22,�21,�22

o
�
ð3Þ
�2 ¼�diag

n
�2,�2,�2,�2,�2,�2,�2,

�2,�2,�2,�2,�2,�2,�2

o
:

Using (32), it can be verified that

W�1 ¼ Im��1, W�2 ¼ Im��2:

Accordingly,

W� ¼ Im��,

with

��¼
D

�
ð1Þ
�1,�

ð1Þ
�2

h i
� diag �

ð2Þ
�1,�

ð2Þ
�2

n o
� diag �

ð3Þ
�1,�

ð3Þ
�2

n o
:

By Lemma 2, the interconnected system (27) with

nl¼ 2, N¼ 3 and M¼ 2 is controllable if and only if ��

is full row rank, i.e.

rank�� ¼ N:

The derivation of general situation can be carried

out in the same way. The difference consists in the

expression of ��, which becomes much more complex
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as the state dimension N and the number of subsystems

M increase. In general case, �� is expressed as

�� ¼ �
ð1Þ
�1, . . . ,�

ð1Þ
�M

h i
� diag �

ð2Þ
�1, . . . ,�

ð2Þ
�M

n o
� diag �

ð3Þ
�1, . . . ,�

ð3Þ
�M

n o
, ð34Þ

where

with i1 , . . . , iM2 {1, . . . ,M} iM 6¼ i; Ui,Uij are orthogo-
nal matrices, bDij are diagonal matrices defined in
(31), and

�
ð2Þ
�i ¼ diag �i1, . . . ,�inl

� �
, �
ð3Þ
�i ¼ diag �i, . . . ,�if g,

i ¼ 1, . . . ,M,

�ik, �i are diagonal and Vandermonde matrices
defined, respectively, in (33). The following conclusion
is a summary of the previous arguments.

Theorem 8: The interconnected system with l leaders
and switching networks described by (27) is controllable
if and only if matrix �� is full row rank, i.e.

rank�� ¼ N,

where �� is defined in (34).

Remark 2: Comparing with Theorem 8, the controll-
ability matrix expression in Theorem 7 is more laconic
and the controllability can be therein verified directly
via computing �. The advantage of Theorem 8 consists
in the isolation of eigenvalues and eigenvectors, which
is incorporated, respectively, in �

ð3Þ
�i and �

ð2Þ
�i in (34)

and accordingly results in a specific expression for
controllability matrix ��. But no such information
is extracted in the expression of �. In this sense,
Theorem 8 provides further information on controll-
ability for a multi-agent system although it seems that
�� is not as simple as �. The difference between
Theorems 7 and 8 originates from the starting point of
derivation. Theorem 7 is deduced from the viewpoint
of subspace-based algorithm for the controllability of
switching linear systems, while Theorem 8 is deduced
directly from the iteratively defined subspace sequence.

5. Illustrative examples

Example 1: We consider a directed interconnection
graph consisting of four vertices, with nodes 3 and 4

being leaders. The associated fixed topology is shown

in Figure 2. The objective is to move the two leaders in

a two-dimensional space so that the followers can

be successively steered into the desired configuration,

i.e. a straight line in the vertical direction with

time delay �¼ 1 s. The directed interconnection

graph associated with the system has the following

coefficient matrices:

F ¼
1 0

�1 2

� �
, R ¼

�1 0

0 �1

� �
,

D ¼
1 0

0 2

� �
, A ¼

0 0

1 0

� �
:

The system moving in a two-dimensional space is

described by the following equation:

_yðtÞ ¼ �
1 0

0 2

� �
� I2

	 

yðtÞ þ

0 0

1 0

� �
� I2

	 

� yðt� �Þ �

�1 0

0 �1

� �
� I2

	 

zðtÞ:

Figure 3 shows the trajectories of the two followers

with the initial state y(t)¼ [1, 4, 0, 3]T, t2 [�1, 0]. At the

time instant tf¼ 11 s, the two followers are steered into

a straight line in a vertical direction.

Example 2: Consider a multi-agent system with the

interconnection graph depicted by Figure 1, where

nodes 5 and 6 are chosen to take the leaders role.

Calculations show that system matrices are

F ¼

2 0 0 0

0 2 0 0

0 �1 2 �1

0 �1 �1 2

26664
37775, R ¼

�1 �1

�1 �1

0 0

0 0

26664
37775:

�
ð1Þ
�i ¼½Ui, . . . ,Ui|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nl

, . . . ,

Ui1
bDN�1
i1

Ui2i1
bDN�1
i2

. . . bDN�1
iM

UT
iMi, . . . ,Ui1

bDN�1
i1

Ui2i1
bDN�1
i2

. . . bDN�1
iM

UT
iMi|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

nl

	,

Figure 2. The directed interconnection graph of four agents,
where agents 3 and 4 are leaders.
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It can be verified that the controllability matrix C has

the row rank of 2, i.e. the system is uncontrollable,

which coincides with Theorem 1.

In the preceding sections, we discussed the controll-

ability problem with respect to unweighed directed or

undirected graph. It should be noted that communica-

tion weights distinct from 1 are ubiquitous in practice.

In what follows, we will show by an example that it is

possible to turn an uncontrollable system with fix

topology into a controllable one by selecting appro-

priate weights for the communication links between

leaders and followers.

Example 3: For the multi-agent system with directed

interconnection graph depicted by Figure 4, agents 5

and 6 are assigned to take the leader roles and agents 1

and 3 have the same input channel. If the digraph is

unweighed, we have

F ¼

1 0 0 0

�1 3 �1 0

0 0 1 0

0 0 0 1

26664
37775, R ¼

�1 0

0 �1

�1 0

0 �1

26664
37775:

The controllability matrix has the rank 3. The system is

uncontrollable. If different weight, say weight value 2,

is imposed between the leader 5 and the follower 1 (or

between 5 and 3), then

F ¼

2 0 0 0

�1 3 �1 0

0 0 1 0

0 0 0 1

26664
37775, R ¼

�2 0

0 �1

�1 0

0 �1

26664
37775:

The rank of the controllability matrix is 4, implying

that the uncontrollable system is turned to be

controllable. Figure 5 shows the motion trajectories

of the followers 1–4. The four followers start from

arbitrary initial positions in the plane represented by ,

and reach a desired rectangular configuration depicted

by *’s.

Example 4: The example is employed to show that

under switching topologies, the desired configuration

can be achieved for a multi-agent system with time-

delay in state. Consider a multi-agent system with

switching topology described by Figure 6, where agent

4 is the leader and the others are followers. Our

objective is to move the leader in a two-dimensional

space so that the followers are successively steered into

a straight line with time delay �¼ 1 s under switching

(a)! (b)! (c). Starting from a random initial position

–1 0 1 2 3 4 5
1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 3. A straight line in the vertical direction with �¼ 1s.

Figure 4. The directed interconnection graph of six agents,
where agents 1 and 3 have the same topology.

0 5 10 15 20 25 30
1

2

3

4

5

6

7

8

9

10

Figure 5. An rectangle configuration.

Figure 6. Three interconnection graphs associated with three
multi-agent systems.
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(1, 4), (2, 3) and (3, 5), Figure 7 shows the evolution of
the three followers, which forms a configuration of
straight line at time t¼ 6 s.

6. Conclusion

As an attractive issue of research, the controllability of
networks of dynamic agents has recently aroused
increasing attention. In this article, the controllability
problem is formulated and studied for continuous-time
multi-agent systems with time-delay in state and
switching topology. Sufficient algebraic conditions
are derived for the interconnected system to be
controllable, as well as a graph-based uncontrollability
topology structure is constructed. The results are
analysed for both single and double integrator
dynamics. For switching topology, two necessary and
sufficient algebraic conditions are derived for the
controllability of networked multi-agent system. The
work provides insight into the effect of the interaction
pattern on self-organised motion in a multi-agent
system.
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